YARA: An Introduction

26th annual FIRST conference /\Ndreas Schuster

PRI PRI S U i i B el s i i e e W

OSTON

M ASSACHUSTETTS

JUNE 2227, 2014
BACK TO THE ‘ROOT’ OF INCIDENT RESPONSE June ZSéC?SOt:)ﬁ

Important Remarks - Read this first!

This hands-on tutorial will cover advanced topics. If you still have to write
your first YARA rule, this tutorial will not be helpful at all.

This slide deck is split in two parts:

The first part covers some basic concepts. You should already have
written some YARA rules on your own and applied some of these
techniques a number of times before coming to class. However, the
virtual machine image (see below) includes the materials for the basic
exercises, too, so you can work on them at your own pace.

The second part, starting from the ,Advanced Topics” tile slide, will be
covered in our tutorial.

Please download the VMware image from http://r.forens.is/bos1st/. Ensure
your environment works properly before coming to class.

http://r.forens.is/bos1st/
http://r.forens.is/bos1st/

Logistics

Morning session
Writing YARA rules
Building rules based on magic numbers

Memory analysis with Volatility and YARA

Introduction

, 1 he pattern matching swiss knife for
malware researchers (and everyone
else)"

Hosted on GitGub
http://plusvic.github.io/yara/

Pattern matching:
strings (ASCII, UCS-2)
regular expressions
binary patterns (hex strings)

Classification:
on input: combination of strings
on output: tags, metadata

Introduction

Hyara

http://plusvic.github.io/yara/
http://plusvic.github.io/yara/

Introduction

rule my example : tag1 tag2 tag3
{
meta:
description = "This is just an example"
thread level = 3
in_the wild = true

strings:
$a = {6A 4068 00 30 00 00 6A 14 8D 91}
$b = /[0-9a-f){32}/
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

condition:
$a or ($b and $c)

Introduction

Not a virus scanner
Not a correlation engine
Not a bayesian classifier

No artifical intelligence (Al) involved

Introduction

A ,better grep”

Use cases:
Finding interesting entries on pastebin.com ...
Triage data
Preprocess files to direct reverse engineering efforts

Integrate it into your projects:
C library
Python bindings
https://github.com/plusvic/yara/tree/master/yara-python
Ruby bindings
https://github.com/SpiderlLabs/yara-ruby

http://code.google.com/p/yara-project/source/browse/trunk/yara-python/
http://code.google.com/p/yara-project/source/browse/trunk/yara-python/
https://github.com/SpiderLabs/yara-ruby
https://github.com/SpiderLabs/yara-ruby

Introduction

YARA rules are supported by security products and services
FireEye appliances
Fidelis XPS
RSA ECAT
Volatility

ThreadConnect threat intelligence exchange
VirusTotal Intelligence

Writing YARA Rules

Hello World!
Your First YARA Rule

Your first YARA rule

Start VM
Log in as user ,training“, password is ,training”
J[raining” also is your sudo password
You may want to customize the keyboard layout:
System > Preferences > Keyboard
Select ,Layouts” tab

Open a terminal window

$ yara

Your first YARA rule

usage: yara [OPTION]... [RULEFILE]... FILE

options:
-t <tag> print
rest.
-i <identifier> print
rest.
print
print
print
print

rules tagged as <tag> and ignore the
Can be used more than once.

rules named <identifier> and ignore the
Can be used more than once.

only not satisfied rules (negate).
tags.

metadata.

matching strings.

<identifier>=<value> define external variable.

recursively search directories.

fast matching mode.
show version information.

Your first YARA rule

There are slight differences between YARA versions 1.4 to 1.7 and 2.0,

see http://code.google.com/p/yara-project/source/browse/trunk/Changel.og
and https://github.com/plusvic/yara/commits/master for details

User manual is in /yara/doc of this VM
What version does the VM provide?

$ yara -v

You should see the result:

yara 1.6

http://code.google.com/p/yara-project/source/browse/trunk/ChangeLog
http://code.google.com/p/yara-project/source/browse/trunk/ChangeLog
https://github.com/plusvic/yara/commits/master
https://github.com/plusvic/yara/commits/master

Your first YARA rule

The following editors are available:
vim (with simple syntax highlighting)
gvim (with GUI and syntax highlighting)
emacs

gedit

Your first YARA rule

cd /yara/Lab_1

Create a file named ,hello.yara” with the following contents:

rule Hello World
{

condition:
true

}

Now let the computer greet you:
$ yara hello.yara /yara/malware/somefile.txt

Your first YARA rule

Review the file greeting.yara

rule GoodMorning

{

condition:
hour < 12 and hour >= 4

Now pass different values for ,hour” to the rule set:

$ yara -d hour=8 greeting.yara /yara/malware/somefile.txt
GoodMorning /yara/files/somefile.txt

$ yara -d hour=20 greeting.yara /yara/malware/somefile.txt
GoodEvening /yara/files/somefile.txt

What happens when you pass a string (e.g. ,noon®) or no value at all?

