XploRA™ PLUS

MicroRaman Spectrometer - Confocal Raman Microscope

The XploRA™ PLUS is a reliable and high-performance microRaman system designed for scientists, researchers and engineers exploring the microscopic world.

With exceptional sensitivity and resolution, it offers precise chemical and structural analysis. Its SWIFT™ confocal microscopy enables fast and detailed examination of sample composition and structure. With versatile laser excitation options and the possibility of an easy AFM upgrade, it accommodates a wide range of samples and Raman scattering characteristics.

From material science to environmental science, it provides invaluable insights into diverse materials and samples, facilitating detailed analysis. XploRA™ PLUS represents the pinnacle of performance, versatility, and user-friendliness, meeting the demands of modern scientific inquiries with precision and reliability.

Segment: Scientific
Manufacturing Company: HORIBA France SAS
  • SWIFTTM10x faster Raman imaging
  • Improved detection and sensitivity
  • Full Confocality  for complete image detail
  • Full optical microscope so you can see your samples
  • Maximum detail, resolution and range for enhanced spectroscopy
  • HORIBA’s OneClick easy Raman analysis
  • NIST traceable and patented Autocalibration options for validated results
  • Ultimate optical stability- robust, reliable, long term operation
  • Automated operation offering simple, powerful reliability
  • 2 year base unit warranty as standard

Future-proof Expansion

  • Compatible with atomic force microscopes for combined Raman-AFM and TERS (Tip Enhanced Raman Spectroscopy)
  • Multiple laser wavelengths – ensures optimal results and minimised fluorescence interference from the widest range of sample types
  • Full system automation with software control and intuitive operation – non-expert operators can get results fast
  • Comprehensive Raman spectral libraries for fast Raman chemical identification
  • Automated particle location and chemical ID with ParticleFinder
  • Suitable for high throughput screening measurements with MultiWell module.

 

 

 

 

Faster Raman                                                      YES with XY stage                                                                                                           
SWIFT™ Imaging                                                  
/ SWIFTXS (with
EMCCD)

 

Confocal Imaging                                                 0.5 μm XY                                                                                                         
                                                                              
 

Routine operation                                               OneClick Auto
Automation

 

Full Microscope                                                   Upright

 

 Resolution                                                        Standard High
                                                                          

 Multi-laser                                                       532, 638, 785 nm
  Options                                                          others on request
                                                                     

