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0.	Introduction

Glulx	is	a	simple	solution	to	a	fairly	trivial	problem.	We	want	a	virtual	machine	which	the	Inform	compiler	can	compile
to,	without	the	increasingly	annoying	restrictions	of	the	Z-machine.

Glulx	does	this,	without	much	fuss.	All	arithmetic	is	32-bit	(although	there	are	opcodes	to	handle	8-bit	and	16-bit
memory	access.)	Input	and	output	are	handled	through	the	Glk	API	(which	chops	out	half	the	Z-machine	opcodes,	and
most	of	the	complexity	of	a	Z-code	interpreter.)	Some	care	has	been	taken	to	make	the	bytecode	small,	but	simplicity
and	elbow	room	are	considered	more	important	–	bytecode	is	not	a	majority	of	the	bulk	in	current	Inform	games.

0.1.	Why	Bother?

We're	buried	in	IF	VMs	already,	not	to	mention	general	VMs	like	Java,	not	to	mention	other	interpreters	or	bytecode
systems	like	Perl.	Do	we	need	another	one?

Well,	maybe	not,	but	Glulx	is	simple	enough	that	it	was	easier	to	design	and	implement	it	than	to	use	something	else.
Really.

The	Inform	compiler	already	does	most	of	the	work	of	translating	a	high-level	language	to	bytecode.	It	has	long	since
outgrown	many	of	the	IF-specific	features	of	the	Z-machine	(such	as	the	object	structure.)	So	it	makes	sense	to	remove
those	features,	leaving	a	generic	VM.	Furthermore,	there	are	enough	other	constraints	(Inform's	assumption	of	a	flat
memory	model,	the	desire	to	have	a	lightweight	VM	suitable	for	PDAs)	that	no	existing	system	is	really	ideal.	So	it	seems
worthwhile	to	design	a	new	one.

Indeed,	most	of	the	effort	that	has	gone	into	this	system	has	been	modifying	Inform.	Glulx	itself	is	nearly	an
afterthought.

0.2.	Glulx	and	Other	IF	Systems

Glulx	grew	out	of	the	desire	to	extend	Inform.	However,	it	may	well	be	suitable	as	a	VM	for	other	IF	systems.

Or	maybe	not.	Since	Glulx	is	so	lightweight,	a	compiler	has	to	be	fairly	complex	to	compile	to	it.	Many	IF	systems	take
the	approach	of	a	simple	compiler,	and	a	complex,	high-level,	IF-specific	interpreter.	Glulx	is	not	suitable	for	this.

However,	if	a	system	wants	to	use	a	simple	runtime	format	with	32-bit	data,	Glulx	may	be	a	good	choice.

Note	that	this	is	entirely	separate	from	question	of	the	I/O	layer.	Glulx	uses	the	Glk	I/O	API,	for	the	sake	of	simplicity	and
portability.	Any	IF	system	can	do	the	same.	One	can	use	Glk	I/O	without	using	the	Glulx	game-file	format.

On	the	obverse,	one	could	also	extend	the	Glulx	VM	to	use	a	different	I/O	system	instead	of	Glk.	One	such	extension	is
FyreVM,	a	commercial	IF	system	developed	by	Textfyre.	FyreVM	is	described	at	https://www.ifwiki.org/FyreVM.

Other	extension	projects,	not	yet	solidified,	are	being	developed	by	Dannii	Willis.	See
http://curiousdannii.github.com/if/.

This	specification	does	not	cover	FyreVM	and	the	other	projects,	except	to	note	opcodes,	gestalt	selectors,	and	iosys
values	that	are	specific	to	them.

0.3.	Credits

Graham	Nelson	gets	pretty	much	all	of	it.	Without	Inform,	there	would	be	no	reason	for	any	of	this.	The	entirety	of	Glulx
is	fallout	from	my	attempt	to	deconstruct	Inform	and	rebuild	its	code	generator	in	my	own	image,	with	Graham's
support.

https://www.ifwiki.org/FyreVM
http://curiousdannii.github.com/if/


1.	The	Machine

The	Glulx	machine	consists	of	main	memory,	the	stack,	and	a	few	registers	(the	program	counter,	the	stack	pointer,	and
the	call-frame	pointer.)

Main	memory	is	a	simple	array	of	bytes,	numbered	from	zero	up.	When	accessing	multibyte	values,	the	most	significant
byte	is	stored	first	(big-endian).	Multibyte	values	are	not	necessarily	aligned	in	memory.

The	stack	is	an	array	of	values.	It	is	not	a	part	of	main	memory;	the	terp	maintains	it	separately.	The	format	of	the	stack
is	technically	up	to	the	implementation.	However,	the	needs	of	the	machine	(especially	the	game-save	format)	leave
about	one	good	option.	(See	section	1.8,	"The	Save-Game	Format".)	One	important	point:	the	stack	can	be	kept	in	either
byte	ordering.	The	program	should	make	no	assumptions	about	endianness	on	the	stack.	(In	fact,	programs	should
never	need	to	care.)	Values	on	the	stack	always	have	their	natural	alignment	(16-bit	values	at	even	addresses,	32-bit
values	at	multiples	of	four).

The	stack	consists	of	a	set	of	call	frames,	one	for	each	function	in	the	current	chain.	When	a	function	is	called,	a	new
stack	frame	is	pushed,	containing	the	function's	local	variables.	The	function	can	then	push	or	pull	32-bit	values	on	top
of	that,	to	store	intermediate	computations.

All	values	are	treated	as	unsigned	integers,	unless	otherwise	noted.	Signed	integers	are	handled	with	the	usual	two's-
complement	notation.	Arithmetic	overflows	and	underflows	are	truncated,	also	as	usual.

1.1.	Input	and	Output

No	input/output	facilities	are	built	into	the	Glulx	machine	itself.	Instead,	the	machine	has	one	or	more	opcodes	which
dispatch	calls	to	an	I/O	library.

At	the	moment,	that	means	Glk.	All	Glulx	interpreters	support	the	Glk	I/O	facility	(via	the	glk	opcode),	and	no	other	I/O
facilities	exist.	However,	other	I/O	libraries	may	be	adapted	to	Glk	in	the	future.	For	best	behavior,	a	program	should	test
for	the	presence	of	an	I/O	facility	before	using	it,	using	the	IOSystem	gestalt	selector	(see	section	2.20,	"Miscellaneous").

One	I/O	system	is	set	as	current	at	any	given	time.	This	does	not	mean	that	the	others	are	unavailable.	(If	the	interpreter
supports	Glk,	for	example,	the	glk	opcode	will	always	function.)	However,	the	basic	Glulx	output	opcodes	–	streamchar,
streamnum,	and	streamstr	–	always	print	using	the	current	I/O	system.

Every	Glulx	interpreter	supports	at	least	one	normal	I/O	facility	(such	as	Glk),	and	also	two	special	facilities.

The	"null"	I/O	system	does	nothing.	If	this	is	selected,	all	Glulx	output	is	simply	discarded.	 [Silly,	perhaps,	but	I	like
simple	base	cases.]	When	the	Glulx	machine	starts	up,	the	null	system	is	the	current	system.	You	must	select	a	different
one	before	using	the	streamchar,	streamnum,	or	streamstr	opcodes.

The	"filter"	I/O	system	allows	the	Glulx	program	itself	to	handle	output.	The	program	specifies	a	function	when	selecting
this	I/O	system.	That	function	is	then	called	for	every	single	character	of	output	that	the	machine	generates	(via
streamchar,	streamnum,	or	streamstr).	The	function	can	output	its	character	directly	via	the	glk	opcode	(or	one	of	the
other	output	opcodes).

[This	may	all	seem	rather	baroque,	but	in	practice	most	authors	can	ignore	it.	Most	programs	will	want	to	test	for
the	Glk	facility,	set	it	to	be	the	current	output	system	immediately,	and	then	leave	the	I/O	system	alone	for	the	rest
of	the	game.	All	output	will	then	automatically	be	handled	through	Glk.]

1.2.	The	Memory	Map

Memory	is	divided	into	several	segments.	The	sizes	of	the	segments	are	determined	by	constant	values	in	the	game-file
header.

		Segment				Address	(hex)

+---------+		00000000
|	Header		|
|	-	-	-	-	|		00000024
|									|
|			ROM			|
|									|



+---------+		RAMSTART
|									|
|			RAM			|
|									|
|	-	-	-	-	|		EXTSTART
|									|
|									|
+---------+		ENDMEM

As	you	might	expect,	the	section	marked	ROM	never	changes	during	execution;	it	is	illegal	to	write	there.	Executable
code	and	constant	data	are	usually	(but	not	necessarily)	kept	in	ROM.	Note	that	unlike	the	Z-machine,	the	Glulx
machine's	ROM	comes	before	RAM;	the	36-byte	header	is	part	of	ROM.

The	boundary	marked	EXTSTART	is	a	trivial	gimmick	for	making	game-files	smaller.	A	Glulx	game-file	only	stores	the
data	from	0	to	EXTSTART.	When	the	terp	loads	it	in,	it	allocates	memory	up	to	ENDMEM;	everything	above	EXTSTART	is
initialized	to	zeroes.	Once	execution	starts,	there	is	no	difference	between	the	memory	above	and	below	EXTSTART.

For	the	convenience	of	paging	interpreters,	the	three	boundaries	RAMSTART,	EXTSTART,	and	ENDMEM	must	be
aligned	on	256-byte	boundaries.

Any	of	the	segments	of	memory	can	be	zero-length,	except	that	ROM	must	be	at	least	256	bytes	long	(so	that	the	header
fits	in	it).

1.3.	The	Stack

The	stack	pointer	starts	at	zero,	and	the	stack	grows	upward.	The	maximum	size	of	the	stack	is	determined	by	a	constant
value	in	the	game-file	header.	For	convenience,	this	must	be	a	multiple	of	256.

The	stack	pointer	counts	in	bytes.	If	you	push	a	32-bit	value	on	the	stack,	the	pointer	increases	by	four.

1.3.1.	The	Call	Frame

A	call	frame	looks	like	this:

+------------+		FramePtr
|	Frame	Len		|				(4	bytes)
|	Locals	Pos	|				(4	bytes)
|												|
|	Format	of		|				(2*n	bytes)
|					Locals	|
|												|
|	Padding				|				(0	or	2	bytes)
+------------+		FramePtr+LocalsPos
|	Locals					|				(1,	2,	or	4	bytes	each)
|												|
|	Padding				|				(0	to	3	bytes)
+------------+		FramePtr+FrameLen
|	Values					|				(4	bytes	each)
|						....		|
+------------+		StackPtr

When	a	function	begins	executing,	the	last	segment	is	empty	(StackPtr	equals	FramePtr+FrameLen.)	Computation	can
push	and	pull	32-bit	values	on	the	stack.	It	is	illegal	to	pop	back	beyond	the	original	FramePtr+FrameLen	boundary.