Identify Executable Files

Identify executable files

Task: To find any files in Portable Executable (,PE*) format

Simple specification: File must contain the strings ,MZ* and ,PE"

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 f££f ££f 00 00

00000010 b8 00 00 OO0 0O OO OO OO 40 00 00 00 00 00 00 OO

00000020 00 00 0O OO 0O 0O 00 OO 00 00 OO0 0O 00O 00 00 0O

00000030 00 00 00 OO 00 00 00 00O 00 OO OO0 00 c8 00 00 OO

00000040 Oe 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 68

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno]
00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$
00000080 65 cd 43 c7 21 ac 2d 94 21 ac 2d 94 21 ac 2d 94 |e.C.!l.=-.!.=.l.—.|
00000090 21 ac 2c 94 25 ac 2d 94 e2 a3 70 94 24 ac 2d 94 |!.,.%.-...p.S.-.]|
000000a0 c9 b3 26 94 23 ac 2d 94 52 69 63 68 21 ac 2d 94 |..&.#.-.Rich!.-.|
000000b0O 00 0O 0O OO OO OO 00O OO 00 OO OO OO 0O 00 00 OO

000000cO 00 00 00 00 00 00 00 00 50 45 00 00 4c 01 03 00

Identify executable files

cd /yara/Lab 2
Create a new file, named ,executable.yara“
Start with a blank rule:

rule PE file

{
}

Identify executable files

“ Now add the two strings:

rule PE file
{

strings:
Smz =
Spe =

® Note: Strings are case-sensitive by default!

Identify executable files

A portable executable file MUST contain both strings. So, add the proper
condition:

rule PE file
{
strings:
Smz =

Spe =
condition:

Smz

}

Test your rule file:

$ yara -r executable.yara /yara/malware

Identify executable files

More constraints:

.,MZ" at offset 0

UInt32 at offset 0x3c points to ,PE"
Refine your condition section:

condition:
(Smz at 0) and
(Spe at (uint32(0x3c)))

Test your rule file again:
$ yara -r executable.yara /yara/malware

This is how your rule should look like:

rule PE file
{
strings:
Smz =
Spe

condition:
(Smz at 0) and
(Spe at (uint32(0x3c)))

Identify executable files

Obfuscation: Move Single Byte

Obfuscation: Move Single Byte

Can you spot the registry key name?

00415393 C6 45 CC 53 C6 45 CD 6F C6
004153A3 C6 45 DO 77 C6 45 D1 61 C6
004153B3 C6 45 D4 5C C6 45 D5 4D C6
004153C3 C6 45 D8 72 C6 45 D9 6F C6
004153D3 C6 45 DC 66 C6 45 DD 74 C6
004153E3 C6 45 EO 69 C6 45 E1 6E C6
004153F3 C6 45 E4 77 C6 45 E5 73 C6
00415403 C6 45 E8 75 C6 45 E9 72 C6
00415413 C6 45 EC 6E C6 45 ED 74 C6
00415423 C6 45 FO 72 Cé6 45 F1 73 Cé6
00415433 C6 45 F4 6E C6 45 F5 5C C6
00415443 C6 45 F8 6E

5B HRB oS AR g0
v ¢t RuB+t0oRXDoO
bhchonlhinh

H HH H EHBHBHEBHBEHHBH A

Obfuscation: Move Single Byte

N
>
o

2 3 6 A B E

ADD ES OR cs
ADC sS SBB DS
AND ES SUB cs

SEGMENT SEGMENT

OVERRIDE OVERRIDE

XOR ss CMP DS
INC DEC
PUSH POP

FS GS OPERAND | ADDRESS
SIZE SIZE
SEGMENT OVERRIDE SIZE OVERRIDE

jo [JNo| B [INB| JE | INE | JBE | JA g{ ss [INs [JpE PO | UL [JGE [JLE | JG

PUSHAD| POPAD | BOUND | ARPL

PUSH‘IMUL‘PUSH‘IMUL INS ‘ OuTS

e s
ADD/ADC/AND/XOR MOV MOV
OR/SBB/SUB/CMP TEST XCHG MOV REG LSREG\JLEA\[SREG] POP

e DY
NOP XCHG EAX CWDICDQ ‘CALLF‘WAIT PUSHED | POPFD SAHFILAHF

b 4

N

=

MOV EAX MOVS CMPS TEST STOS LODS SCAS

MOV

<

v

INTO ‘IRETD

INT
MM

-

SHIFT IMM ‘ RETN LESILDSIMOV IMM RETF INT3 ‘ |
o

SHIFT 1 I SHIFT CL

ROL/ROR/RCL/RCR/SHL/SHR/SAL/SAR

AAM ‘ AAD ‘ SALC EXLAT FPU Source:
Extract from ,x86 Opcode
OB e | Leer IN ouTt IMP IN ouT Structure and Instruction
CONDITIONAL LOOP JECXZ IMM ‘ IMM HlFE SHORT DX DX Overview“

INC FNODEC by Daniel Plohmann,

DEC [busi'| Fraunhofer FKIE

Lock | |CE REPNEI REPE

EXCLUSIVE BP CONDITIONAL
ACCESS REPETITION

TmMONAT™>OVONOOUVTNWN O

HLT ‘CMC TEMOULIDN CL ‘ STI | CLD ‘ STD

Obfuscation: Move Single Byte

Opcode Instruction Op/ 64-Bit Compat/ Description
Mode Leg Mode

REXW + A3 MOV Valid N.E. Move RAX to (offset).
moffs64* RAX

BO+ rb MOV r8, imm8 Valid Valid Move imm8to r8.
REX+BO+rb MOV 8 ,imm8 Valid N.E. Move imm8 1o r8.
B8+ rw MOV r16, imm16 Valid Valid Move imm161to r16.
B8+ rd MOV r32, imm32 Valid Valid Move imm32 to r32.
REXW + B8+ rd MOV r64, imm64 Valid N.E. Move imm64 to r64.
C6/0 MOV r/m8, imm8 Valid Valid Move imm8 to r/m8.