Optimizing Carbon Material Analysis with Raman Spectroscopy
Carbon materials are crucial due to their widespread application in industries like energy storage. Analyzing carbon helps ensure material quality and performance. However, its structural complexity and variability, such as the presence of defects and morphological disparities, pose challenges, making precise analysis difficult.
Multimodal spectroscopy techniques for nanostructured materials characterization
In this article, we present the combination of Raman spectroscopy, Photoluminescence and SEM-CL techniques, where the instruments weren’t physically connected. Smart nanostructured materials require a comprehensive understanding of their morphology, elemental and chemical composition. nanoGPS Suite solution allows a colocalized combination of a variety of microscopy techniques, providing a full characterization of nanostructured materials and a precise superimposition of the results obtained.
Quality control of sugar content in beverages using Raman spectroscopy
We all consume or have all consumed sugary drinks at least once. Sugar content of those drinks must be regulated. Also, to avoid those properties of sugar, it has been replaced by sweeteners. These have lower sweetness than natural sugars. Whether it is sugar or sweetener, their content just be controlled. Here, we demonstrate that Raman spectroscopy is one solution to identify and evaluate sugar/sweetener concentrations in a quality control process.
Quality control of hand sanitizer gels and 70% alcohol products using Raman spectroscopy
Disinfecting your hands with hydroalcoholic gel has become a daily practice. In the meanwhile, 70° alcohol has been used for even longer to disinfect wounds. But, to remain efficient, the alcohol concentration of these products must not be below a defined threshold and must be controlled. This application note demonstrates how to evaluate alcohol concentrations in a quality control process with Raman.
Co-localized microscopy techniques for pyrite mineral spatial characterization
In this study we have chosen to investigate pyrite and its surrounding minerals in order to identify the different mineral phases as well as the chemical variations from micro- to nano-scale. Using the different microscopes instruments and being co-localized allows a comprehensive characterization of the sample and a precise superimposition of all the images.
Analysis of microplastics in hand sanitizers using ParticleFinder™
Due to the corona crisis, hand sanitizer became part of our daily routine. However, their use is not without potential risks because of their microplastics content. HORIBA offers all the tools necessary to analyze and characterize the presence of Microplastics in hand sanitizers: High-performance Raman microscopes, dedicated filtration kit, and especially the powerful particles detection software ParticleFinder™. We analyzed 3 samples of hand sanitizers, from different countries, and we were able to identify the different plastic content of each.
Proton Exchange Membrane Fuel Cell Bipolar Plate Analyses by GD-OES and Raman
Bipolar plates are key components of proton exchange membrane fuel cells – they notably distribute fuel gas and air and conduct electricity. Various materials and surface treatments have been developed to improve their properties. Here, we described a reverse engineering study on a bipolar plate from a commercial vehicle using GD-OES and Raman spectroscopy. The analyses revealed that the plate had an amorphous carbon coating on a titanium base plate.
Assessing Biotherapeutics Stability using Raman Spectroscopy
We have measured solutions of lysozyme under conditions known to effect its physical state in order to investigate the potential of Raman spectroscopy as a non-invasive and label-free tool to assess protein formulation stability. Results from this study identified specific Raman signature bands in this protein that can be used to identify individual amino acid residues that are reflect structural changes in proteins.
Three Dimensional Raman Imaging
Segmented channel waveguides have been fabricated in single crystal KTiOPO4 through a topotactic process of partial cation exchange. The ion-exchanged waveguides maintain the high nonlinear susceptibility of KTiOPO4 to function as frequency doubling laser light sources. We apply three dimensional (3D) Raman imaging to understand and characterize the changes to the chemical bonding and crystalline structure as well as measure the volumetric structure of the waveguide segments.
Spectroscopic Methods for Sunscreens Characterization
This Application Note outlines three different kinds of spectroscopic tools being used for the characterization of sunscreens, and discusses the obtained results. These include Fluorescence spectroscopy for photoactivity, Particle Size analysis for composition and Raman microscopy for formulation investigation.
Milk compounds characterization by optical spectroscopies and laser diffraction
In the food industry, the compounds characterization is a critical step to ensure the quality of the products or to provide information to customers which can be sensitive to allergies. In this application note, we showed how optical spectroscopies and laser diffraction can help for food compounds characterization, especially on a specific product, i.e. milks.
Raman Mapping of Wheat Grain Kernels
Raman analysis of a 50 μm section of a wheat grain kernel has allowed spectral features corresponding to starch, lipid and proteins to be identified. The distribution of these components on the micron scale has been studied using a Raman mapped image. Decomposition of the Amide I band allows a correlation between protein structures and grain hardness.
Raman Imaging of Holographic Gratings Inscribed on Polymer Thin Films
Using holographic techniques we have structured the surface in a one step procedure (no wet nor photocuring processing ) along the X and Y directions. A grating is first inscribed with grooves along the X direction, the sample is rotated by 90° and a second grating is inscribed with grooves along the Y direction. The intensity of the 1st diffracted orders is monitored to have equal intensities in both X and Y directions.
