
STIX Patterning: Viva la revolución!

Cyber Threat Intelligence Matters
FIRST Technical Symposium and OASIS Borderless Cyber
Conference

Jason Keirstead - STSM, IBM Security
Trey Darley - Director of Standards Development, New Context

History vs. mystery

"What the hell were you guys smoking?!"

What was wrong in STIX 1.x

● Too many ways to define matches (multiple meanings of "Equals")

● Too many ways to define expressions (ANDs and ORs in both Indicators and

Observables)
○ One analysis found twelve different ways to compare two IP addresses

● Lists are just plain "weird" (##comma## - need I say more?)

● Despite all this complexity, lacked fundamental capabilities such as temporal

matching (A followed by B)

But (Snort|YARA|OpenIOC|Sigma) already exist?!

● Snort only makes sense on the network

● YARA library only works on a file-like blob
○ Neither allows encoding of malware behaviour information

● OpenIOC limited in expressivity; also limited in network coverage

● Basic use case: malware matching signature X will beacon with traffic that

looks like Y before dropping Z
○ Combination of file attributes, network attributes, sequential / temporal matching

○ This extremely simple use case is impossible to model using any of these standards

● Sigma: https://github.com/Neo23x0/sigma
○ Their effort started after we'd already achieved our Committee Specification Draft. We

reached out to collaborate but got zero acknowledgement. :-(

https://github.com/Neo23x0/sigma

Questions we asked

● Should we think beyond simple CTI use cases of "find this IOC" ?

● What if our cybersecurity tools could share rules and searches for analytics

and correlations?

● What factors have been preventing this from emerging in the industry? Could

we have an opportunity to finally move the needle?

● What if SIEM vendor lock-in were to just die in a fire?

"We're here to put a dent in the universe." — Steve Jobs

Basic design principles

● One way to do things (not 12)!

● Base things on a grammar, not nested XML or JSON
○ Makes things easier for humans to understand, and for machines to parse!

● Base that grammar on something that as many folks are familiar with as

possible
○ Candidates: SQL, Lucene, YARA, Snort/OpenSig…

○ We ended with SQL-like after some debate

● Define a grammar that allows sharing descriptions of advanced threats, not

just simple atomic IOCs (ip = 1.2.3.4)

● Define it in a way that was expandable in the future without "breaking

changes"

Overview of STIX Patterning
"What's the frequency, Kenneth?"

Basic structure of a STIX Pattern

How this ties to STIX Cyber Observables

● Cyber Observables provide a data model for describing things you've actually

seen.

● STIX Patterning is a language for describing chaotic maliciousness one might

see.

● SCO (STIX Cyber Observables) : nouns :: STIX Patterning : language

● SCO : DB Tables :: STIX Patterning : SQL

THIS SOUNDS INCREDIBLY
COMPLICATED, I JUST

WANTED TO FIND AN IP
ADDRESS

It's not that bad, see!

Finding an IP

Finding a URL

Finding one of two registry keys

[ip-addr.value = '8.8.8.8']

[url:value MATCHES
'^(?:https?:\/\/)?(?:www\.)?example\.com\/.*']

[windows-registry-key:key =

'HKEY_CURRENT_USER\\Software\\CryptoLocker\\Files

' OR windows-registry-key:key =

'HKEY_CURRENT_USER\\Software\\Microsoft\\CurrentV

ersion\\Run\\CryptoLocker_0388']

Currently-defined Cyber Observables

● Artifact

● AS

● Directory

● Email Address

● Email Message

● File
○ Archive Extension

○ NTFS File Extension

○ PDF File Extension

○ Raster Image File Extension

○ Windows PE Binary File Extension

● IPv4 Address

● IPv6 Address

● MAC Address

● Mutex

● Network Traffic
○ HTTP Request Extension

○ ICMP Extension

○ Network Socket Extension

○ TCP Extension

● Process
○ Windows Process Extension

○ Windows Service Extension

● Software

● User Account
○ UNIX Account Extension

● Windows Registry Key

● X.509 Certificate

Use cases and examples

File-based Pattern (vs. YARA)
​​Basic File with Hexadecimal Payload

STIX Indicator Pattern
[file:contents_ref.payload_bin MATCHES '\\x65\\x78\\x61\\x6d\\x70\\x6c\\x65' AND file:size > '31284']