REX+C6/0 MOV r/m8***, Valid N.E. Move imm8 to r/m8.
imm8

C7/0 MOV r/m16, Valid Valid Move imm16 to r/m16.
imm16

C7/0 MOV r/m32, Valid Valid Move imm32 to r/m32.
imm32

REXW +C7/0 MOV r/m64, Valid N.E. Move imm3_2 sign extended
imm32 to 64-bits to r/m64.

Obfuscation: Move Single Byte

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL DL BL AH CH DH
r16(/r) AX CX DX BX SP BP SI
r32(/r) EAX ECX EDX EBX ESP EBP ESI
mm(/r) MMO MM1 MM2 MM3 MM4 MM5 MM6
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6

(In binary) REG = 000 001 010 011 100 101 110

Effective Address cimal)

[EAX]
[ECX]
[EDX]
EBX]
disp32°2
[ESI]
[EDI]

[EAX]+disp83
[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--1+disp8
[EBP]+disp8
EST+disp8
[EDI]+disp8

[EAX]+disp32

Y
(00)

(U] _))))))
o(vNYoubhwn-—0
(U] _)))) e
| MTMOMNW>O

Obfuscation: Move Single Byte

Single byte MOVes are a common technique to obfuscate strings.

O ®WOROQME - 0OKODEdHO O

Cé 45 CC
Cé 45 CD
Cé 45 CE
Cé 45 CF
Cé6 45 DO
C6 45 D1
Cé6 45 D2
Cé6é 45 D3
C6 45 D4
C6 45 D5
C6 45 D6
C6 45 D7
C6 45 D8
C6 45 D9
C6 45 DA
C6 45 DB
Cé6 45 DC
C6 45 DD

0000:00415393 mov [ebp+SubKey],
0000:00415397 mov [ebp+SubKey+1],
0000:0041539B mov [ebp+SubKey+2],
0000:0041539F mov [ebp+SubKey+3],
0000:004153A3 mov [ebp+SubKey+4],
0000:004153A7 mov [ebp+SubKey+5],
0000:004153AB mov [ebp+SubKey+61],
0000:004153AF mov [ebp+SubKey+71,
0000:004153B3 mov [ebp+SubKey+8],
0000:004153B7 mov [ebp+SubKey+9],
0000:004153BB mov [ebp+SubKey+0Ah],
0000:004153BF mov [ebp+SubKey+0Bh],
0000:004153C3 mov [ebp+SubKey+0Ch],
0000:004153C7 mov [ebp+SubKey+0Dh],
0000:004153CB mov [ebp+SubKey+0Eh],
0000:004153CF mov [ebp+SubKey+0Fh],
0000:004153D3 mov [ebp+SubKey+10h],
0000:004153D7 mov [ebp+SubKey+11h],

e e e e -e ~e

o YO Neo W

Obfuscation: Move Single Byte

Signature:
0xC6 0x45 is a constant (opcode and r/m8)
disp8 (index) is variable, but restricted to a single byte

the character (imm8) is variable, but also restricted to a single byte

Pattern: C6 45 ?7? 7?7 C6 45?7 7?7 C6 45 ...

Obfuscation: Move Single Byte

cd /yara/Lab_2

Create a file named ,obfuscation.yara“ and a signature ,single_byte _mov*
Add the pattern as a string. Note: hex strings are enclosed in curly braces.
Add the proper condition.

Test your signature:
$ yara -r obfuscation.yara /yara/malware

How many files contain at least one obfuscated string?

Obfuscation: Move Single Byte

@ This is how your rule file should look like:

rule single byte mov

{

strings:
Sa = { c6 45 ?? 2?2 c6 45 ?? ?? c6 45 }

condition:

Sa

Obfuscation: Move Single Byte

Pattern using wildcards:
C6 45 ?7? 7?7 C6 45 ?? ?7? C6 45

Pattern using jumps:
C6 45 [2] C6 45 [2] C6 45

Jumps are:
easier to read and maintain

flexible, variable in length: [n-m]

Obfuscation: Move Single Byte

Modify your signature to use jumps instead of multi-byte wildcards
Test your signature again. Are there any differences?

Can you tell the number of obfuscated strings (not files!) from the output?

Bonus question:

If you know PCRE well, then rewrite the pattern to match the whole
obfuscated string. (see /yara/doc/yara/pcre.txt for a syntax refresher)

Issue yara -s -r obfuscation.yara /yara/malware

How many obfuscated strings are there?

