ARBOR

N ETW ORKS
The Security Division of NETSCOUT

PyNetSim

A modern INetSim Replacement

Jason Jones
FIRST 2017

BackGround

NNNNNNNN
The Security Division of NETSCOUT

Why?

Research teams may need a simulated environment because
They are not allowed to directly contact malware C2s
Trying to avoid tipping off threat actors
Command-and-control servers are down
DNS redirection isn’t enough
Hard-coded DNS servers still circumvent
Hard-coded IP addresses in lieu of DNS
Internet simulation also allows for
Possibility of collecting client communications used to develop signatures
Keeping malware alive in memory long enough to take memory snapshots for static analysis
Test protocol re-implementation for a botnet monitoring system
QA of parsing / implementation of intelligence feeds
Possibility to direct actions of executed malware to activate certain pieces of code

®
l/_RBO R ° © Arbor Networks 2016 /

Existing Solutions

NNNNNNNN

INetSim

The Original Internet Simulator
Written in Perl ®

Built-in traffic redirection support relies on obsolete ip _queue support in Linux
kernel
Other ways to get around this

Significant Protocol Support
HTTP(S)
SMTP(S)
POP3(S)
FTP(S)
DNS
TFTP
IRC
Others

®
l/_RBO R ° © Arbor Networks 2016 /

FakeNet-NG

Released by FireEye’s FLARE team at BlackHat USA 2016

Actively maintained

Supports multiple protocols + SSL on most protocols
TFTP
SMTP
POP
IRC
HTTP
FTP
DNS

Windows + Linux support (only recently learned of Linux support)
AFAICT, no dynamic protocol / SSL support
Doesn’t speak malware protocols

®
l/_RBO R ° © Arbor Networks 2016

PyNetSim

ARBOR ..

N ETWOREKS
The Security Division of NETSCOUT

PyNetSim

Built using Python3
Goal is to dynamically detect the TCP / UDP protocol used

Detect HTTP on non-standard ports
Detect Telnet on non-standard ports
Detect TLS/SSL enabled connections on non-standard ports
Attempt to detect malware protocol used and speak that protocol

Allows for “proper” responses to keep an infected system “talking”
Keeps malware running for memory forensics, debugging purposes

Directed execution via commands sent back

Example: Alina requires a non-standard HTTP status code of 666 in the response

Example: Mirai CnCs have increasingly used ports 80 and 443 to evade port-based
blocking, but is very recognizable in comparison to HTTP / HTTPS

®
l/_RBO R ° © Arbor Networks 2016

Configuration

[main]

max_connections = 1000
listen_host = 192.168.56.101
listen_port = 12345
default_recv_size = 8192

[tcpl

protocols = http, mirai, ftp, smtp

probe response in the event the server needs to be the first to send a message
probe_response = 220 Welcome

sleep_time = 60

[udp]
protocols = ntp, dns

[dns]

default response for A records one of random, hardcoded — if hardcoded, default_ip is used
response_type = random

default_ip = 127.0.0.1

mailserver_count = 3

mailserver_prefix = smtp

text_response =

[ftp]
file_list

password.txt, evil.doc, secret.exe

[http]

protocols = drive, andromeda
server_name = Apache/2.4.18 (Ubuntu)
response_code = 200

connection = close

[drive]
server_name = nginx/1.11.1

®
ARBOR . © Arbor Networks 2016

N ETW ORKS

Traffic Redirection

Two ways to handle traffic redirection...

The hard way
Using NFQUEUE

NFQUEUE allows for incoming packets to be assigned to a queue that a listening program can consume
from

Consuming the packets allows for parsing and manual response of things that would otherwise be rejected
Allows for keeping records of original address and port

Requires manual everything - handshakes, seqg/ack calculation, ACKs, etc.

The easy way
Use built-in IPTABLES functionality

- REDIRECT to send all ports from specified protocols to a single port
Now only need to listen on one port and let kernel take care of the rest

Downside: lose the original address and port which may help to hint the protocol

®
l/_RBO R ° © Arbor Networks 2016 /

10

PyNetSim Protocols

Targeting protocols that may be used by malware to communicate or exfiltrate data
Dynamic SSL detection
DNS — UDP & TCP

Respond with hardcoded or random non-RFC 1918 address
Responds to A, AAAA, MX, TXT, and CNAME types
HTTP

DirtJumper / Drive families
Andromeda

Telnet
Simple login / shell simulation

SMTP

FTP

IRC

Binary malware protocols
Mirai
LizardStresser

®
l/_RBO R ° © Arbor Networks 2016

11

Dynamic Protocol Detection

Inspired by scapy’s “guess_payload” functionality for dissecting packets

properly
Peek at first payload, pass to known L7 protocol layers
Each high-level protocol may then opt to pass to child protocols

First test for a TLS Client Hello

If detected, use ssl.wrap_socket and then continue checking the payload
Each protocol has a set of defined child protocols in the config
Each protocol has its own set of options to use
Use dpkt where possible to help guess protocol using its parsing layers

®
l/_RBO R ° © Arbor Networks 2016

12

Protocol Detection Example - SMTP

@classmethod
def guess_protocol_from_payload(cls, payload, config, addr):

Iterates through known protocols to see if the payload is recognized

:param payload: raw payload received from a connection
:param config: configuration object
:param addr: connection address

:return: Protocol object

identified_protocol = TCP

if payload.startswith((b"HELO", b"EHLO")):
identified_protocol = SMTP

return identified_protocol

®
ARBOR o e © Arbor Networks 2016

NNNNNNNN

13

Demos

ARBOR ..

N ETW ORK S
The Security Division of NETSCOUT

Conclusion

Available on GitHub

Future Work

Automated building / setup via Dockerfile / Vagrant / etc

Solidify TLS / SSL support
Dynamic generation of self-signed certs based on name in SNI

Storage of keys for passing back to analyst / processing system to decrypt traffic

Pcap / payload export
Include decrypted SSL payloads

REST-ful API to query data
Better traffic redirection

Properly handle “special” DNS queries
SORBS / DNS-based blacklist checks used by malware like Sarvdap

Proper DNS exfiltration responses where required

®
l/_RBO R ° © Arbor Networks 2016

15

ARBOR ..

N ETWOREKS
The Security Division of NETSCOUT