Corresponding YARA Rule

rule Example
{

strings:
$hex_string = { 65 78 61 6d 70 6c 65 }

condition:
$hex_string and filesize > 31284

}

Basic File with Textual Payload

STIX Indicator Pattern
[file:contents_ref.payload_bin MATCHES 'this is an example']

Corresponding YARA Rule

rule Example
{

strings:
$text_string = “this is an example”

condition:
$text_string

}

Network-based Pattern (vs. Snort)

​Basic TCP Network Traffic

STIX Indicator Pattern
[network-traffic:src_ref.type = 'ipv4-addr' AND network-traffic:src_ref.value = '192.0.2.1' AND network-traffic:dst_ref.type =
'ipv4-addr' AND network-traffic:dst_ref.value = '203.0.113.10' AND network-traffic:dst_port = '21' AND network-traffic:protocols[*]
= 'tcp']

Corresponding Snort Rule
alert tcp 192.0.2.1 any -> 203.0.113.10 21

​​HTTP Network Traffic with User Agent

STIX Indicator Pattern
[network-traffic:dst_ref.type = 'ipv4-addr' AND network-traffic:dst_ref.value = '203.0.113.11' AND network-traffic:dst_port = '80'
AND network-traffic:protocols[*] = 'tcp' AND network-traffic:extended_properties.http-ext.request_header.User-Agent =
'Mazilla/5.0']

Corresponding Snort Rule
alert tcp any any -> 203.0.113.11 80 (content:"User-Agent|3a|

Mazilla/5.0"; http_header;)

Watching for "Fileless" UAC Bypass

[
(windows-registry-key:key =
'HKEY_CURRENT_USER\\Software\\Classes\\exefile\\shell\\runas\\command' AND windows-registry-
key:values[*].name = 'isolatedCommand')

]

OR

[
(windows-registry-key:key = 'HKEY_CURRENT_USER\\Microsoft\\Windows\\CurrentVersion\\App

Paths\\control.exe' AND windows-registry-key:values[*].data != "C:\\Windows\\System32\\cmd.exe")
]

Bad Powershell!

Suspicious Powershell has been used

[

process:command_line MATCHES
'((.*NewObject(System)?NetWebClient.*DownloadFile.*((StartProcess)|(shellexecute)|(win32_proc
ess)|(start)|(saps)).*)|(.*((iex)|(InvokeExpression)).*NewObject(System)?NetWebClient.*Downlo
adString.*)|(.*NewObject(System)?NetWebClient.*DownloadString.*((iex)|(InvokeExpression)).*)|
(.*IEX.*\[SystemDiagnosticsProcess\]\:\:Start.*)|(.*StartBitsTransfer.*InvokeItem.*))'

]

Necurs Botnet

Looks for a particular malware payload followed by HTTP beaconing traffic

generated by the payload:

[file:name = 'rekakva32.exe' AND file:parent_directory_ref.path MATCHES
'C:\\Users\\[\\w\\s]+\\AppData\\Local\\Temp'] FOLLOWEDBY [network-
traffic:protocols[*] = 'http' AND network-traffic:extensions.'http-request-
ext'.request_method = 'post' AND network-traffic:extensions.'http-request-
ext'.request_header.'User-Agent' = 'Windows-Update-Agent']

Source: https://isc.sans.edu/forums/diary/Necurs+Botnet+malspam+pushes+Locky+using+DDE+attack/22946/

OSS tools and libs

Github all the things!

OASIS Open Repository: TAXII 2 Server Library Written in Python
cti-taxii-server: https://github.com/oasis-open/cti-taxii-server

OASIS Open Repository: TAXII 2 Client Library Written in Python
cti-taxii-client: https://github.com/oasis-open/cti-taxii-client

OASIS Open Repository: Python APIs for STIX 2
cti-python-stix2: https://github.com/oasis-open/cti-python-stix2

OASIS Open Repository: Match STIX content against STIX patterns
cti-pattern-matcher: https://github.com/oasis-open/cti-pattern-matcher

OASIS Open Repository: Convert STIX 1.2 XML to STIX 2.0 JSON
cti-stix-elevator: https://github.com/oasis-open/cti-stix-elevator

https://github.com/oasis-open/cti-taxii-server
https://github.com/oasis-open/cti-taxii-client
https://github.com/oasis-open/cti-python-stix2
https://github.com/oasis-open/cti-pattern-matcher
https://github.com/oasis-open/cti-stix-elevator

Github all the things (2)!