Obfuscation: Move Single Byte

@ Again, this is how your rule should look like:

rule single byte mov

{

strings:
Sa = { c6 45 [2] c6 45 [2] c6 45 }

condition:

Sa

Obfuscation: Move Single Byte

And here is the answer to the bonus question:

rule single byte mov3

{
strings:

Sa = /(\xc6\x45..){3,}/

condition:
Sa
}

Count of matching strings:
$ yara -s -r obfuscation.yara /yara/malware/antivirus.exe wc -1

4

The first line is the matching rule (and file name), so the answer is:
,3 strings were obfuscated”

Magic Numbers

Magic numbers

Look for constants that are important for an algorithm
The longer, the better (reduces false positives!)
Examples:

static substitution box (s-box) of DES

MD5 init and transform constants

polynomial for Cyclic Redundancy Check

Be aware of endianess issues
0x1234 can be stored as 0x12 0x34 or 0x34 0x12

Consider breaking up long numbers, loading into different registers,
optimizations by compiler

Magic numbers

Linear Congruential Generator (LCG)
Xn+1 = (axn + ¢) mod m

Pierre L'Ecuyer: Tables of linear congruential generators of different

sizes and good lattice structure (1999)
http://dimsboiv.ugac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/

TablelLecuyer.pdf

William H. Press: ,Numerical recipes: the art of scientific
computing” (3rd ed., 2007), Chapter 7

http://dimsboiv.uqac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/TableLecuyer.pdf
http://dimsboiv.uqac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/TableLecuyer.pdf
http://dimsboiv.uqac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/TableLecuyer.pdf
http://dimsboiv.uqac.ca/Cours/C2012/8INF802_Hiv12/ref/paper/RNG/TableLecuyer.pdf

:00000DA5 rand_init:

:00000DA5

:00000DAB
:00000DAD
:00000DAE
:00000DBO
:00000DBO

:00000DBO
:00000DB6
:00000DB9
:00000DCO
:00000DC3
:00000DC6

rand loop:

lea

Magic numbers

esi, [ebptbase]

s seed with CPU tick counter

rdtsc
xchg
XOor

eax, edx
ecx, ecx

:= (x * 2891336453 + 1) mod 2732
eax, 2891336453

eax, 1

[esitecx*4+8D9%h], eax

ecx, 1

ecx, 34

short rand loop

Magic numbers

cd /yara/Lab_3

There you'll find a copy of RFC 3713, which specifies the Camellia
encryption algorithm.

Review the specification and try to find good magic numbers. Do NOT even
try to understand the algorithm!

You are explicitly allowed (and encouraged) to collaborate with your
neighbours!

State the magic number (or page number, variable name, etc.)

Magic numbers

Write one or multiple rules to check for your magic number(s)
Test your rule(s) on /yara/malware, as before

What file(s) are likely to contain the Camellia algorithm?

Memory Analysis

sol.exe

Memory analysis

explorer.exe

physical
memory

page file

Memory analysis

advantages:
fast

best coverage (you may want to scan the pagefile, too)

disadvantages:
memory fragmentation can break your signatures

search hits can't be attributed to a process

Memory analysis

advantages:
attribution is easy

defragmented memory image

disadvantages:
slow

does not cover unallocated (,free”) memory

Memory analysis

1. Obtain physical memory dump and pagefile

suspend VM and copy .vmem file
or use a memory dumper, like win32dd

mount .vmdk using your tool of choice or
extract pagefile from live system using FTK Imager

2. Use Volatility to scan each virtual address space or the kernel address space

3. Use YARA to scan pagefile and memory dump in order to cover unallocated
and paged memory areas.

Memory analysis

Specialized ,yarascan“ command

Option -Y builds YARA rule on the fly,
accepts either string, hex or regular expression

$ vol.py -f memory.img yarascan -Y "rm6.org"

$ vol.py -f memory.img yarascan -Y "rm6.org" -W

$ vol.py -f memory.img yarascan -Y "/[0-9a-fA-F]{32}/"

$ vol.py -f memory.img yarascan -Y "{ c¢6 45 [2] c6 45 [2] c6 45 }"

Option -y reads YARA rules from a file

Option -K searches the kernel address space instead of process address
spaces

Option -p searches only the address space of process identified by its PID

Option -D dumps responsive memory areas to disk

Memory analysis

cd /yara/Lab 4
Data to analyze:

memory.dmp is a physical memory dump obtained from Windows XP
SP2

pagefile.sys was copied off the ,physical disk® using FTK Imager
Rule sets:
dyndns.yara: names of well-known Dynamic DNS zones

camellia.yara: magic numbers of Camellia encryption algorithm

Memory analysis

Search all process address spaces for artifacts of the Camellia encryption
algorithm.

Take a note of the responsive PIDs

Bonus: Can you find any traces of Camellia in kernel memory?

Memory analysis

training@ubuntu:/yara/Lab 4$ vol.py -f memory.dmp yarascan -y camellia.yara
Volatile Systems Volatility Framework 2.2
Rule: Camellia Sigma

Owner: Process svchost.exe Pid 1080
0x5d10c764 a0 9e 66 7f 3b cc 90 8b
0x5d10c774 c6 ef 37 2f e9 4f 82 be
0x5d10c784 10 e5 27 fa de 68 2d 1d
0x5d10c794 5d 83 c7 08 8b 44 24 30

Rule: Camellia tables

Owner: Process svchost.exe Pid 1116
0x2010cc87 10 10 20 20 10 10 30 30
0x2010cc97 30 30 00 00 20 20 10 10
0x2010cca7 ec 56 51 8b 75 08 8b 9e
0x2010ccb7 00 00 8b 94 33 d9 08 00

Rule: Camellia Sigma

Owner: Process explorer.exe Pid 1400
0x01380764 a0 9e 66 7f 3b cc 90 8b b6
0x01380774 c6 ef 37 2f e9 4f 82 be 54
0x01380784 10 e5 27 fa de 68 2d 1d b0
0x01380794 5d 83 c7 08 8b 44 24 30 8b

W Infected processes:
svchost.exe PID 1080
svchost.exe PID 1116
VMwareService.exe PID 1652
explorer.exe PID 1400

IEXPLORE.EXE PID 464

Memory analysis

Memory analysis

Search the kernel address space for DynDNS names and dump the results
to disk.