Insights into thrombosis mechanisms using high resolution SERS
Direct identification of clinically relevant microorganisms
Raman Analysis of Single Bacteria Cells
Traditionally, Raman has been a technique of the material scientist, physicist or chemist, but as instrumentation continues to evolve, the power of Raman in biological and medical applications is fast being realized, not least because of the high information content provided and an excellent tolerance for water.
Raman Investigation of Micro-organisms on a single cell level
Raman Imaging of monkey brain tissue
Fast and non-invasive methods for clinical and non clinical investigations for biological tissue are more and more required. Raman imaging at micro scale can answer to crucial questions about the monkey brain tissue morphology and structural evolution.
Raman Analysis of Sperm Nuclear DNA Integrity
Raman Spectroscopy was evaluated as a non-invasive method of analysis of sperm DNA and the influence of UV irradiation on the sperm. The results show that Raman Spectroscopy, combined with multivariate analysis provide the reproducible and accurate information on DNA of sperm and the effect and location of damage.
SERS Analysis of single living lymphocytes
Characterization of Compounds in a Pharmaceutical Drug Product
Resulting from the combination of Raman spectroscopy and optical microscopy, Raman hyperspectral imaging has proven to be an indispensable tool in the pharmaceutical field, especially to study the distribution of active(s) and excipients in a pharmaceutical drug product.
Characterization and mapping of active pharmaceutical ingredients and excipients in a tablet using Raman and IR spectroscopy
Polymorphy in pharmaceuticals by Raman Spectroscopy
Raman Analysis and characterization of pharmaceuticals
Raman Microscopy in Pharmaceutical Salt Analysis
Pharmaceutical and crystallographic samples typically require detailed characterization and analysis to optimize a samples stability, physical properties and indeed general efficacy where an active drug substance is involved.
Investigating the atherosclerosis process by monitoring lipid deposits including cholesterol and free fatty acids
Pharmaceuticals under humidity controlled atmosphere
Soap compound investigation by Raman mapping
In Vivo Raman measurements of Human Skin
Confocal Raman spectroscopy is beginning to be recognized as a high potential technique for the non invasive study of biological tissues and human skin under in vivo conditions. Raman spectroscopy can be applied to obtain information regarding the molecular composition of the skin down to several hundred micrometers below the skin surface.
SWNT Quality Control by Raman Spectroscopy
Raman has shown a high potential in characterising the SWCNTs' structure. The correlation between knowledge about structure with physical and chemical properties about the tubes make the technique extremely powerful to control the quality of the SWCNTs for specific applications. Raman spectrometer capabilities like spatial resolution, spectral resolution and excitation wavelength versatility have been examined. Beside Raman, preliminary fluorescence studies are describing the potential of the technique.
Graphene Studies using Raman Spectroscopy
Graphene is a new nanomaterial which may partially replace silicon in microcircuits and computer chips in the future. In order to better understand its quality characteristics, fast reliable techniques that deliver the right property measures are needed. Raman spectroscopy has emerged as a key technique for studying this exceptional material.
Coloured Diamond Defect Identification by Raman Diffusion and Photoluminescence
The colour enhancement treatment on native brown and yellow diamonds can be highlighted by Photoluminescence analyses performed with the Raman spectrometer LabRAM HR. The PL signature of green and violet diamonds has also been recorded. The defect centres responsible of the colour of the diamonds have all been detected and assigned. This proves the Raman spectrometer to be a very good tool to investigate the fine defects in the Diamond structure by Photoluminescence analysis.
Derivation of Physical Parameters from Raman Spectra of Hard Carbon Films
The Raman spectra of elemental carbon materials are known to be sensitive to polymorphy. For hard carbon films, the spectra of amorphous and diamond-like carbons can be band-fit to separate the contributions of the "graphitic carbon" (G band) from the "disordered carbon" (D band). The spectral behaviour of carbon films has been empirically correlated with thin film physical properties such as hardness, durability, optical transparency, electrical conductivity, thermal conductivity and corrosion resistance, and can be of use for prediction of these properties without extensive alternative testing. The DiskRam has been designed to automate the collection of Raman spectra from hard carbon coatings on computer hard disk media and the extraction of parameters that are well correlated with the properties of the films. The extracted information is output in spreadsheet format for SPC at a manufacturing facility.
Impact of Raman Spectroscopy on Technologically Important Forms of Elemental Carbon
The Raman spectra of the various forms of elemental carbon are very sensitive to the type of nearest neighbour bonding, and to intermediate and long range order. In many cases Raman spectroscopy is the technique of choice for characterization of carbon materials. Correlation of Raman spectral features with tribological properties can facilitate the deposition of carbon films.
Number of Layers of MoS2 Determined Using Raman Spectroscopy
The two methods - Analysis of fingerprint modes (intralayer) and Analysis of low-frequency modes (interlayer) - give complementary results and allow the determination of the number of MoS2 layers. Method 2 (using low frequency modes) gives excellent contrast; however it does not show single layer regions (which is related to the nature of the modes, rising from interaction between at least two layers). Method 1 (using fingerprint modes) shows all the layers, but the contrast is poorer, particularly for higher numbers of layers. The best result can be obtained combining the two methods. All the measurements (low-frequency and fingerprint) were done using ultra-low frequency ULFTM filters which allow a high throughput measurement in a full Raman range, down to <10 cm-1.