The	"locals"	are	a	list	of	values	which	the	function	uses	as	local	variables.	These	also	include	function	arguments.	(The
first	N	locals	can	be	used	as	the	arguments	to	an	N-argument	function.)	Locals	can	be	8,	16,	or	32-bit	values.	They	are	not
necessarily	contiguous;	padding	is	inserted	wherever	necessary	to	bring	a	value	to	its	natural	alignment	(16-bit	values	at
even	addresses,	32-bit	values	at	multiples	of	four).

The	"format	of	locals"	is	a	series	of	bytes,	describing	the	arrangement	of	the	"locals"	section	of	the	frame	(from	LocalsPos
up	to	FrameLen).	This	information	is	copied	directly	from	the	header	of	the	function	being	called.	(See	section	1.6.2,
"Functions".)

Each	field	in	this	section	is	two	bytes:



·		LocalType:	1,	2,	or	4,	indicating	a	set	of	locals	which	are	that	many	bytes	each.
·		LocalCount:	1	to	255,	indicating	how	many	locals	of	LocalType	to	declare.

The	section	is	terminated	by	a	pair	of	zero	bytes.	Another	pair	of	zeroes	is	added	if	necessary	to	reach	a	four-byte
boundary.

(Example:	if	a	function	has	three	8-bit	locals	followed	by	six	16-bit	locals,	the	format	segment	would	contain	eight	bytes:
(1,	3,	2,	6,	0,	0,	0,	0).	The	locals	segment	would	then	be	16	bytes	long,	with	a	padding	byte	after	the	third	local.)

The	"format	of	locals"	information	is	needed	by	the	terp	in	two	places:	when	calling	a	function	(to	write	in	function
arguments),	and	when	saving	the	game	(to	fix	byte-ordering	of	the	locals.)	The	formatting	is	not	enforced	by	the	terp
while	a	function	is	executing.	The	program	is	not	prevented	from	accessing	locations	whose	size	and	position	don't
match	the	formatting,	or	locations	that	overlap,	or	even	locations	in	the	padding	between	locals.	However,	if	a	program
does	this,	the	results	are	undefined,	because	the	byte-ordering	of	locals	is	up	to	the	terp.	The	save-game	algorithm	will
fail,	if	nothing	else.

[In	fact,	the	call	frame	may	not	exist	as	a	byte	sequence	during	function	execution.	The	terp	is	free	to	maintain	a
more	structured	form,	as	long	as	it	generates	valid	save-game	files,	and	correctly	handles	accesses	to	valid
(according	to	the	format)	locals.]

[NOTE:	8-bit	and	16-bit	locals	have	never	been	in	common	use,	and	this	spec	has	not	been	unambiguous	in
describing	their	handling.	(By	which	I	mean,	what	I	implemented	in	the	reference	interpreter	didn't	match	the
spec.)	Therefore,	8-bit	and	16-bit	locals	are	deprecated.	Use	of	the	copyb	and	copys	opcodes	with	a	local-variable
operand	is	also	deprecated.]

1.3.2.	Call	Stubs

Several	different	Glulx	operations	require	the	ability	to	jump	back	to	a	previously-saved	execution	state.	(For	example:
function	call/return,	game-state	save/restore,	and	exception	catch/throw.)

For	simplicity,	all	these	operations	store	the	execution	state	the	same	way	–	as	a	"call	stub"	on	the	stack.	This	is	a	block	of
four	32-bit	values.	It	encodes	the	PC	and	FramePtr,	and	also	a	location	to	store	a	single	32-bit	value	at	jump-back	time.
(For	example,	the	function	return	value,	or	the	game-restore	success	flag.)

The	values	are	pushed	on	the	stack	in	the	following	order	(FramePtr	pushed	last):

+-----------+
|	DestType		|		(4	bytes)
|	DestAddr		|		(4	bytes)
|	PC								|		(4	bytes)
|	FramePtr		|		(4	bytes)
+-----------+

FramePtr	is	the	current	value	of	FramePtr	–	the	stack	position	of	the	call	frame	of	the	function	during	which	the	call
stub	was	generated.

PC	is	the	current	value	of	the	program	counter.	This	is	the	address	of	the	instruction	 after	the	one	which	caused	the	call
stub	to	be	generated.	(For	example,	for	a	function	call,	the	call	stub	contains	the	address	of	the	first	instruction	to
execute	after	the	function	returns.)

DestType	and	DestAddr	describe	a	location	in	which	to	store	a	result.	This	will	occur	after	the	operation	is	completed
(function	returned,	game	restored,	etc).	It	happens	after	the	PC	and	FramePtr	are	reloaded	from	the	call	stub,	and	the
call	stub	is	removed	from	the	stack.

DestType	is	one	of	the	following	values:

·		0:	Do	not	store.	The	result	value	is	discarded.	DestAddr	should	be	zero.
·		1:	Store	in	main	memory.	The	result	value	is	stored	in	the	main-memory	address	given	by	DestAddr.
·		2:	Store	in	local	variable.	The	result	value	is	stored	in	the	call	frame	at	position	((FramePtr+LocalsPos)	+	DestAddr).

See	section	1.5,	"Instruction	Format".
·		3:	Push	on	stack.	The	result	value	is	pushed	on	the	stack.	DestAddr	should	be	zero.

The	string-decoding	mechanism	complicates	matters	a	little,	since	it	is	possible	for	a	function	to	be	called	from	inside	a
string,	instead	of	another	function.	(See	section	1.3.4,	"Calling	and	Returning	Within	Strings".)	The	following	DestType



values	allow	this:

·		10:	Resume	printing	a	compressed	(E1)	string.	The	PC	value	contains	the	address	of	the	byte	(within	the	string)	to
continue	printing	in.	The	DestAddr	value	contains	the	bit	number	(0	to	7)	within	that	byte.

·		11:	Resume	executing	function	code	after	a	string	completes.	The	PC	value	contains	the	program	counter	as	usual,
but	the	FramePtr	field	is	ignored,	since	the	string	is	printed	in	the	same	call	frame	as	the	function	that	executed	it.
DestAddr	should	be	zero.

·		12:	Resume	printing	a	signed	decimal	integer.	The	PC	value	contains	the	integer	itself.	The	DestAddr	value	contains
the	position	of	the	digit	to	print	next.	(0	indicates	the	first	digit,	or	the	minus	sign	for	negative	integers;	and	so	on.)

·		13:	Resume	printing	a	C-style	(E0)	string.	The	PC	value	contains	the	address	of	the	character	to	print	next.	The
DestAddr	value	should	be	zero.

·		14:	Resume	printing	a	Unicode	(E2)	string.	The	PC	value	contains	the	address	of	the	(four-byte)	character	to	print
next.	The	DestAddr	value	should	be	zero.

1.3.3.	Calling	and	Returning

When	a	function	is	called,	the	terp	pushes	a	four-value	call	stub.	(This	includes	the	return-value	destination,	the	PC,	and
the	FramePtr;	see	section	1.3.2,	"Call	Stubs".)	The	terp	then	sets	the	FramePtr	to	the	StackPtr,	and	builds	a	new	call
frame.	(See	section	1.3.1,	"The	Call	Frame".)	The	PC	moves	to	the	first	instruction	of	the	function,	and	execution
continues.

Function	arguments	can	be	stored	in	the	locals	of	the	new	call	frame,	or	pushed	on	the	stack	above	the	new	call	frame.
This	is	determined	by	the	type	of	the	function;	see	section	1.6.2,	"Functions".

When	a	function	returns,	the	process	is	reversed.	First	StackPtr	is	set	back	to	FramePtr,	throwing	away	the	current	call
frame	(and	any	pushed	values).	The	FramePtr	and	PC	are	popped	off	the	stack,	and	then	the	return-value	destination.
The	function's	return	value	is	stored	where	the	destination	says	it	should	be.	Then	execution	continues	at	the	restored
PC.

(But	note	that	a	function	can	also	return	to	a	suspended	string,	as	well	as	a	suspended	caller	function.	See	 section	1.3.4,
"Calling	and	Returning	Within	Strings"	and	section	1.3.5,	"Calling	and	Returning	During	Output	Filtering".)

1.3.4.	Calling	and	Returning	Within	Strings

Glulx	uses	a	Huffman	string-compression	scheme.	This	allows	bit	sequences	in	strings	to	decode	to	large	strings,	or	even
function	invocations	which	generate	output.	This	means	the	streamstr	opcode	can	invoke	function	calls,	and	we	must
therefore	be	able	to	represent	this	situation	on	the	stack.

When	the	terp	begins	printing	a	string,	it	pushes	a	type-11	call	stub.	(This	includes	only	the	current	PC.	The	FramePtr	is
included,	for	consistency's	sake,	but	it	will	be	ignored	when	the	call	stub	is	read	back	off.)	The	terp	then	starts	decoding
the	string	data.	The	PC	now	indicates	the	position	within	the	string	data.

If,	during	string	decoding,	the	terp	encounters	an	indirect	reference	to	a	string	or	function,	it	pushes	a	type-10	call	stub.
This	includes	the	string-decoding	PC,	and	the	bit	number	within	that	address.	It	also	includes	the	current	FramePtr,
which	has	not	changed	since	string-printing	began.

If	the	indirect	reference	is	to	another	string,	the	decoding	continues	at	the	new	location	after	the	type-10	stub	is	pushed.
However,	if	the	reference	is	to	a	function,	the	usual	call	frame	is	pushed	on	top	of	the	type-10	stub,	and	the	terp	returns
to	normal	function	execution.

When	a	string	completes	printing,	the	terp	pops	a	call	stub.	This	will	necessarily	be	either	a	type-10	or	type-11.	If	the
former,	the	terp	resumes	string	decoding	at	the	PC	address/bit	number	in	the	stub.	If	the	latter,	the	topmost	string	is
finished,	and	the	terp	resumes	function	execution	at	the	stub's	PC.

When	a	function	returns,	it	must	check	to	see	if	it	was	called	from	within	a	string,	instead	of	from	another	function.	This
is	the	case	if	the	call	stub	it	pops	is	type-10.	(The	call	stub	cannot	be	type-11.)	If	so,	the	FramePtr	is	taken	from	the	stub
as	usual;	but	the	stub's	PC	is	taken	to	refer	to	a	string	data	address,	with	the	DestAddr	value	being	the	bit	number	within
that	address.	(The	function's	return	value	is	discarded.)	String	decoding	resumes	from	there.