Memory analysis

training@ubuntu:/yara/Lab 4$ mkdir dump

training@ubuntu:/yara/Lab 4$ vol.py -f memory.dmp yarascan -y dyndns.yara -D dump/
Volatile Systems Volatility Framework 2.2

Rule: DynDNS free

Owner: Process winlogon.exe Pid 624

0x7£77861e 72 00 6d 00 36 00 2e 00

0x7£f77862e 3e f4 00 00 00 00 10 8b

0x7£77863e 00 00 00 00 00 00 00 OO

0x7f77864e 00 00 00 00 00 00 0O OO

Rule: DynDNS free

Owner: Process services.exe Pid 668

0x004d09c2 72 00 6d 00 36 00 2e 00 6f

0x004d09d2 00 00 2f 00 00 00 dc 59 1le

0x004d09e2 00 00 02 00 04 00 14 00 00

0x004d09f2 00 00 00 00 00 00 cc 4a d8

training@ubuntu:/yara/Lab 4$ l1ls dump/
process.0x80fa53c0.0x4d09¢c2.dmp process.0xff492750.0xle6l7a.dmp
process.0xff4f1¢c38.0x7cb25edb.dmp process.0xff578al18.0x5cb901laf.dmp
process.0x80fa53c0.0x4d0al03.dmp process.0xff492750.0x1e6d37.dmp
process.0xff4f1c38.0x7cb25ef2.dmp process.0xf£f578al18.0x5cb90d00.dmp
process.0xf£f492750.0x170198.dmp process.0xff492750.0xle761le.dmp
process.0xff4f1c38.0x7cf25edb.dmp process.0xf£580a98.0x1c5b27.dmp

Conclusion

Conclusion

Text

make use of modifiers: nocase, fullword, ascii, wide
Hex

make use of wildcards and jumps

Perl compatible regular expressions

Conclusion

Sets

2 of ($a,$b,%c)
any of them
all of them

Count number of string matches: #string
lterator ,for”

Offsets:
at offset
entrypoint

Access raw bytes: int8..int32, uint8..uint32

Keep your rules simple, reference other rules

Conclusion

Define metadata
string
integer
boolean

Examples:
weight (count of matching bits)
architecture
algorithm
endianess

Use ,-m"“ command line option to display metadata

One-file-to-keep-them-all doesn‘t work well

Refactor your rules
write rules for each common expression (,primitives”)
separate files by topic, make use of ,include”

Rule modifiers:
,2global“ makes rule a prerequisite for all other rules
(e.g. PE header check)
,private” suppresses output

Make use of tags and ,-t* command line option to select rules
my tags commonly reflect metadata

Conclusion

Conclusion

YARA manuals and wiki at
http://code.google.com/p/yara-project/

Malware Analyst's Cookbook / ‘

Chapter 3: ;/" ‘Malware Analyst’s
<kookbook and DVD

identify packers
sniffer detection
malware capabilities

TROMSDLES PO PCa re’ Wi "k

Chapter 7: XOR de-obfuscation

YARA Daemon
if you need to run many queries with the same rule set (saves compile time!)

https://github.com/jaimeblasco/AlienvaultlL abs/tree/master/yarad

http://code.google.com/p/yara-project/
http://code.google.com/p/yara-project/
https://github.com/jaimeblasco/AlienvaultLabs/tree/master/yarad
https://github.com/jaimeblasco/AlienvaultLabs/tree/master/yarad

Conclusion

Forum dedicated to the discussion and sharing of YARA rules
Repository on GitHub
Web service to test new rules, scan and download malware

Founded and moderated by Mila Parkour and Andre DiMino
(DeepEndResearch)

Membership is vetted (send application from your professional email
address)

Active participation is expected and required.

For details, please see
http://www.deependresearch.org/2012/08/yara-signature-exchange-google-

group.html ﬁ ym

http://www.deependresearch.org/2012/08/yara-signature-exchange-google-group.html
http://www.deependresearch.org/2012/08/yara-signature-exchange-google-group.html
http://www.deependresearch.org/2012/08/yara-signature-exchange-google-group.html
http://www.deependresearch.org/2012/08/yara-signature-exchange-google-group.html

Thank you for your attention!

Andreas Schuster

a.schuster@yendor.net
http://computer.forensikblog.de/

YARA: Advanced Topics

26th annual FIRST conference

T I TR S s i i B el S i i e e Y

OSTON

M ASSACHUSETTS

JUNE 2227, 2014

BACK TO THE ‘ROOT’ OF INCIDENT RESPONSE

Andreas Schuster

June 25, 2014
Boston

Logistics and remarks

Hands-on: Matching on machine code

14:30 - 15:00 Break

Hands-on: Parsing the PE header

Remarks on transition from v1.x to v2.x

17:00 End

Logistics

Evaluation form
YARA Cheat Sheet
Participation in hands-on exercises requires

Lab VM Image
on USB thumbdrives (please return as soon as you‘re done!)