Characterization of MoS2 Flakes using TEOS
Both TEPL and TERS images are well correlated with AFM morphological images obtained simultaneously, and all are consistent in revealing the nature (number of layers) of MoS2 flakes. Upon deconvolution, the TEPL signal is even capable of revealing local inhomogeneities within a MoS2 flake of 100 nm size. Kelvin probe measurement supports TEPL and TERS measurements and adds to the power of such tip-enhanced combinative tools. TEOS characterization of 2D materials is likely to contribute to further deployment of these materials into commercial products through a better understanding of their electrical and chemical properties at the nanoscale.
Combined Raman and Photoluminescence Imaging of 2D WS2
Raman and photoluminescence spectroscopy reveal different aspects of the solid state structure of 2D materials. Raman and photoluminescence imaging performed simultaneously with one instrument reveals the spatial variation of the solid state structure and electronic properties of 2D crystals that is not revealed in reflected white light imaging. That ability should allow materials scientists to better design and fabricate electronic and optoelectronic devices based upon 2D crystals.
Observing Oxidating Kinetics on an aluminium alloy surface with Fluorescence mapping
Archaeometric analysis of ancient pottery in a church
Archaeometric analysis of ancient pottery
The non destructive and in-situ analysis of pigments
Strain Measurements of a Si Cap Layer Deposited on a SiGe Substrate, Determination of Ge Content
Raman spectroscopy is a very well suited technique to determine both Ge fraction and strain in SiGe layers and Si cap layers. Moreover the possibility of using both UV and visible excitation lines on the same instrument is essential to study structures made up of a Silicon cap layer on top of a SiGe layer. The relative Ge content in the constant Si1-xGex layer is calculated from the visible Raman spectrum and the strain of the cap Si layer is derived from the UV Raman spectrum.
Concentration Profile Measurements in Polymeric Coatings During Drying by Means of Inverse-Micro-Raman-Spectroscopy
The coupling of the power of confocal Raman microscopy to the inverted sampling geometry has enabled detailed investigations to be made of solvent and water based coating systems, providing important information on the processes and chemistry that occurs at the coating interface and within.
Localisation of Polymeric Phases by Raman Microscopy Mapping Components of a Blend in a Plane and Depth Profiles of Laminated Film
Blending, an alternative method for engineering products that combines the properties of polymer types is a physical mixing. It has the advantage of being not only simple and inexpensive, but also allows for re-cycling used material. Incompatibility or non-miscibility of the differing chemical components is often an issue in the final performance of the polymer product. The first part of this note concerns the dispersion of the two components in a polyethylene-polybutylene terephthalate blend. The chemical imaging capabilities of the LabRAM are used to get this information. The second part deals with the depth analysis of laminated films made of different polymer layers.
Raman Characterization of Polymers in Industrial Applications
Recent developments in Raman instrumentation have made the technique easier to use, more compact, and more affordable. Consequently, all of the demonstrated potential of the spectroscopy for industrial uses can now be exploited, including its use in combination with statistical methods for concentration calibrations.
Real-time Monitoring of Polymerisations in Emulsions by Raman Spectroscopy - Modelling and Chemometrics
Raman spectra, in conjunction with Multivariate (Chemometric) Analysis, have been demonstrated to provide real-time information on the progress of a polymerisation reaction. As shown by this example, these results can provide unexpected information on the details of the reaction. in this case, the inequivalent reaction rates of the two monomers. Such information ultimately enables the process engineer to optimise his process.
Transmission Raman Spectroscopy: Review of Applications
The transmission design has demonstrated to be the technique of choice whenever Raman spectral information of a bulk material is required. It has already proven its utility for pharmaceutical applications, as tablets or even powder mixtures are good candidates for this measurement mode. However, transmission Raman might be applied successfully to other sample types, such as polymers, bio-tissues or any translucent material, and can be envisaged for evaluating the content of product inside a package. In addition, as TRS provides a global spectral information of the measured sample, it will be a technique of choice when quantitative evaluation of mixtures is needed.
Spectroscopic Analysis Explains the Mystery of Dragonfly Eye Beads
Spectroscopic analysis can reveal the origin of cultural heritages and the historical background at the time. This application note introduces research of a dragonfly eye bead found in a tomb in China. Using Raman spectroscopy and X-ray analytical microscopy, the bead was found to be from the Eastern Mediterranean region and the result suggested China had cultural and economic exchanges with them during that era.
Using Chemometrics and Raman Spectra for Quantitative Predictions of Physical and Chemical Properties of Polymers
As far as polymeric fibres are concerned, slight modifications of Raman features are directly related to differences in the molecular orientation and the degree of crystallinity of the fibres. To utilize these subtle spectral changes and correlate them with physical properties of the polymer, one is obliged to use Chemometrics on the Raman spectra. The resulting synergism between Raman spectroscopy and Chemometrics will provide a powerful tool for monitoring and control of manufacturing of polymeric materials.