[It	may	seem	wasteful	for	the	terp	to	push	and	pop	a	call	stub	every	time	a	string	is	printed.	Fortunately,	in	the	most
common	case	–	printing	a	string	with	no	indirect	references	at	all	–	this	can	easily	be	optimized	out.	(No	VM	code	is
executed	between	the	push	and	pop,	so	it	is	safe	to	skip	them.)	Similarly,	when	printing	an	unencoded	(E0)	string,
there	can	be	no	indirect	references,	so	it	is	safe	to	optimize	away	the	call	stub	push/pop.]



1.3.5.	Calling	and	Returning	During	Output	Filtering

The	"filter"	I/O	system	allows	the	terp	to	call	a	Glulx	function	for	each	character	that	is	printed	via	streamchar,
streamnum,	or	streamstr.	We	must	be	able	to	represent	this	situation	on	the	call	stack	as	well.

If	filtering	is	the	current	I/O	system,	then	when	the	terp	executes	streamchar,	it	pushes	a	normal	function	call	stub	and
begins	executing	the	output	function.	Nothing	else	is	required;	when	the	function	returns,	execution	will	resume	after
the	streamchar	opcode.	(A	type-0	call	stub	is	used,	so	the	function's	return	value	is	discarded.)

The	other	output	opcodes	are	more	complex.	When	the	terp	executes	streamnum,	it	pushes	a	type-11	call	stub.	As
before,	this	records	the	current	PC.	The	terp	then	pushes	a	type-12	call	stub,	which	contains	the	integer	being	printed
and	the	position	of	the	next	character	to	be	printed	(namely	1).	It	then	executes	the	output	function.

When	the	output	function	returns,	the	terp	pops	the	type-12	stub	and	realizes	that	it	should	continue	printing	the	integer
contained	therein.	It	pushes	another	type-12	stub	back	on	the	stack,	indicating	that	the	next	position	to	print	is	2,	and
calls	the	output	function	again.

This	process	continues	until	there	are	no	more	characters	in	the	decimal	representation	of	the	integer.	The	terp	then
pops	the	type-11	stub,	restores	the	PC,	and	resumes	execution	after	the	streamnum	opcode.

The	streamstr	opcode	works	on	the	same	principle,	except	that	instead	of	type-12	stubs,	the	terp	uses	type-10	stubs
(when	interrupting	an	encoded	string)	and	type-13/14	stubs	(when	interruping	a	C-style,	null-terminated	string	of
bytes/Unicode	chars).	Type-13	and	type-14	stubs	look	like	the	others,	except	that	they	contain	only	the	address	of	the
next	character	to	print;	no	other	position	or	bit	number	is	necessary.

The	interaction	between	the	filter	I/O	system	and	indirect	string/function	calls	within	encoded	strings	is	left	to	the
reader's	imagination.	[Because	I	couldn't	explain	it	if	I	tried.	Follow	the	rules;	they	work.]

1.4.	The	Header

The	header	is	the	first	36	bytes	of	memory.	It	is	always	in	ROM,	so	its	contents	cannot	change	during	execution.	The
header	is	organized	as	nine	32-bit	values.	(Recall	that	values	in	memory	are	always	big-endian.)

+---------------+		address	0
|	Magic	Number		|		(4	bytes)
|	Glulx	Version	|		(4	bytes)
|	RAMSTART						|		(4	bytes)
|	EXTSTART						|		(4	bytes)
|	ENDMEM								|		(4	bytes)
|	Stack	Size				|		(4	bytes)
|	Start	Func				|		(4	bytes)
|	Decoding	Tbl		|		(4	bytes)
|	Checksum						|		(4	bytes)
+---------------+

·		Magic	number:	47	6C	75	6C,	which	is	to	say	ASCII	'Glul'.
·		Glulx	version	number:	The	upper	16	bits	stores	the	major	version	number;	the	next	8	bits	stores	the	minor	version

number;	the	low	8	bits	stores	an	even	more	minor	version	number,	if	any.	This	specification	is	version	3.1.3,	so	a
game	file	generated	to	this	spec	would	contain	00030103.

·		RAMSTART:	The	first	address	which	the	program	can	write	to.
·		EXTSTART:	The	end	of	the	game-file's	stored	initial	memory	(and	therefore	the	length	of	the	game	file.)
·		ENDMEM:	The	end	of	the	program's	memory	map.
·		Stack	size:	The	size	of	the	stack	needed	by	the	program.
·		Address	of	function	to	execute:	Execution	commences	by	calling	this	function.
·		Address	of	string-decoding	table:	This	table	is	used	to	decode	compressed	strings.	See	 section	1.6.1.3,	"Compressed

strings".	This	may	be	zero,	indicating	that	no	compressed	strings	are	to	be	decoded.	 [Note	that	the	game	can	change
which	table	the	terp	is	using,	with	the	setstringtbl	opcode.	See	section	2.11,	"Output".]

·		Checksum:	A	simple	sum	of	the	entire	initial	contents	of	memory,	considered	as	an	array	of	big-endian	32-bit
integers.	The	checksum	should	be	computed	with	this	field	set	to	zero.

The	interpreter	should	validate	the	magic	number	and	the	Glulx	version	number.	An	interpreter	which	is	written	to
version	X.Y.Z	of	this	specification	should	accept	game	files	whose	Glulx	version	between	X.0.0	and	X.Y.*.	(That	is,	the
major	version	number	should	match;	the	minor	version	number	should	be	less	than	or	equal	to	Y;	the	subminor	version
number	does	not	matter.)



EXCEPTION:	A	version	3. 	interpreter	should	accept	version	2.0	game	files.	The	only	difference	between	spec	2.0	and
spec	3.0	is	that	2.0	lacks	Unicode	functionality.	Therefore,	an	interpreter	written	to	this	version	of	the	spec	(3.1.3)	should
accept	game	files	whose	version	is	between	2.0.0	and	3.1.	(0x00020000	and	0x000301FF	inclusive).

[These	rules	mean,	in	the	vernacular,	that	minor	version	changes	are	backwards	compatible,	and	subminor	version
changes	are	backwards	and	forwards	compatible.	If	I	add	a	feature	which	I	expect	every	terp	to	implement	(e.g.
mzero	and	mcopy),	then	I	bump	the	minor	version	number,	and	your	game	can	use	that	feature	without	worrying
about	availability.	If	I	add	a	feature	which	not	all	terps	will	implement	(e.g.	floating	point),	then	I	bump	the
subminor	version	number,	and	your	game	should	only	use	the	feature	after	doing	a	gestalt	test	for	availability.]

[The	header	is	conventionally	followed	by	a	32-bit	word	which	describes	the	layout	of	data	in	the	rest	of	the	file.
This	value	is	not	a	part	of	the	Glulx	specification;	it	is	the	first	ROM	word	after	the	header,	not	a	part	of	the	header.
It	is	an	option	that	compilers	can	insert,	when	generating	Glulx	files,	to	aid	debuggers	and	decompilers.]

[For	Inform-generated	Glulx	files,	this	descriptive	value	is	49	6E	66	6F,	which	is	to	say	ASCII	'Info'.	There	then	follow
several	more	bytes	of	data	relevant	to	the	Inform	compiler.	See	the	Glulx	chapter	of	the	Inform	Technical	Manual.]

[Note	that	version	2.0	(pre-Unicode)	has	been	obsolete	since	2006.	There	are	still	2.0	game	files	out	there,	so
interpreters	should	still	support	them.	However,	there	are	no	2.0-only	interpreters	left;	so	compilers	may	freely
target	3.*.]

1.5.	Instruction	Format

There	are	2^28	Glulx	opcodes,	numbered	from	0	to	0FFFFFFF.	If	this	proves	insufficient,	more	may	be	added	in	the
future.

An	instruction	is	encoded	as	follows:

+--------------+
|	Opcode	Num			|		(1	to	4	bytes)
|														|
|	Operand						|		(two	per	byte)
|			Addr	Modes	|
|														|
|	Operand	Data	|		(as	defined	by
|								....		|						addr	modes)
+--------------+

The	opcode	number	OP,	which	can	be	anything	up	to	0FFFFFFF,	may	be	packed	into	fewer	than	four	bytes:

·		00..7F:	One	byte,	OP
·		0000..3FFF:	Two	bytes,	OP+8000
·		00000000..0FFFFFFF:	Four	bytes,	OP+C0000000

Note	that	the	length	of	this	field	can	be	decoded	by	looking	at	the	top	two	bits	of	the	first	byte.	Also	note	that,	for
example,	01	and	8001	and	C0000001	all	represent	the	same	opcode.

The	operand	addressing	modes	are	a	list	of	fields	which	tell	where	opcode	arguments	are	read	from	or	written	to.	Each
is	four	bits	long,	and	they	are	packed	two	to	a	byte.	(They	occur	in	the	same	order	as	the	arguments,	low	bits	first.	If
there	are	an	odd	number,	the	high	bits	of	the	last	byte	are	left	zero.)

Since	each	addressing	mode	is	a	four-bit	number,	there	are	sixteen	addressing	modes.	Each	is	associated	with	a	fixed
number	of	bytes	in	the	"operand	data"	segment	of	the	instruction.	These	bytes	appear	after	the	addressing	modes,	in	the
same	order.	(There	is	no	alignment	padding.)

·		0:	Constant	zero.	(Zero	bytes)
·		1:	Constant,	-80	to	7F.	(One	byte)
·		2:	Constant,	-8000	to	7FFF.	(Two	bytes)
·		3:	Constant,	any	value.	(Four	bytes)
·		4:	(Unused)
·		5:	Contents	of	address	00	to	FF.	(One	byte)
·		6:	Contents	of	address	0000	to	FFFF.	(Two	bytes)
·		7:	Contents	of	any	address.	(Four	bytes)
·		8:	Value	popped	off	stack.	(Zero	bytes)



·		9:	Call	frame	local	at	address	00	to	FF.	(One	byte)
·		A:	Call	frame	local	at	address	0000	to	FFFF.	(Two	bytes)
·		B:	Call	frame	local	at	any	address.	(Four	bytes)
·		C:	(Unused)
·		D:	Contents	of	RAM	address	00	to	FF.	(One	byte)
·		E:	Contents	of	RAM	address	0000	to	FFFF.	(Two	bytes)
·		F:	Contents	of	RAM,	any	address.	(Four	bytes)

Things	to	note:

The	"constant"	modes	sign-extend	their	data	into	a	32-bit	value;	the	other	modes	do	not.	This	is	just	because	negative
constants	occur	more	frequently	than	negative	addresses.