VMware {Player, Workstation, Fusion}

VirtualBox may work, too (untested!)
1. Create new machine
2. Select RAM (512 MB)
3. Select ,existing disk® and point to .vmdk

Logistics

Logistics

Start VM
Log in as user ,training“, password is ,training”
J[raining” also is your sudo password
You may want to customize the keyboard layout:
System > Preferences > Keyboard
Select ,Layouts” tab

Open a terminal window

Logistics

Documentation (in /yara/doc):
Intel 64 and IA-32 Architectures Software Developer’'s Manual
x86 Opcode Structure and Instruction Overview by Daniel Plohmann
PE format description
Perl Compatible Regular Expression Manual
YARA Cheat Sheet

YARA v1.6 User's Manual

Logistics

Exercises:

/yara/Lab_1

/yara/Lab_6

/yara/Labs_restore.zip: archived lab materials in case something goes
wrong

/yara/malware: live malware

Slide deck

WARNING! Virtual machine image contains live malware samples.
Do not extract and expose to Microsoft Windows (or an emulator).

Matching on Machine Code

Objective

During this hands-on lab, you will learn
a workflow to gradually improve your rules
how to build binary signatures that match on x86 machine code

how to organize a repository based on a categorization by YARA

how to consolidate rules

About the malware samples

cd /yara/Lab_5

Directory ,incoming“ holds several new malware samples for us to analyze.
All samples are backdoors belonging to the Hoardy / Vilsel /Phindolp /
Ke3chang family. Your overall task is to categorize these samples based on
their decryption routine.

For selected samples you will find some disassembly listings.

The first decryption routine

Disassembly of sample 44efadaccc42aa55d7843ec69161c8ca:

.text:00401723 decrypt:

.text:00401723 E8 mov [ebp+0BB4h+var BCC], eax
.text:00401726 cmp eax, edi
.text:00401728 18 jge short end
.text:0040172A FO E8 40 00 mov cl, buffer[eax]
.text:00401730 Xor cl, al
.text:00401732 sub cl, al
.text:00401734 5A sub cl, 5Ah
.text:00401737 FO E8 40 00 mov buffer[eax], cl
.text:0040173D 01 add eax, 1
.text:00401740 jmp short decrypt

The first decryption routine

Create a rule file named ,hoardy.yara”.

Create a YARA rule which matches on the bytes that are typeset in bold
letters (see previous page).

Name your rule ,crypto1” and tag it as ,category”.
Name the string ,$crypto1*, too.

Try your rule on all the samples in ,incoming®“. How many samples match
your rule?

(1

Find the ,,Known Unknowns

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say there are things that, we now
know we don't know.

But there are also unknown unknowns — there are things we do not know we

don't know.
—United States Secretary of Defense, Donald Rumsfeld (2002-02-12)

Find the ,,Known Unknowns*

Create a rule named ,unknown®. This rule shall match on all samples that are
NOT detected by rule ,crypto1”.

Remember:
A rule does not have to contain a ,strings” section.

A rule can refer back to rules defined earlier.

Exploring the ,,Unknowns*

We pick one of the ,unknown® samples, e.g.
026936afbbbdd9034f0a24b4032bd2f8 and disassemble it:

.text:
:004033A1
.text:
.text:
:004033AB
.text:
.text:
.text:
:004033B8
.text:

.text

.text

.text

004033A1

004033A3
004033A5

004033AD
004033AF
004033B2

004033BB

3B
7D
8A
32
2A
80
88
83
EB

C3
18
88
C8
C8
E9
88
Cco
E4

CO E5 40 00

7C
CO E5 40 00
01

decrypt:
cmp
Jjge
mov
XOor
sub
sub
mov
add

jmp

eax, ebx

short end

cl, buffer[eax]
cl, al

cl, al

cl, 7Ch
buffer[eax], cl
eax, 1

short decrypt

Compare samples 026936afbbbdd9034f0a24b4032bd2f8 and
44efadaccc42aadb5d7843ec69161c8ca.

Why does rule ,crypto1” not match? What has changed?

Exploring the ,,Unknowns*

Create a rule named ,crypto2” with tag ,,category” that matches on the
decryption routine of sample 44efad4accc42aa55d7843ec69161c8ca.

How many samples are detected by this rule?

Update your rule ,unknown®. What samples are still not identified?

Exploring the ,,Unknowns*

Repeat this workflow, until all samples are accounted for.

Create rule ,crypto3” from disassembly of sample
057cb5a62199afbb49a98b3a93f2149d

Create rule ,crypto4” from disassembly of sample
072af79bb2705b27ac2e8d61a25af04b

Create rule ,crypto5” from disassembly of sample
4c46abe77c752f21a59ee03dalad5011

Attach the tag ,category” to all of these rules.

Organize your repository

,repo” is your - still empty - repository.

training@ubuntu:/yara/Lab 5$ 1ls -1R repo/
repo/:

total 20

drwxr-xr-x training training 2014-01-20
drwxr-xr-x training training 2014-01-20
drwxr-xr-x training training 2014-01-20
drwxr-xr-x training training 2014-01-20
drwxr-xr-x training training 2014-01-20

repo/cryptol:
total 0

repo/crypto2:
total 0

Your next job is to populate your repository with the new samples from the
,incoming” directory.