Request for Information

Do you have any questions or requests? Use this form to contact our specialists.

* These fields are mandatory.

Product accessories

LabSpec 6 Spectroscopy Suite Software

Enjoy a wonderful User eXperience with the unique features of Labspec 6 imaging and spectroscopy software!

OmegaScope

The AFM optical platform

Scientific Cameras

Deep Cooled UV/Vis/NIR

SERS Substrates

Ultrasensitive molecular detection

Standard Pro

Raman Calibration Objective

SuperHead

Fiber probes: High Efficiency Raman sensors

XD-100

Particle Disperser

Related products

Aqualog - A-TEEM Industrial QC/QA Analyzer

A Simple, Fast, “Column Free” Molecular Fingerprinting Technology

Auto SE

Spectroscopic Ellipsometer for Simple Thin Film Measurement

Cathodoluminescence - CLUE Series

Cathodoluminescence Solutions for Electron Microscopy

EMGA-921

Hydrogen Analyzer

EMGA-Expert

Oxygen/Nitrogen/Hydrogen Analyzer
(Flagship High-Accuracy Model)

EMGA-Pro

Oxygen/Nitrogen Analyzer (Entry Model)

EMIA-Expert

Carbon/Sulfur Analyzer
(Flagship High-Accuracy Model)

EMIA-Pro

Carbon/Sulfur Analyzer (Entry Model)

EMIA-Step

Carbon/Sulfur Analyzer (Tubular Electric Resistance Heating Furnace Model)

F-CLUE

Compact Hyperspectral Cathodoluminescence

GD-Profiler 2™

Pulsed-RF Glow Discharge Optical Emission Spectrometer

GDOES Software

Quantum and Image

graphYX

Correlate Multiple Modalities with Ease

H-CLUE

Versatile Hyperspectral Cathodoluminescence

LabRAM Odyssey

Confocal Raman & High-Resolution Spectrometer

LabRAM Odyssey Nano

AFM-Raman for physical and chemical imaging

LabRAM Soleil

Raman Spectroscope - Automated Imaging Microscope

LabRAM Soleil Nano

Real-time and Direct Correlative Nanoscopy

MultiWell Module

High Throughput Chemical Screening Experiments

MVAPlus

Multivariate Analysis App for all Raman Maps

nanoGPS navYX

Collaborative Correlative Microscopy

OmegaScope

The AFM optical platform

ParticleFinder

Automated Particle Measurement, Identification and Classification using Raman Analysis