The	indirect	modes	(all	except	"constant")	access	32-bit	fields,	either	in	the	stack	or	in	memory.	This	means	four	bytes
starting	at	the	given	address.	A	few	opcodes	are	exceptions:	copyb	and	copys	(copy	byte	and	copy	short)	access	8-bit	and
16-bit	fields	(one	or	two	bytes	starting	at	the	given	address.)

The	"call	frame	local"	modes	access	a	field	on	the	stack,	starting	at	byte	((FramePtr+LocalsPos)	+	address).	As	described
in	section	1.3.1,	"The	Call	Frame",	this	must	be	aligned	with	(and	the	same	size	as)	one	of	the	fields	described	in	the
function's	locals	format.	It	must	not	point	outside	the	range	of	the	current	function's	locals	segment.

The	"contents	of	address"	modes	access	a	field	in	main	memory,	starting	at	byte	(addr).	The	"contents	of	RAM"	modes
access	a	field	in	main	memory,	starting	at	byte	(RAMSTART	+	addr).	Since	the	byte-ordering	of	main	memory	is	well-
defined,	these	need	not	have	any	particular	alignment	or	position.

All	address	addition	is	truncated	to	32	bits,	and	addresses	are	unsigned.	So,	for	example,	"contents	of	RAM"	address
FFFFFFFC	(RAMSTART	+	FFFFFFFC)	accesses	the	last	32-bit	value	in	ROM,	since	it	effectively	subtracts	4	from
RAMSTART.	"Contents	of	address"	FFFFFFFC	would	access	the	very	last	32-bit	value	in	main	memory,	assuming	you	can
find	a	terp	which	handles	four-gigabyte	games.	"Call	frame	local"	FFFFFFFC	is	illegal;	whether	you	interpret	it	as	a
negative	number	or	a	large	positive	number,	it's	outside	the	current	call	frame's	locals	segment.

Some	opcodes	store	values	as	well	as	reading	them	in.	Store	operands	use	the	same	addressing	modes,	with	a	few
exceptions:

·		8:	The	value	is	pushed	into	the	stack,	instead	of	being	popped	off.
·		3,	2,	1:	These	modes	cannot	be	used,	since	it	makes	no	sense	to	store	to	a	constant.	 [We	delicately	elide	the	subject	of

Fortran.	And	rule-based	property	algebras.]
·		0:	This	mode	means	"throw	the	value	away";	it	is	not	stored	at	all.

Operands	are	evaluated	from	left	to	right.	(This	is	important	if	there	are	several	push/pop	operands.)

1.6.	Typable	Objects

It	is	convenient	for	a	program	to	store	object	references	as	32-bit	pointers,	and	still	determine	the	type	of	a	reference	at
run-time.

To	facilitate	this,	structured	objects	in	Glulx	main	memory	follow	a	simple	convention:	the	first	byte	indicates	the	type	of
the	object.

At	the	moment,	there	are	only	two	kinds	of	Glulx	objects:	functions	and	strings.	A	program	(or	compiler,	or	library)	may
declare	more,	but	the	Glulx	VM	does	not	have	to	know	about	them.

Of	course,	not	every	byte	in	memory	is	the	start	of	the	legitimate	object.	It	is	the	program's	responsibility	to	keep	track	of
which	values	validly	refer	to	typable	objects.

1.6.1.	Strings

Strings	have	a	type	byte	of	E0	(for	unencoded,	C-style	strings),	E2	(for	unencoded	strings	of	Unicode	values),	or	E1	(for
compressed	strings.)	Types	E3	to	FF	are	reserved	for	future	expansion	of	string	types.

1.6.1.1.	Unencoded	strings

An	unencoded	string	consists	of	an	E0	byte,	followed	by	all	the	bytes	of	the	string,	followed	by	a	zero	byte.



1.6.1.2.	Unencoded	Unicode	strings

An	unencoded	Unicode	string	consists	of	an	E2	byte,	followed	by	three	padding	0	bytes,	followed	by	the	Unicode
character	values	(each	one	being	a	four-byte	integer).	Finally,	there	is	a	terminating	value	(four	0	bytes).

Unencoded	Unicode	string
+----------------+
|	Type:	E2							|		(1	byte)
|	Padding:	00				|		(3	bytes)
|	Characters....	|		(any	length,	multiple	of	4)
|	NUL:	00000000		|		(4	bytes)
+----------------+

Note	that	the	character	data	is	not	encoded	in	UTF-8,	UTF-16,	or	any	other	peculiar	encoding.	It	is	treated	as	an	array	of
32-bit	integers	(which	are,	as	always	in	Glulx,	stored	big-endian).	Each	integer	is	a	Unicode	code	point.

1.6.1.3.	Compressed	strings

A	compressed	string	consists	of	an	E1	byte,	followed	by	a	block	of	Huffman-encoded	data.	This	should	be	read	as	a
stream	of	bits,	starting	with	the	low	bit	(the	1	bit)	of	the	first	byte	after	the	E1,	proceeding	through	the	high	bit	(the	128
bit),	and	so	on	with	succeeding	bytes.

Decoding	compressed	strings	requires	looking	up	data	in	a	Huffman	table.	The	address	of	this	table	is	normally	found	in
the	header.	However,	the	program	can	select	a	different	decompression	table	at	run-time;	see	section	2.11,	"Output".

The	Huffman	table	is	logically	a	binary	tree.	Internal	nodes	are	branch	points;	leaf	nodes	represent	printable	entities.	To
decode	a	string,	begin	at	the	root	node.	Read	one	bit	from	the	bit	stream,	and	go	to	the	left	or	right	child	depending	on
its	value.	Continue	reading	bits	and	branching	left	or	right,	until	you	reach	a	leaf	node.	Print	that	entity.	Then	jump	back
to	the	root,	and	repeat	the	process.	One	particular	leaf	node	indicates	the	end	of	the	string	(rather	than	any	printable
entity),	and	when	the	bit	stream	leads	you	to	that	node,	you	stop.

[This	is	a	fairly	slow	process,	with	VM	memory	reads	and	a	conditional	test	for	every	 bit	of	the	string.	A	terp	can
speed	it	up	considerably	by	reading	the	Huffman	table	all	at	once,	and	caching	it	as	native	data	structures.	A	binary
tree	is	the	obvious	choice,	but	one	can	do	even	better	(at	the	cost	of	some	space)	by	looking	up	four-bit	chunks	at	a
time	in	a	16-branching	tree.]

[Note	that	decompression	tables	are	not	necessarily	in	ROM.	This	is	particularly	important	for	tables	that	are
generated	and	selected	at	run-time.	Furthermore,	it	is	technically	legal	for	a	table	in	RAM	to	be	altered	at	runtime	–
possibly	even	when	it	is	the	currently-selected	table.	Therefore,	an	interpreter	that	caches	or	preloads	this
decompression	data	must	be	careful.	If	it	caches	data	from	RAM,	it	must	watch	for	writes	to	that	RAM	space,	and
invalidate	its	cache	upon	seeing	such	a	write.]

1.6.1.4.	The	String-Decoding	Table

The	decoding	table	has	the	following	format:

+-----------------+
|	Table	Length				|		(4	bytes)
|	Number	of	Nodes	|		(4	bytes)
|	Root	Node	Addr		|		(4	bytes)
|	Node	Data	....		|		(table	length	-	12	bytes)
+-----------------+

The	table	length	is	measured	in	bytes,	from	the	beginning	of	the	table	to	the	end	of	the	last	node.	The	node	count
includes	both	branch	and	leaf	nodes.	[There	will,	of	course,	be	an	odd	number	of	nodes,	and	(N+1)/2	of	them	will	be
leaves.]	The	root	address	indicates	which	node	is	the	root	of	the	tree;	it	is	not	necessarily	the	first	node.	This	is	an
absolute	address,	not	an	offset	from	the	beginning	of	the	table.

[The	Inform	compiler	generated	an	incorrect	node	count	field	through	April	2014.	This	field	will	thus	be	too	large
(never	too	small)	in	older	game	files.]

There	then	follow	all	the	nodes,	with	no	extra	data	before,	between,	or	after	them.	They	need	not	be	in	any	particular
order.	There	are	several	possible	types	of	nodes,	distinguished	by	their	first	byte.



Branch	(non-leaf	node)
+----------------+
|	Type:	00							|		(1	byte)
|	Left		(0)	Node	|		(4	bytes)
|	Right	(1)	Node	|		(4	bytes)
+----------------+

The	left	and	right	node	fields	are	addresses	(again,	absolute	addresses)	of	the	nodes	to	go	to	given	a	0	or	1	bit	from	the	bit
stream.

String	terminator
+----------------+
|	Type:	01							|		(1	byte)
+----------------+

This	ends	the	string-decoding	process.

Single	character
+----------------+
|	Type:	02							|		(1	byte)
|	Character						|		(1	byte)
+----------------+

This	prints	a	single	character.	 [The	encoding	scheme	is	the	business	of	the	I/O	system;	in	Glk,	it	will	be	the	Latin-1
character	set.]

C-style	string
+----------------+
|	Type:	03							|		(1	byte)
|	Characters....	|		(any	length)
|	NUL:	00								|		(1	byte)
+----------------+

This	prints	an	array	of	characters.	Note	that	the	array	cannot	contain	a	zero	byte,	since	that	is	reserved	to	terminate	the
array.	[A	zero	byte	can	be	printed	using	the	single-character	node	type.]

Single	Unicode	character
+----------------+
|	Type:	04							|		(1	byte)
|	Character						|		(4	bytes)
+----------------+

This	prints	a	single	Unicode	character.	 [To	be	precise,	it	prints	a	32-bit	character,	which	will	be	interpreted	as	Unicode	if
the	I/O	system	is	Glk.]

C-style	Unicode	string
+----------------+
|	Type:	05							|		(1	byte)
|	Characters....	|		(any	length,	multiple	of	4)
|	NUL:	00000000		|		(4	bytes)
+----------------+

This	prints	an	array	of	Unicode	characters.	Note	that	the	array	cannot	contain	a	zero	word,	since	that	is	reserved	to
terminate	the	array.	Also	note	that,	unlike	an	E2-encoded	string	object,	there	is	no	padding.

[If	the	Glk	library	is	unable	to	handle	Unicode,	node	types	04	and	05	are	still	legal.	However,	characters	beyond	FF
will	be	printed	as	3F	("?").]