Translate STIX 2 Patterning Queries Into Splunk and ElasticSearch
stix2patterns_translator: https://github.com/mitre/stix2patterns_translator

Downgrade STIX2 content to STIX1
cti-stix-slider: https://github.com/oasis-open/cti-stix-slider

Malware Information Sharing Platform & Threat Sharing
MISP: https://github.com/MISP/MISP

A cyber threat intelligence server based on TAXII 2 and written in Golang
freetaxii-server: https://github.com/freetaxii/freetaxii-server

APIs for generating STIX 2.x messages with Go (Golang)
libstix2: https://github.com/freetaxii/libstix2

The CaRT file format is used to store/transfer malware and its associated metadata
cse cart: https://bitbucket.org/cse-assemblyline/cart

https://github.com/mitre/stix2patterns_translator
https://github.com/oasis-open/cti-stix-slider
https://github.com/MISP/MISP
https://github.com/freetaxii/freetaxii-server
https://github.com/freetaxii/libstix2
https://bitbucket.org/cse-assemblyline/cart

Github all the things (3)!

Convert STIX2 to GraphML or GEXF (Gephi format)
StixConvert: https://github.com/workingDog/StixConvert

Convert STIX2 and load into Neo4j graph database
StixToNeoDB: https://github.com/workingDog/StixToNeoDB

Browser-based STIX2 editor, with ability to publish to a TAXII2 server
cyberstation: https://github.com/workingDog/cyberstation

STIX2 Scala library
scalastix: https://github.com/workingDog/scalastix

TAXII2 Scala library
Taxii2LibScala: https://github.com/workingDog/Taxii2LibScala

TAXII2 JS library
taxii2lib: https://github.com/workingDog/taxii2lib

https://github.com/workingDog/StixConvert
https://github.com/workingDog/StixToNeoDB
https://github.com/workingDog/cyberstation
https://github.com/workingDog/scalastix
https://github.com/workingDog/Taxii2LibScala
https://github.com/workingDog/taxii2lib

We're Not Done!

Beyond indicators - analytics use cases

● Threat Intelligence sharing has received a lot of focus; however the analytics

to actually find things, not so much

● People re-build the same analytics over and over because they either don't

know of, or have access to, what has been done many times before

● In order to share analytics in a scalable fashion, a vendor-neutral language

for said analytics has to be developed

● We believe SCO Pattern could be the basis for this

● CAR - The MITRE Cyber Analytics Repository
○ PRE-ATT&CK and ATT&CK based analytics

○ Long-term goal: ability to define the analytics in STIX Patterning

○ Collaborative ecosystem for analytics development

Correlation rules

● SIEM correlation rules share a lot of the same challenges as analytics
○ In fact, they are analytics! Imagine!

● Future vision / desire is for SIEM vendors to support SCO Pattern as a method

to define rules
○ Reduce / eliminate vendor lock-in

○ Enable broader ecosystem of cross-vendor solutions sharing tools

○ Seamless integration of STIX 2.0 compatible threat intelligence with SIEM correlation engines

● Again, speak to your vendor!
○ Nothing moves ahead without customers demanding it

It's not perfect...yet.

● Known gaps in SCO object model itself

● Known gaps in language

● We need your help!

● While we believe that STIX Patterning is amongst the most long-term

significant innovations in STIX 2.x, it is nevertheless a work product coming

out of a very small team of people. If we have succeeded in convincing you

that we are not in fact smoking crazy goat-weed, please come join the party!

tl;dr

● Make sure to grab a quick

reference card.

● We're having a ½ day

STIX/TAXII 2.0 training

followed by a ½ day hackathon

Friday where you can learn

more and try out the tools we

discussed.

● Kudos to our colleagues from

CIRCL for being so supportive

and for early adoption in MISP.

● Thanks to FIRST and OASIS for

making this event happen and

to you for giving us your

attention today!

Thank you!