Organize your repository

We limit YARA's output to rules tagged with ,category®:
training@ubuntu:/yara/Lab 5$ yara -r -t category hoardy.yara incoming
crypto2 incoming/lae06edd0ea2df734e357698bcdf8£30

crypto5 incoming/4c46abe77c752f21a59%9ee03dalad5011
crypto2 incoming/5ee64f9eddcddaa7edl11d752a149484d

A shell one-liner then moves/copies/links the files into their proper directory:
training@ubuntu:/yara/Lab 5$ while read CATEGORY FILE ; \
do cp ${FILE} repo/${CATEGORY}/ ; \
done < <(yara -r -t category hoardy.yara incoming)
Use the following commands:
cp for copying (safe)

mv for moving (most common case for repositories)

1n for linking (when one file can exist in multiple categories)

Organize your repository

training@ubuntu:/yara/Lab 5$ 1ls -R repo/

repo/:

cryptol crypto2 crypto3
repo/cryptol:
44efadacccd2aab55d7843ec69161c8ca

4652d041244c06b8d58084312692b85e

repo/crypto2:
026936afbbbdd9034f0a24b4032bd2£f8
lae06eddO0ea2df734e357698bcdf8£30

repo/crypto3:

057cb5a62199afbb49a98b3a93£2149d
277487587ae9c11d7£4bd5336275a906
34252b84bb92e533ab3be2al75ab69ac
703c9218e52275ad36147£45258d540d

crypto4

cryptob

979c37df230a83ffab32baf03f0536ac
a738badbeca89b6a79b2£f098c817bca?2

5ee64f9ed4cddaa7edl11d752a149484d

c2clbcl5e7d172f9¢cd386548da917bed
c718d03d7e48a588e54cc0942854cb9e
ed4d8bb0b93£f5da317d150£039964d734

Consolidate your rules

Having a multitude of elaborate rules is fine for classification of malware in
your lab.

For detection, e.g. VirusTotal or heavy-duty online traffic monitoring, your
priorities shift to small and fast rules.

Your next task will be to consolidate the five categorization rules into a single
rule with at maximum two strings.

Consolidate your rules

Create a new rule, named ,combined” and tag it with ,summary”
Build its strings section from the binary strings in the five ,crypto” rules.
Rework the ,unknown® rule as follows:

rule unknown: summary

{

condition:

not combined

}

Run YARA on your repository and limit its output to rules tagged with
,summary®.

Does ,,unknown® match on any files?

Consolidate your rules

We can now merge strings ,crypto1” and ,crypto2“ by using wildcards (this
honors the different XOR keys):

Scryptol = { 32 c8 2a c8 80 e9 5a 88 }

Scrypto2 { 32 ¢c8 2a c8 80 €9 7c 88 }
into
$cryptol2 = { 32 c8 2a c8 80 e9 ?? 88 }

Run again with the modified rule and check for missing (,unknown®) files:
$ yara -t summary -r hoardy.yara repo

Merge ,crypto4“ and ,crypto5” in the same way and test (this again affects
XOR keys).

Finally merge ,crypto12“ and ,crypto45" and test again (this masks register
bits).

Consolidate your rules

In a last step, merge strings ,crypto1245® and ,crypto3”.
Remember two regex operators:

() groups items

a | b matches eitheron aor b

see /yara/doc/yara/pcre.txt for details

Run YARA again with the modified rule and one again check for missing
(,unknown®) files:
$ yara -t summary -r hoardy.yara repo

Summary

You have written signatures that are:
robust against slightly modified obfuscation schemes (different key)
robust against relocation (different addresses)

robust against usage of differtent registers
(registers are commonly selected by compiler based on context)

You have categorized a batch of new malware samples and moved them into
your repository.

You have consolidated a rule set in order to improve speed and
maintainability.

Parsing a PE File

Parsing a PE file

Overall goal is to limit a search to a certain section of a PE file.
Suggested steps to go there:

Learn about the PE file format

Find relevant data in the PE header

Rule to identify a dropper limits search to .rsrc, while backdoor rule will
search in .data only.

PE = Portable Executable

Structured format for executable files

Supporting documents in /yara/doc/PE
Overview by Ange Albertini
Specification v8.3 by Microsoft (2013)

PE format

PE format

simple

simple.exe

header

technical details about the executable

sections

contents of the executable

DOS header

sBows iU's & avary

PE header

hows It's » ‘medem’ Binary

optional header

exscutable iformation

data directories

poinders o axirs structures (waports, mports...)

sections table

dulines how the fle o aded in mesery

code

what is exscuted

imports

bk b lween Bhe anacutabbe and (Wedows) thrares

data

WACemION waed By The (ode

Your first task

We've implemented a (simplified) detection rule at a malware repository and
found a few files. Some are simple droppers, others are the dropped
backdoors. In order to speed up processing, we want to categorize our
samples with YARA.

What we know:
All samples contain the string ,~ISUN32".
All samples are PE files for Microsoft Windows, 32bit.
Backdoors contain the string in their .data section.
Droppers carry a backdoor (and hence the string) in their .rsrc section.

Your first task is to develop a plan:
What information do you need?
Where can you find this information in a PE file?

Learn about the section table

Information about sections can be found in the section table.

Review the PE format specification (/yara/doc/PE/pecoff v83.pdf), section 3,
pages 24-20.

Where can we find the location info? What are the field names, what are
their offsets and types?

Remember: we are dealing with an ,executable image®, not an ,object".

One last question

One last question remains:
How can we find the proper entry in the section table?