Indirect	reference
+----------------+
|	Type:	08							|		(1	byte)
|	Address								|		(4	bytes)
+----------------+

This	prints	a	string	or	calls	a	function,	which	is	not	actually	part	of	the	decoding	table.	The	address	may	refer	to	a



location	anywhere	in	memory	(including	RAM.)	It	must	be	a	valid	Glulx	string	(see	section	1.6.1,	"Strings")	or	function
(see	section	1.6.2,	"Functions").	If	it	is	a	string,	it	is	printed.	If	a	function,	it	is	called	(with	no	arguments)	and	the	result	is
discarded.

The	management	of	the	stack	during	an	indirect	string/function	call	is	a	bit	tricky.	See	 section	1.3.4,	"Calling	and
Returning	Within	Strings".

Double-indirect	reference
+----------------+
|	Type:	09							|		(1	byte)
|	Address								|		(4	bytes)
+----------------+

This	is	similar	to	the	indirect-reference	node,	but	the	address	refers	to	a	four-byte	field	in	memory,	and	 that	contains	the
address	of	a	string	or	function.	The	extra	layer	of	indirection	can	be	useful.	For	example,	if	the	four-byte	field	is	in	RAM,
its	contents	can	be	changed	during	execution,	pointing	to	a	new	typable	object,	without	modifying	the	decoding	table
itself.

Indirect	reference	with	arguments
+----------------+
|	Type:	0A							|		(1	byte)
|	Address								|		(4	bytes)
|	Argument	Count	|		(4	bytes)
|	Arguments....		|		(4*N	bytes)
+----------------+

Double-indirect	reference	with	arguments
+----------------+
|	Type:	0B							|		(1	byte)
|	Address								|		(4	bytes)
|	Argument	Count	|		(4	bytes)
|	Arguments....		|		(4*N	bytes)
+----------------+

These	work	the	same	as	the	indirect	and	double-indirect	nodes,	but	if	the	object	found	is	a	function,	it	will	be	called	with
the	given	argument	list.	If	the	object	is	a	string,	the	arguments	are	ignored.

1.6.2.	Functions

Functions	have	a	type	byte	of	C0	(for	stack-argument	functions)	or	C1	(for	local-argument	functions).	Types	C2	to	DF	are
reserved	for	future	expansion	of	function	types.

A	Glulx	function	always	takes	a	list	of	32-bit	arguments,	and	returns	exactly	one	32-bit	value.	(If	you	want	a	function
which	returns	no	value,	discard	or	ignore	it.	Store	operand	mode	zero	is	convenient.)

If	the	type	is	C0,	the	arguments	are	passed	on	the	stack,	and	are	made	available	on	the	stack.	After	the	function's	call
frame	is	constructed,	all	the	argument	values	are	pushed	–	last	argument	pushed	first,	first	argument	topmost.	Then	the
number	of	arguments	is	pushed	on	top	of	that.	All	locals	in	the	call	frame	itself	are	initialized	to	zero.

If	the	type	is	C1,	the	arguments	are	passed	on	the	stack,	and	are	written	into	the	locals	according	to	the	"format	of
locals"	list	of	the	function.	Arguments	passed	into	8-bit	or	16-bit	locals	are	truncated.	It	is	legitimate	for	there	to	be	too
many	or	too	few	arguments.	Extras	are	discarded	silently;	any	locals	left	unfilled	are	initialized	to	zero.

A	function	has	the	following	structure:

+------------+
|		C0	or	C1		|		Type	(1	byte)
+------------+
|	Format	of		|				(2*n	bytes)
|					Locals	|
+------------+
|		Opcodes			|
|						....		|
+------------+



The	locals-format	list	is	encoded	the	same	way	it	is	on	the	stack;	see	 section	1.3.1,	"The	Call	Frame".	This	is	a	list	of
LocalType/LocalCount	byte	pairs,	terminated	by	a	zero/zero	pair.	(There	is,	however,	no	extra	padding	to	reach	four-
byte	alignment.)

Note	that	although	a	LocalType/LocalCount	pair	can	only	describe	up	to	255	locals,	there	is	no	restriction	on	how	many
locals	the	function	can	have.	It	is	legitimate	to	encode	several	pairs	in	a	row	with	the	same	LocalType.

Immediately	following	the	two	zero	bytes,	the	instructions	start.	There	is	no	explicit	terminator	for	the	function.

1.6.3.	Other	Glulx	Objects

There	are	no	other	Glulx	objects	at	this	time,	but	type	80	to	BF	are	reserved	for	future	expansion.	Type	00	is	also
reserved;	it	indicates	"no	object",	and	should	not	be	used	by	any	typable	object.	A	null	reference's	type	would	be
considered	00.	(Even	though	byte	00000000	of	main	memory	is	not	in	fact	00.)

1.6.4.	User-Defined	Objects

Types	01	to	7F	are	available	for	use	by	the	compiler,	the	library,	or	the	program.	Glulx	will	not	use	them.

[Inform	uses	60	for	dictionary	words,	and	70	for	objects	and	classes.	It	reserves	types	40	to	7F.	Types	01	to	3F	remain
available	for	use	by	Inform	programmers.]

1.7.	Floating-Point	Numbers

Glulx	values	are	32-bit	integers,	big-endian	when	stored	in	memory.	To	handle	floating-point	math,	we	must	be	able	to
encode	float	values	as	32-bit	values.	Unsurprisingly,	Glulx	uses	the	big-endian,	single-precision	IEEE-754	encoding.	This
allows	floats	to	be	stored	in	memory,	on	the	stack,	in	local	variables,	and	in	any	other	place	that	a	32-bit	value	appears.

However,	float	values	and	integer	values	are	not	interchangable.	You	cannot	pass	floats	to	the	normal	arithmetic
opcodes,	or	vice	versa,	and	expect	to	get	meaningful	answers.	Always	pass	floats	to	the	float	opcodes	and	integers	to	the
int	opcodes,	with	the	appropriate	conversion	opcodes	to	convert	back	and	forth.	(See	section	2.12,	"Floating-Point
Math".)

Floats	have	limited	precision;	they	cannot	represent	all	real	values	exactly.	They	can't	even	represent	all	integers
exactly.	(Integers	between	-1000000	and	1000000	(hex)	have	exact	representations.	Beyond	that,	the	rounding	error	can
be	greater	than	1.	But	when	you	get	into	fractions,	errors	are	possible	anywhere:	1/3	cannot	be	stored	exactly.)

Therefore,	you	must	be	careful	when	comparing	results.	A	series	of	float	operations	may	produce	a	result	fractionally
different	from	what	you	expect.	When	comparing	float	values,	you	will	most	often	want	to	use	the	jfeq	opcode,	which
tests	whether	two	values	are	near	each	other	(within	a	specified	range).

A	float	value	has	three	fields	in	its	32	bits,	from	highest	(the	sign	bit)	to	lowest:

+---------------+
|	Sign	Bit	(S)		|		(1	bit)
|	Exponent	(E)		|		(8	bits)
|	Mantissa	(M)		|		(23	bits)
+---------------+

The	interpretation	of	the	value	depends	on	the	exponent	value:

·		If	E	is	FF	and	M	is	zero,	the	value	is	positive	or	negative	infinity,	depending	on	S.	Infinite	values	represent	overflows.
(+Inf	is	7F800000;	-Inf	is	FF800000.)

·		If	E	is	FF	and	M	is	nonzero,	the	value	is	a	positive	or	negative	NaN	("not	a	number"),	depending	on	S.	NaN	values
represent	arithmetic	failures.	(+NaN	values	are	in	the	range	7F800001	to	7FFFFFFF;	-NaN	are	FF800001	to
FFFFFFFF.)

·		If	E	is	00	and	M	is	zero,	the	value	is	a	positive	or	negative	zero,	depending	on	S.	Zero	values	represent	underflows,
and	also,	you	know,	zero.	(+0	is	00000000;	−0	is	80000000.)

·		If	E	is	00	and	M	is	nonzero,	the	value	is	a	"denormalized"	number,	very	close	to	zero:	plus	or	minus	2^(-149)*M.
·		If	E	is	anything	else,	the	value	is	a	"normalized"	number:	plus	or	minus	2^(E-150)*(800000+M).

[I'm	using	decimal	exponents	there	amid	all	the	hex	constants.	-149	is	hex	-95;	-150	is	hex	-96.	Sorry	about	that.]

The	numeric	formulas	may	look	more	familiar	if	you	write	them	as	2^(-126)(0.MMMM...)	and	2^(E-127)(1.MMMM...),

https://en.wikipedia.org/wiki/IEEE_754


where	"0.MMMM..."	is	a	fraction	between	zero	and	one	(23	mantissa	bits	after	the	binal	point)	and	"1.MMMM...."	is	a
fraction	beween	one	and	two.

Some	example	values:

·		0.0	=	00000000	(S=0,	E=00,	M=0)
·		1.0	=	3F800000	(S=0,	E=7F,	M=0)
·		−2.0	=	C0000000	(S=1,	E=80,	M=0)
·		100.0	=	42C80000	(S=0,	E=85,	M=480000)
·		pi	=	40490FDB	(S=0,	E=80,	M=490FDB)
·		2*pi	=	40C90FDB	(S=0,	E=81,	M=490FDB)
·		e	=	402DF854	(S=0,	E=80,	M=2DF854)

To	give	you	an	idea	of	the	behavior	of	the	special	values:

·		1	/	0	=	+Inf
·		−1	/	0	=	−Inf
·		1	/	Inf	=	0
·		1	/	-Inf	=	−0
·		0	/	0	=	NaN
·		2	*	0	=	0
·		2	*	−0	=	−0
·		+Inf	*	0	=	NaN
·		+Inf	*	1	=	+Inf
·		+Inf	+	+Inf	=	+Inf
·		+Inf	*	+Inf	=	+Inf
·		+Inf	−	+Inf	=	NaN
·		+Inf	/	+Inf	=	NaN

NaN	is	sticky;	almost	any	mathematical	operation	involving	a	NaN	produces	NaN.	(There	are	a	few	exceptions.)

However,	Glulx	does	not	guarantee	 which	NaN	value	you	will	get	from	such	operations.	The	underlying	platform	may	try
to	encode	information	about	what	operation	failed	in	the	mantissa	field	of	the	NaN.	Or,	contrariwise,	it	may	return	the
same	value	for	every	NaN.	The	sign	bit,	similarly,	is	never	guaranteed.	(The	sign	may	be	preserved	if	that's	meaningful
for	the	failed	operation,	but	it	may	not	be.)	You	should	not	test	for	NaN	by	comparing	to	a	fixed	encoded	value;	instead,
use	the	jisnan	opcode.