QCarbon

Automated Raman D-to-G peak intensity ratio analysis for carbon materials

Smart SE

Powerful and Cost Effective Spectroscopic Ellipsometer

TRIOS

Versatile AFM Optical Coupling

UVISEL Plus

Spectroscopic Ellipsometer from FUV to NIR: 190 to 2100 nm

XGT-9500

X-ray Analytical Microscope (Micro-XRF)

XploRA Nano

AFM-Raman for Physical and Chemical imaging

Auto SE Accessories
Auto SE Accessories

Customize your instrument

Auto Soft
Auto Soft

Intuitive Auto-Soft Interface for the Auto SE and Smart SE

DataOverlay
DataOverlay

Hybrid Chemical and Video Image Display

DeltaPsi2 Software
DeltaPsi2 Software

A Platform for HORIBA Scientific Ellipsometers

GD-Profiler 2™
GD-Profiler 2™

Pulsed-RF Glow Discharge Optical Emission Spectrometer

HU-200TB-IM
HU-200TB-IM

Field-installation type turbidity/SS meter

HU-200TB-W
HU-200TB-W

Field-installation type turbidity meter

Image Enhancement
Image Enhancement

Emphasize Raman and Optical Images

LabRAM Odyssey Nano
LabRAM Odyssey Nano

AFM-Raman for physical and chemical imaging

LabRAM Soleil
LabRAM Soleil

Raman Spectroscope - Automated Imaging Microscope

LabRAM Soleil Nano
LabRAM Soleil Nano

Real-time and Direct Correlative Nanoscopy

LabSpec 6: Validated performance
LabSpec 6: Validated performance

LabSpec 6 is a validated software

Methods
Methods

Recall settings, and automate processes

Multivariate Analysis
Multivariate Analysis

Data analysis for complex data sets

OneClick
OneClick

Fast and easy Raman acquisition

OpenPleX
OpenPleX

Manual label-free molecular interaction analysis machine Flexible Research Platform

Script and ActiveX
Script and ActiveX

Customize with VBS

User Accounts
User Accounts

Password protected user access control

XGT-9500
XGT-9500

X-ray Analytical Microscope (Micro-XRF)

XGT-9500SL
XGT-9500SL

X-ray Analytical Microscope
with a Super Large Chamber

XploRA Nano
XploRA Nano

AFM-Raman for Physical and Chemical imaging

DeltaFlex

TCSPC/MCS Fluorescence Lifetime System

DeltaPro

TCSPC Lifetime Fluorometer

Duetta

Fluorescence and Absorbance Spectrometer

FluoroMax Plus

Steady State and Lifetime Benchtop Spectrofluorometer

HE Spectrograph

High efficiency dedicated process Raman spectrometer for rugged and robust Raman monitoring.

LabRAM Odyssey

Confocal Raman & High-Resolution Spectrometer

LabRAM Odyssey Semiconductor

Photoluminescence and Raman Wafer Imaging

LabRAM Soleil

Raman Spectroscope - Automated Imaging Microscope

MacroRAM™

Affordable Benchtop Raman Spectrometer

Modular Raman Microscope

Flexible Raman System

nanoGPS navYX

Collaborative Correlative Microscopy

Nanolog

Steady State and Lifetime Nanotechnology EEM Spectrofluorometer

OEM Raman Miniature Probes

OEM Miniature Raman Systems and Components

PoliSpectra® RPR for HTS

Rapid Raman Plate Reader – Multiwell Fast Raman screening

Raman Fiber Probes

Raman Spectrometers

Raman Spectrometer - MINI-CCT

MINI-CCT Mini Raman Spectrometer

UV Raman Spectrometer

for UV Raman spectroscopists

Corporate