There are at least two different ways. They also differ in their difficulty (and
computational complexity). Try to find a fast and easy solution. You may
have to make extra assumptions.

Write the rule for the dropper first.

Remember: in order to classify as a ,dropper®, the string ,~ISUN32" needs to
appear within in .rsrc section.

Searching for backdoors

Now write a rule to match on backdoors.
Remember: The string ,~ISUN32“ now has to appear in the ,..data“ section.

You may reuse code from the dropper rule ;)

Test your rules on the samples in /yara/Lab_6/incoming.
How many droppers and how many backdoors do you find?

Bonus excercise: populate the repository in /yara/Labs_6/repo with the
samples in ,incoming®, based on your classification rules.

Summary

You'‘ve used nested uint32() function calls to parse a file, based on its format
specification.

Similar functions do exist for 8 and 16 bits, and for signed and unsigned
integers.

All of these functions read integers in little endian (Intel) byte order only.

You'‘ve used this method to limit string matching to certain parts of a Portable
Executable.

You can use it to access lots of other information from PE files, e.g.
linker version and timestamp, DLL vs. EXE, section characteristics

You can parse other file formats that are structured in a similar way, e.g.
PNG

Migration from YARA v1 to v2

Migration from YARA v1 to v2

Different application binary interface for C library

No changes required for Python bindings

Benefit: libyara is now thread-safe and much faster than prior versions.

Migration from YARA v1 to v2

S yara -v
yara 1.6 (rev:129)

$ yara good rule.yara somefile ; echo §$?
1

$ yara bad rule.yara somefile ; echo §$?
0

$ yara -v
yara 2.1

$ yara good rule.yara somefile ; echo §$?
0

$ yara bad rule.yara somefile ; echo §$?
1

Migration from YARA v1 to v2

Exit status codes changed from v1 to v2.
Exit status codes from v2 onward are POSIX compliant
Attention all batch/script coders:

check YARA version (yara -v), or

let YARA run on known good and bad rule files and observe status
codes

Migration from YARA v1 to v2

Check YARA's return codes for good and broken rules.
YARA OK := $(shell \
PROBE="mktemp ./yaratemp.XXXXXX~ || exit 1; \
printf "YARA probe file\n" > S$${PROBE}; \
RULE="mktemp ./yaratemp.XXXXXX~ || exit 1; \
printf 'probe' > $$S{PROBE}; \
printf 'rule test {condition: true}' > SS{RULE}; \
$(YARA) $${RULE} $${PROBE} 1>$(NULL) 2>$(NULL); GOOD=$$?; \
echo 'rule test {condition: invalid keyword}' > SSSRULE; \
$(YARA) $${RULE} $${PROBE} 1>$(NULL) 2>$(NULL); FAIL=$$?; \
if [$$GOOD -eq S$SFAIL]; \
then \
printf "Fatal: unable to detect broken rules.\n" 1>&2; \
echo "127"; \
else \
echo $${GOOD}; \
fi; \
rm $${PROBE} SSS{RULE};)

Migration from YARA v1 to v2

Boolean shorcut evaluation missing in v2.

Example: Rule ensures that it deals with a PE file, then does some
computational expesive processing (e.g. nested loops)

condition:
uintl6(0) == 0x5a4d and uintl6(uint32(0x3c)) == 0x4550
and
for 2 i in (0..(uintlé6(uint32(@section[1]+20) + Oxc) - 1))
(for any of (S$name *)
($ at ((uint32(uint32(@section[1]+20) + 0x10 + 8*i) & Ox7fffffff)
+ uint32(@section[1]+20))))

Works in v1, but may take insanely long time in v2!

Migration from YARA v1 to v2

v1.6: PCRE
v1.7: PCRE or RE2
v2.0: custom regex engine

no more backreferences
e.g. <([A-Z][A-Z0-9]" \b[A>]*>.*?<\1>

no POSIX character classes
e.g. [:space:]

Benefit: The new engine is faster than any of the standard libraries.

Migration from YARA v1 to v2

$ cat rule.yara
rule test

{
strings:

Sre = /[a-zA-Z]+/
condition:

Sre

}

S cat data.txt
This is a test

Migration from YARA v1 to v2

S yara -v
yara 1.6 (rev:129)

S yara -s rule.yara data.txt
test data.txt
0x0:Sre: This is a test

Migration from YARA v1 to v2

S yara -v
yvara 1.7 (rev:167)

S yara -s rule.yara data.txt
test data.txt

0x0:Sre: This is a test
O0xl:Sre: his is a test
0x2:Sre: is is a test
0x3:Sre: s is a test
O0x4:Sre: is a test
0x5:Sre: is a test
O0x6:Sre: s a test
0x7:Sre: a test
0x8:Sre: a test
0x9:Sre: test

Oxa:Sre: test

Oxb:Sre: est

Oxc:Sre: st

Solutions

A PDF with all the exercises and solutions (slides with a red bar) will be
available

from Monday June 30, 2014

at http://r.forens.is/first2014sol

Or send me an email at a.schuster@yendor.net

http://r.forens.is/zursol
http://r.forens.is/zursol
mailto:a.schuster@yendor.net
mailto:a.schuster@yendor.net

Thank you for your attention!

Andreas Schuster

a.schuster@yendor.net
http://computer.forensikblog.de/

	Introduction
	Advanced Topics