1.7.1.	Double-Precision	Floating-Point	Numbers

Glulx	also	supports	double-precision	(64-bit)	values.	To	accomodate	this,	a	double	must	be	stored	as	 two	Glulx	values.
This	may	be	a	pair	of	variables,	two	words	in	memory,	or	two	values	on	the	stack.	The	high	32	bits	will	be	earlier	in
memory	or	closer	to	the	top	of	the	stack.

(In	this	document,	these	pairs	will	be	written	HI:LO.)

+-----------------+
|	Sign	Bit	(S)				|		(1	bit)
|	Exponent	(E)				|		(11	bits)
|	Mantissa	(Mhi)		|		(20	bits)
+-----------------+
|	Mantissa	(Mlo)		|		(32	bits)
+-----------------+

The	interpretation	is	similar	to	floats,	except:

·		The	mantissa	is	52	bits,	split	across	the	two	values.
·		For	infinite	and	Nan	values,	E	is	7FF.
·		+Inf	is	7FF00000:00000000;	-Inf	is	FFF00000:00000000.
·		Denormalized	numbers	are	plus	or	minus	2^(-1074)*M.
·		Normalized	numbers	are	plus	or	minus	2^(E-1075)*(10000000000000+M)

1.8.	The	Save-Game	Format



(Or,	if	you	like,	"serializing	the	machine	state".)

This	is	a	variant	of	Quetzal,	the	standard	Z-machine	save	file	format.	(See	 http://ifarchive.org/if-
archive/infocom/interpreters/specification/savefile_14.txt.)

Everything	in	the	Quetzal	specification	applies,	with	the	following	exceptions:

1.8.1.	Contents	of	Dynamic	Memory

In	both	compressed	and	uncompressed	form,	the	memory	chunk	('CMem'	or	'UMem')	starts	with	a	four-byte	value,
which	is	the	current	size	of	memory.	The	memory	data	then	follows.	During	a	restore,	the	size	of	memory	is	changed	to
this	position.

The	memory	area	to	be	saved	does	not	start	at	address	zero,	but	at	RAMSTART.	It	continues	to	the	current	end	of
memory	(which	may	not	be	the	ENDMEM	value	in	the	header.)	When	generating	or	reading	compressed	data	('CMem'
chunk),	the	data	above	EXTSTART	is	handled	as	if	the	game	file	were	extended	with	as	many	zeroes	as	necessary.

1.8.2.	Contents	of	the	Stack

Before	the	stack	is	written	out,	a	four-value	call	stub	is	pushed	on	–	result	destination,	PC,	and	FramePtr.	(See	 section
1.3.2,	"Call	Stubs".)	Then	the	entire	stack	can	be	written	out,	with	all	of	its	values	(of	whatever	size)	transformed	to	big-
endian.	(Padding	is	not	skipped;	it's	written	out	as	the	appropriate	number	of	zero	bytes.)

When	the	game-state	is	loaded	back	in	–	or,	for	that	matter,	when	continuing	after	a	game-save	–	the	four	values	are
read	back	off	the	stack,	a	result	code	for	the	operation	is	stored	in	the	appropriate	destination,	and	execution	continues.

[Remember	that	in	a	call	stub,	the	PC	contains	the	address	of	the	instruction	 after	the	one	being	executed.]

1.8.3.	Memory	Allocation	Heap

If	the	heap	is	active	(see	 section	2.9,	"Memory	Allocation	Heap"),	an	allocation	heap	chunk	is	written	('MAll').	This	chunk
contains	two	four-byte	values,	plus	two	more	for	each	extant	memory	block:

·		Heap	start	address
·		Number	of	extant	blocks
·		Address	of	first	block
·		Length	of	first	block
·		Address	of	second	block
·		Length	of	second	block
·		...

The	blocks	need	not	be	listed	in	any	particular	order.

If	the	heap	is	not	active,	the	'MAll'	chunk	can	contain	0,0	or	it	may	be	omitted.

1.8.4.	Associated	Story	File

The	contents	of	the	game-file	identifier	('IFhd'	chunk)	are	simply	the	first	128	bytes	of	memory.	This	is	within	ROM
(since	RAMSTART	is	at	least	256),	so	it	does	not	vary	during	play.	It	includes	the	story	file	length	and	checksum,	as	well
as	any	compiler-specific	information	that	may	be	stored	immediately	after	the	header.

1.8.5.	State	Not	Saved

Some	aspects	of	Glulx	execution	are	not	part	of	the	save	process,	and	therefore	are	not	changed	during	a	restart,	restore,
or	restoreundo	operation.	The	program	is	responsible	for	checking	these	values	after	a	restore	to	see	if	they	have	(from
the	program's	point	of	view)	changed	unexpectedly.

Examples	of	information	which	is	not	saved:

·		Glk	library	state.	This	includes	Glk	opaque	objects	(windows,	filerefs,	streams).	It	also	includes	I/O	state	such	as	the
current	output	stream,	contents	of	windows,	and	cursor	positions.	Accounting	for	Glk	object	changes	after
restore/restoreundo	is	tricky,	but	absolutely	necessary.

·		The	protected-memory	range	(position,	length,	and	whether	it	exists	at	all).	Note	that	the	 contents	of	the	range	(if	it
exists)	are	not	treated	specially	during	saving,	and	are	therefore	saved	normally.

http://ifarchive.org/if-archive/infocom/interpreters/specification/savefile_14.txt


·		The	random	number	generator's	internal	state.
·		The	I/O	system	mode	and	current	string-decoding	table	address.

2.	Dictionary	of	Opcodes

Opcodes	are	written	here	in	the	format:

opname	L1	L2	S1

...where	"L1"	and	"L2"	are	operands	using	the	load	addressing	modes,	and	"S1"	is	an	operand	using	the	store	addressing
modes.	(See	section	1.5,	"Instruction	Format".)

The	table	of	opcodes:

·		0x00:	nop
·		0x10:	add
·		0x11:	sub
·		0x12:	mul
·		0x13:	div
·		0x14:	mod
·		0x15:	neg
·		0x18:	bitand
·		0x19:	bitor
·		0x1A:	bitxor
·		0x1B:	bitnot
·		0x1C:	shiftl
·		0x1D:	sshiftr
·		0x1E:	ushiftr
·		0x20:	jump
·		0x22:	jz
·		0x23:	jnz
·		0x24:	jeq
·		0x25:	jne
·		0x26:	jlt
·		0x27:	jge
·		0x28:	jgt
·		0x29:	jle
·		0x2A:	jltu
·		0x2B:	jgeu
·		0x2C:	jgtu
·		0x2D:	jleu
·		0x30:	call
·		0x31:	return
·		0x32:	catch
·		0x33:	throw
·		0x34:	tailcall
·		0x40:	copy
·		0x41:	copys
·		0x42:	copyb
·		0x44:	sexs
·		0x45:	sexb
·		0x48:	aload
·		0x49:	aloads
·		0x4A:	aloadb
·		0x4B:	aloadbit
·		0x4C:	astore
·		0x4D:	astores
·		0x4E:	astoreb
·		0x4F:	astorebit
·		0x50:	stkcount
·		0x51:	stkpeek



·		0x52:	stkswap
·		0x53:	stkroll
·		0x54:	stkcopy
·		0x70:	streamchar
·		0x71:	streamnum
·		0x72:	streamstr
·		0x73:	streamunichar
·		0x100:	gestalt
·		0x101:	debugtrap
·		0x102:	getmemsize
·		0x103:	setmemsize
·		0x104:	jumpabs
·		0x110:	random
·		0x111:	setrandom
·		0x120:	quit
·		0x121:	verify
·		0x122:	restart
·		0x123:	save
·		0x124:	restore
·		0x125:	saveundo
·		0x126:	restoreundo
·		0x127:	protect
·		0x128:	hasundo
·		0x129:	discardundo
·		0x130:	glk
·		0x140:	getstringtbl
·		0x141:	setstringtbl
·		0x148:	getiosys
·		0x149:	setiosys
·		0x150:	linearsearch
·		0x151:	binarysearch
·		0x152:	linkedsearch
·		0x160:	callf
·		0x161:	callfi
·		0x162:	callfii
·		0x163:	callfiii
·		0x170:	mzero
·		0x171:	mcopy
·		0x178:	malloc
·		0x179:	mfree
·		0x180:	accelfunc
·		0x181:	accelparam
·		0x190:	numtof
·		0x191:	ftonumz
·		0x192:	ftonumn
·		0x198:	ceil
·		0x199:	floor
·		0x1A0:	fadd
·		0x1A1:	fsub
·		0x1A2:	fmul
·		0x1A3:	fdiv
·		0x1A4:	fmod
·		0x1A8:	sqrt
·		0x1A9:	exp
·		0x1AA:	log
·		0x1AB:	pow
·		0x1B0:	sin
·		0x1B1:	cos
·		0x1B2:	tan
·		0x1B3:	asin
·		0x1B4:	acos



·		0x1B5:	atan
·		0x1B6:	atan2
·		0x1C0:	jfeq
·		0x1C1:	jfne
·		0x1C2:	jflt
·		0x1C3:	jfle
·		0x1C4:	jfgt
·		0x1C5:	jfge
·		0x1C8:	jisnan
·		0x1C9:	jisinf
·		0x200:	numtod
·		0x201:	dtonumz
·		0x202:	dtonumn
·		0x203:	ftod
·		0x204:	dtof
·		0x208:	dceil
·		0x209:	dfloor
·		0x210:	dadd
·		0x211:	dsub
·		0x212:	dmul
·		0x213:	ddiv
·		0x214:	dmodr
·		0x215:	dmodq
·		0x218:	dsqrt
·		0x219:	dexp
·		0x21A:	dlog
·		0x21B:	dpow
·		0x220:	dsin
·		0x221:	dcos
·		0x222:	dtan
·		0x223:	dasin
·		0x224:	dacos
·		0x225:	datan
·		0x226:	datan2
·		0x230:	jdeq
·		0x231:	jdne
·		0x232:	jdlt
·		0x233:	jdle
·		0x234:	jdgt
·		0x235:	jdge
·		0x238:	jdisnan
·		0x239:	jdisinf

Opcodes	0x1000	to	0x10FF	are	reserved	for	use	by	FyreVM.	Opcodes	0x1100	to	0x11FF	are	reserved	for	extension	projects
by	Dannii	Willis.	Opcodes	0x1200	to	0x12FF	are	reserved	for	iOS	extension	features	by	Andrew	Plotkin.	Opcodes	0x1400
to	0x14FF	are	reserved	for	iOS	extension	features	by	ZZO38.	These	are	not	documented	here.	Opcodes	0x7900	to	0x79FF
are	(apparently)	reserved	for	experimental	features	in	the	Git	interpreter.	See	section	0.2,	"Glulx	and	Other	IF	Systems" .

