
PyNetSim
A modern INetSim Replacement

 Jason Jones
 FIRST 2017



BackGround



© Arbor Networks 2016 3

◦ Research teams may need a simulated environment because
‒ They are not allowed to directly contact malware C2s
‒ Trying to avoid tipping off threat actors
‒ Command-and-control servers are down

◦ DNS redirection isn’t enough
‒ Hard-coded DNS servers still circumvent
‒ Hard-coded IP addresses in lieu of DNS

◦ Internet simulation also allows for 
‒ Possibility of collecting client communications used to develop signatures
‒ Keeping malware alive in memory long enough to take memory snapshots for static analysis
‒ Test protocol re-implementation for a botnet monitoring system
‒ QA of parsing / implementation of intelligence feeds
‒ Possibility to direct actions of executed malware to activate certain pieces of code

Why?



Existing Solutions



© Arbor Networks 2016 5

◦ The Original Internet Simulator
◦ Written in Perl L
◦ Built-in traffic redirection support relies on obsolete ip_queue support in Linux 

kernel
‒ Other ways to get around this

◦ Significant Protocol Support
‒ HTTP(S)
‒ SMTP(S)
‒ POP3(S)
‒ FTP(S)
‒ DNS
‒ TFTP
‒ IRC
‒ Others

INetSim



© Arbor Networks 2016 6

◦ Released by FireEye’s FLARE team at BlackHat USA 2016
‒ https://github.com/fireeye/flare-fakenet-ng/
‒ Actively maintained

◦ Supports multiple protocols + SSL on most protocols
‒ TFTP
‒ SMTP
‒ POP
‒ IRC
‒ HTTP
‒ FTP
‒ DNS

◦ Windows + Linux support (only recently learned of Linux support)
‒ AFAICT, no dynamic protocol / SSL support
‒ Doesn’t speak malware protocols

FakeNet-NG



PyNetSim



© Arbor Networks 2016 8

◦ Built using Python3
◦ Goal is to dynamically detect the TCP / UDP protocol used

‒ Detect HTTP on non-standard ports
‒ Detect Telnet on non-standard ports
‒ Detect TLS/SSL enabled connections on non-standard ports

◦ Attempt to detect malware protocol used and speak that protocol
‒ Allows for “proper” responses to keep an infected system “talking”

• Keeps malware running for memory forensics, debugging purposes

• Directed execution via commands sent back

‒ Example: Alina requires a non-standard HTTP status code of 666 in the response
‒ Example: Mirai CnCs have increasingly used ports 80 and 443 to evade port-based 

blocking, but is very recognizable in comparison to HTTP / HTTPS

PyNetSim



© Arbor Networks 2016 9

Configuration



© Arbor Networks 2016 10

◦ Two ways to handle traffic redirection…
‒ The hard way

• Using NFQUEUE

• NFQUEUE allows for incoming packets to be assigned to a queue that a listening program can consume 
from

• Consuming the packets allows for parsing and manual response of things that would otherwise be rejected

• Allows for keeping records of original address and port

• Requires manual everything - handshakes, seq/ack calculation, ACKs, etc.

‒ The easy way
• Use built-in IPTABLES functionality

• -j REDIRECT to send all ports from specified protocols to a single port 

• Now only need to listen on one port and let kernel take care of the rest

• Downside: lose the original address and port which may help to hint the protocol

Traffic Redirection



© Arbor Networks 2016 11

◦ Targeting protocols that may be used by malware to communicate or exfiltrate data
◦ Dynamic SSL detection 
◦ DNS – UDP & TCP

‒ Respond with hardcoded or random non-RFC 1918 address
‒ Responds to A, AAAA, MX, TXT, and CNAME types

◦ HTTP
‒ DirtJumper / Drive families
‒ Andromeda

◦ Telnet
‒ Simple login / shell simulation

◦ SMTP
◦ FTP
◦ IRC
◦ Binary malware protocols

‒ Mirai
‒ LizardStresser

PyNetSim Protocols



© Arbor Networks 2016 12

◦ Inspired by scapy’s “guess_payload” functionality for dissecting packets 
properly

◦ Peek at first payload, pass to known L7 protocol layers
‒ Each high-level protocol may then opt to pass to child protocols

◦ First test for a TLS Client Hello
‒ If detected, use ssl.wrap_socket and then continue checking the payload

◦ Each protocol has a set of defined child protocols in the config
◦ Each protocol has its own set of options to use
◦ Use dpkt where possible to help guess protocol using its parsing layers

Dynamic Protocol Detection



© Arbor Networks 2016 13

Protocol Detection Example - SMTP



Demos



© Arbor Networks 2016 15

◦ Available on GitHub
‒ https://github.com/arbor-jjones/pynetsim

◦ Future Work
‒ Automated building / setup via Dockerfile / Vagrant / etc
‒ Solidify TLS / SSL support

• Dynamic generation of self-signed certs based on name in SNI

• Storage of keys for passing back to analyst / processing system to decrypt traffic

‒ Pcap / payload export
• Include decrypted SSL payloads

‒ REST-ful API to query data
‒ Better traffic redirection
‒ Properly handle “special” DNS queries

• SORBS / DNS-based blacklist checks used by malware like Sarvdap

• Proper DNS exfiltration responses where required

Conclusion



16