2.1.	Integer	Math

add	L1	L2	S1

Add	L1	and	L2,	using	standard	32-bit	addition.	Truncate	the	result	to	32	bits	if	necessary.	Store	the	result	in	S1.

sub	L1	L2	S1

Compute	(L1	-	L2),	and	store	the	result	in	S1.

mul	L1	L2	S1

Compute	(L1	*	L2),	and	store	the	result	in	S1.	Truncate	the	result	to	32	bits	if	necessary.



div	L1	L2	S1

Compute	(L1	/	L2),	and	store	the	result	in	S1.	This	is	signed	integer	division.

mod	L1	L2	S1

Compute	(L1	%	L2),	and	store	the	result	in	S1.	This	is	the	remainder	from	signed	integer	division.

In	division	and	remainer,	signs	are	annoying.	Rounding	is	towards	zero.	The	sign	of	a	remainder	equals	the	sign	of	the
dividend.	It	is	always	true	that	(A	/	B)	*	B	+	(A	%	B)	==	A.	Some	examples	(in	decimal):

	11	/		2	=		5
-11	/		2	=	-5
	11	/	-2	=	-5
-11	/	-2	=		5
	13	%		5	=		3
-13	%		5	=	-3
	13	%	-5	=		3
-13	%	-5	=	-3

neg	L1	S1

Compute	the	negative	of	L1.

bitand	L1	L2	S1

Compute	the	bitwise	AND	of	L1	and	L2.

bitor	L1	L2	S1

Compute	the	bitwise	OR	of	L1	and	L2.

bitxor	L1	L2	S1

Compute	the	bitwise	XOR	of	L1	and	L2.

bitnot	L1	S1

Compute	the	bitwise	negation	of	L1.

shiftl	L1	L2	S1

Shift	the	bits	of	L1	to	the	left	(towards	more	significant	bits)	by	L2	places.	The	bottom	L2	bits	are	filled	in	with	zeroes.	If
L2	is	32	or	more,	the	result	is	always	zero.

ushiftr	L1	L2	S1

Shift	the	bits	of	L1	to	the	right	by	L2	places.	The	top	L2	bits	are	filled	in	with	zeroes.	If	L2	is	32	or	more,	the	result	is
always	zero.

sshiftr	L1	L2	S1

Shift	the	bits	of	L1	to	the	right	by	L2	places.	The	top	L2	bits	are	filled	in	with	copies	of	the	top	bit	of	L1.	If	L2	is	32	or
more,	the	result	is	always	zero	or	FFFFFFFF,	depending	on	the	top	bit	of	L1.

Notes	on	the	shift	opcodes:	If	L2	is	zero,	the	result	is	always	equal	to	L1.	L2	is	considered	unsigned,	so	80000000	or
greater	is	"more	than	32".

2.2.	Branches

All	branches	(except	jumpabs)	specify	their	destinations	with	an	offset	value.	The	actual	destination	address	of	the
branch	is	computed	as	(Addr	+	Offset	-	2),	where	Addr	is	the	address	of	the	instruction	after	the	branch	opcode,	and
offset	is	the	branch's	operand.	The	special	offset	values	0	and	1	are	interpreted	as	"return	0"	and	"return	1"	respectively.
[This	odd	hiccup	is	inherited	from	the	Z-machine.	Inform	uses	it	heavily	for	code	optimization.]



It	is	legal	to	branch	to	code	that	is	in	another	function.	 [Indeed,	there	is	no	well-defined	notion	of	where	a	function
ends.]	However,	this	does	not	affect	the	current	stack	frame;	that	remains	set	up	according	to	the	same	function	call	as
before	the	branch.	Similarly,	it	is	legal	to	branch	to	code	which	is	not	associated	with	any	function	–	e.g.,	code	compiled
on	the	fly	in	RAM.

jump	L1

Branch	unconditionally	to	offset	L1.

jz	L1	L2

If	L1	is	equal	to	zero,	branch	to	L2.

jnz	L1	L2

If	L1	is	not	equal	to	zero,	branch	to	L2.

jeq	L1	L2	L3

If	L1	is	equal	to	L2,	branch	to	L3.

jne	L1	L2	L3

If	L1	is	not	equal	to	L2,	branch	to	L3.

jlt	L1	L2	L3
jle	L1	L2	L3
jgt	L1	L2	L3
jge	L1	L2	L3

Branch	is	L1	is	less	than,	less	than	or	equal	to,	greater	than,	greater	than	or	equal	to	L2.	The	values	are	compared	as
signed	32-bit	values.

jltu	L1	L2	L3
jleu	L1	L2	L3
jgtu	L1	L2	L3
jgeu	L1	L2	L3

The	same,	except	that	the	values	are	compared	as	unsigned	32-bit	values.

[Since	the	address	space	can	span	the	full	32-bit	range,	it	is	wiser	to	compare	addresses	with	the	unsigned
comparison	operators.]

jumpabs	L1

Branch	unconditionally	to	address	L1.	Unlike	the	other	branch	opcodes,	this	takes	an	absolute	address,	not	an	offset.
The	special	cases	0	and	1	(for	returning)	do	not	apply;	jumpabs	0	would	branch	to	memory	address	0,	if	that	were	ever	a
good	idea,	which	it	isn't.

2.3.	Moving	Data

copy	L1	S1

Read	L1	and	store	it	at	S1,	without	change.

copys	L1	S1

Read	a	16-bit	value	from	L1	and	store	it	at	S1.

copyb	L1	S1

Read	an	8-bit	value	from	L1	and	store	it	at	S1.

Since	copys	and	copyb	can	access	chunks	smaller	than	the	usual	four	bytes,	they	require	some	comment.	When	reading



from	main	memory	or	the	call-frame	locals,	they	access	two	or	one	bytes,	instead	of	four.	However,	when	popping	or
pushing	values	on	the	stack,	these	opcodes	pull	or	push	a	full	32-bit	value.

Therefore,	if	copyb	(for	example)	copies	a	byte	from	main	memory	to	the	stack,	a	32-bit	value	will	be	pushed,	whose
value	will	be	from	0	to	255.	Sign-extension	does	not	occur.	Conversely,	if	copyb	copies	a	byte	from	the	stack	to	memory,
a	32-bit	value	is	popped,	and	the	bottom	8	bits	are	written	at	the	given	address.	The	upper	24	bits	are	lost.	Constant
values	are	truncated	as	well.

If	copys	or	copyb	are	used	with	both	L1	and	S1	in	pop/push	mode,	the	32-bit	value	is	popped,	truncated,	and	pushed.

[NOTE:	Since	a	call	frame	has	no	specified	endianness,	it	is	unwise	to	use	these	opcodes	to	pull	out	one	or	two	bytes
from	a	four-byte	local	variable.	The	result	will	be	implementation-dependent.	Therefore,	use	of	the	copyb	and
copys	opcodes	with	a	local-variable	operand	of	different	size	is	deprecated.	Since	locals	of	less	than	four	bytes	are
also	deprecated,	you	should	not	use	copyb	or	copys	with	local-variable	operands	at	all.]

sexs	L1	S1

Sign-extend	a	value,	considered	as	a	16-bit	value.	If	the	value's	8000	bit	is	set,	the	upper	16	bits	are	all	set;	otherwise,	the
upper	16	bits	are	all	cleared.

sexb	L1	S1

Sign-extend	a	value,	considered	as	an	8-bit	value.	If	the	value's	80	bit	is	set,	the	upper	24	bits	are	all	set;	otherwise,	the
upper	24	bits	are	all	cleared.

Note	that	these	opcodes,	like	most,	work	on	32-bit	values.	Although	(for	example)	sexb	is	commonly	used	in	conjunction
with	copyb,	it	does	not	share	copyb's	behavior	of	reading	a	single	byte	from	memory	or	the	locals.

Also	note	that	the	upper	bits,	16	or	24	of	them,	are	entirely	ignored	and	overwritten	with	ones	or	zeroes.

2.4.	Array	Data

astore	L1	L2	L3

Store	L3	into	the	32-bit	field	at	main	memory	address	(L1+4*L2).

aload	L1	L2	S1

Load	a	32-bit	value	from	main	memory	address	(L1+4*L2),	and	store	it	in	S1.

astores	L1	L2	L3

Store	L3	into	the	16-bit	field	at	main	memory	address	(L1+2*L2).

aloads	L1	L2	S1

Load	an	16-bit	value	from	main	memory	address	(L1+2*L2),	and	store	it	in	S1.

astoreb	L1	L2	L3

Store	L3	into	the	8-bit	field	at	main	memory	address	(L1+L2).

aloadb	L1	L2	S1

Load	an	8-bit	value	from	main	memory	address	(L1+L2),	and	store	it	in	S1.

Note	that	these	opcodes	cannot	access	call-frame	locals,	or	the	stack.	(Not	with	the	L1	and	L2	opcodes,	that	is.)	L1	and	L2
provide	a	main-memory	address.	Be	not	confused	by	the	fact	that	L1	and	L2	can	be	any	addressing	mode,	including	call-
frame	or	stack-pop	modes.	That	controls	where	the	values	come	from	which	are	used	to	compute	the	main-memory
address.

The	other	end	of	the	transfer	(S1	or	L3)	is	always	a	32-bit	value.	The	"store"	opcodes	truncate	L3	to	8	or	16	bits	if
necessary.	The	"load"	opcodes	expand	8-bit	or	16-bit	values	without	sign	extension.	(If	signed	values	are	appropriate,	you
can	follow	aloads/aloadb	with	sexs/sexb.)



L2	is	considered	signed,	so	you	can	access	addresses	before	L1	as	well	as	after.

astorebit	L1	L2	L3

Set	or	clear	a	single	bit.	This	is	bit	number	(L2	mod	8)	of	memory	address	(L1+L2/8).	It	is	cleared	if	L3	is	zero,	set	if
nonzero.

aloadbit	L1	L2	S1

Test	a	single	bit,	similarly.	If	it	is	set,	1	is	stored	at	S1;	if	clear,	0	is	stored.

For	these	two	opcodes,	bits	are	effectively	numbered	sequentially,	starting	with	the	least	significant	bit	of	address	L1.	L2
is	considered	signed,	so	this	numbering	extends	both	positively	and	negatively.	For	example:

astorebit		1002		0		1:		Set	bit	0	of	address	1002.	(The	1's	place.)
astorebit		1002		7		1:		Set	bit	7	of	address	1002.	(The	128's	place.)
astorebit		1002		8		1:		Set	bit	0	of	address	1003.
astorebit		1002		9		1:		Set	bit	1	of	address	1003.
astorebit		1002	-1		1:		Set	bit	7	of	address	1001.
astorebit		1002	-3		1:		Set	bit	5	of	address	1001.
astorebit		1002	-8		1:		Set	bit	0	of	address	1001.
astorebit		1002	-9		1:		Set	bit	7	of	address	1000.

Like	the	other	aload	and	astore	opcodes,	these	opcodes	cannot	access	call-frame	locals,	or	the	stack.

2.5.	The	Stack

stkcount	S1

Store	a	count	of	the	number	of	values	on	the	stack.	This	counts	only	values	above	the	current	call-frame.	In	other	words,
it	is	always	zero	when	a	C1	function	starts	executing,	and	(numargs+1)	when	a	C0	function	starts	executing.	It	then
increases	and	decreases	thereafter	as	values	are	pushed	and	popped;	it	is	always	the	number	of	values	that	can	be
popped	legally.	(If	S1	uses	the	stack	push	mode,	the	count	is	done	before	the	result	is	pushed.)

stkpeek	L1	S1

Peek	at	the	L1'th	value	on	the	stack,	without	actually	popping	anything.	If	L1	is	zero,	this	is	the	top	value;	if	one,	it's	the
value	below	that;	etc.	L1	must	be	less	than	the	current	stack-count.	(If	L1	or	S1	use	the	stack	pop/push	modes,	the	peek
is	counted	after	L1	is	popped,	but	before	the	result	is	pushed.)

stkswap

Swap	the	top	two	values	on	the	stack.	The	current	stack-count	must	be	at	least	two.

stkcopy	L1

Peek	at	the	top	L1	values	in	the	stack,	and	push	duplicates	onto	the	stack	in	the	same	order.	If	L1	is	zero,	nothing
happens.	L1	must	not	be	greater	than	the	current	stack-count.	(If	L1	uses	the	stack	pop	mode,	the	stkcopy	is	counted
after	L1	is	popped.)

An	example	of	stkcopy,	starting	with	six	values	on	the	stack:

5	4	3	2	1	0	<top>
stkcopy	3
5	4	3	2	1	0	2	1	0	<top>

stkroll	L1	L2

Rotate	the	top	L1	values	on	the	stack.	They	are	rotated	up	or	down	L2	places,	with	positive	values	meaning	up	and
negative	meaning	down.	The	current	stack-count	must	be	at	least	L1.	If	either	L1	or	L2	is	zero,	nothing	happens.	(If	L1
and/or	L2	use	the	stack	pop	mode,	the	roll	occurs	after	they	are	popped.)

An	example	of	two	stkrolls,	starting	with	nine	values	on	the	stack:



8	7	6	5	4	3	2	1	0	<top>
stkroll	5	1
8	7	6	5	0	4	3	2	1	<top>
stkroll	9	-3
5	0	4	3	2	1	8	7	6	<top>

Note	that	stkswap	is	equivalent	to	stkroll	2	1,	or	for	that	matter	stkroll	2	-1.	Also,	stkcopy	1	is	equivalent	to	stkpeek	0	sp.

These	opcodes	can	only	access	the	values	pushed	on	the	stack	above	the	current	call-frame.	It	is	illegal	to	stkswap,
stkpeek,	stkcopy,	or	stkroll	values	below	that	–	i.e,	the	locals	segment	or	any	previous	function	call	frames.

2.6.	Functions

call	L1	L2	S1

Call	function	whose	address	is	L1,	passing	in	L2	arguments,	and	store	the	return	result	at	S1.

The	arguments	are	taken	from	the	stack.	Before	you	execute	the	call	opcode,	you	must	push	the	arguments	on,	in
backward	order	(last	argument	pushed	first,	first	argument	topmost	on	the	stack.)	The	L2	arguments	are	removed	before
the	new	function's	call	frame	is	constructed.	(If	L1,	L2,	or	S1	use	the	stack	pop/push	modes,	the	arguments	are	taken
after	L1	or	L2	is	popped,	but	before	the	result	is	pushed.)

Recall	that	all	functions	in	Glulx	have	a	single	32-bit	return	value.	If	you	do	not	care	about	the	return	value,	you	can	use
operand	mode	0	("discard	value")	for	operand	S1.

callf	L1	S1
callfi	L1	L2	S1
callfii	L1	L2	L3	S1
callfiii	L1	L2	L3	L4	S1

Call	function	whose	address	is	L1,	passing	zero,	one,	two,	or	three	arguments.	Store	the	return	result	at	S1.

These	opcodes	behave	the	same	as	call,	except	that	the	arguments	are	given	in	the	usual	opcode	format	instead	of	being
found	on	the	stack.	(If	L2,	L3,	etc.	all	use	the	stack	pop	mode,	then	the	behavior	is	exactly	the	same	as	call.)

return	L1

Return	from	the	current	function,	with	the	given	return	value.	If	this	is	the	top-level	function,	Glulx	execution	is	over.

Note	that	all	the	branch	opcodes	(jump,	jz,	jeq,	and	so	on)	have	an	option	to	return	0	or	1	instead	of	branching.	These
behave	exactly	as	if	the	return	opcode	had	been	executed.

tailcall	L1	L2

Call	function	whose	address	is	L1,	passing	in	L2	arguments,	and	pass	the	return	result	out	to	whoever	called	the	current
function.

This	destroys	the	current	call-frame,	as	if	a	return	had	been	executed,	but	does	not	touch	the	call	stub	below	that.	It	then
immediately	calls	L1,	creating	a	new	call-frame.	The	effect	is	the	same	as	a	call	immediately	followed	by	a	return,	but
takes	less	stack	space.

It	is	legal	to	use	tailcall	from	the	top-level	function.	L1	becomes	the	top-level	function.

[This	opcode	can	be	used	to	implement	tail	recursion,	without	forcing	the	stack	to	grow	with	every	call.]

2.7.	Continuations

catch	S1	L1

Generates	a	"catch	token",	which	can	be	used	to	jump	back	to	this	execution	point	from	a	throw	opcode.	The	token	is
stored	in	S1,	and	then	execution	branches	to	offset	L1.	If	execution	is	proceeding	from	this	point	because	of	a	throw,	the
thrown	value	is	stored	instead,	and	the	branch	is	ignored.

Remember	if	the	branch	value	is	not	0	or	1,	the	branch	is	to	to	(Addr	+	L1	-	2),	where	Addr	is	the	address	of	the



instruction	after	the	catch.	If	the	value	 is	0	or	1,	the	function	returns	immediately,	invalidating	the	catch	token.

If	S1	or	L1	uses	the	stack	push/pop	modes,	note	that	the	precise	order	of	execution	is:	evaluate	L1	(popping	if
appropriate);	generate	a	call	stub	and	compute	the	token;	store	S1	(pushing	if	appropriate).

throw	L1	L2

Jump	back	to	a	previously-executed	catch	opcode,	and	store	the	value	L1.	L2	must	be	a	valid	catch	token.

The	exact	catch/throw	procedure	is	as	follows:

When	catch	is	executed,	a	four-value	call	stub	is	pushed	on	the	stack	–	result	destination,	PC,	and	FramePtr.	(See	 section
1.3.2,	"Call	Stubs".	The	PC	is	the	address	of	the	next	instruction	after	the	catch.)	The	catch	token	is	the	value	of	the	stack
pointer	after	these	are	pushed.	The	token	value	is	stored	in	the	result	destination,	and	execution	proceeds,	branching	to
L1.

When	throw	is	executed,	the	stack	is	popped	down	until	the	stack	pointer	equals	the	given	token.	Then	the	four	values
are	read	back	off	the	stack,	the	thrown	value	is	stored	in	the	destination,	and	execution	proceeds	with	the	instruction
after	the	catch.

If	the	call	stub	(or	any	part	of	it)	is	removed	from	the	stack,	the	catch	token	becomes	invalid,	and	must	not	be	used.	This
will	certainly	occur	when	you	return	from	the	function	containing	the	catch	opcode.	It	will	also	occur	if	you	pop	too
many	values	from	the	stack	after	executing	the	catch.	(You	may	wish	to	do	this	to	"cancel"	the	catch;	if	you	pop	and
discard	those	four	values,	the	token	is	invalidated,	and	it	is	as	if	you	had	never	executed	the	catch	at	all.)	The	catch	token
is	also	invalidated	if	any	part	of	the	call	stub	is	overwritten	(e.g.	with	stkswap	or	stkroll).

[Why	is	the	catch	branch	taken	at	catch	time,	and	ignored	after	a	throw?	Because	it's	easier	to	write	the	interpreter
that	way,	that's	why.	If	it	had	to	branch	after	a	throw,	either	the	call	stub	would	have	to	contain	the	branch	offset,	or
the	terp	would	have	to	re-parse	the	catch	instruction.	Both	are	ugly.]

2.8.	Memory	Map

getmemsize	S1

Store	the	current	size	of	the	memory	map.	This	is	originally	the	ENDMEM	value	from	the	header,	but	you	can	change	it
with	the	setmemsize	opcode.	(The	malloc	and	mfree	opcodes	may	also	cause	this	value	to	change;	see	section	2.9,
"Memory	Allocation	Heap".)	It	will	always	be	greater	than	or	equal	to	ENDMEM,	and	will	always	be	a	multiple	of	256.

setmemsize	L1	S1

Set	the	current	size	of	the	memory	map.	The	new	value	must	be	a	multiple	of	256,	like	all	memory	boundaries	in	Glulx.	It
must	be	greater	than	or	equal	to	ENDMEM	(the	initial	memory-size	value	which	is	stored	in	the	header.)	It	does	not	have
to	be	greater	than	the	previous	memory	size.	The	memory	size	may	grow	and	shrink	over	time,	as	long	as	it	never	gets
smaller	than	the	initial	size.

When	the	memory	size	grows,	the	new	space	is	filled	with	zeroes.	When	it	shrinks,	the	contents	of	the	old	space	are	lost.

If	the	allocation	heap	is	active	(see	 section	2.9,	"Memory	Allocation	Heap")	you	may	not	use	setmemsize	–	the	memory
map	is	under	the	control	of	the	heap	system.	If	you	free	all	heap	objects,	the	heap	will	then	no	longer	be	active,	and	you
can	use	setmemsize.

Since	memory	allocation	is	never	guaranteed,	you	must	be	prepared	for	the	possibility	that	setmemsize	will	fail.	The
opcode	stores	the	value	zero	if	it	succeeded,	and	1	if	it	failed.	If	it	failed,	the	memory	size	is	unchanged.

Some	interpreters	do	not	have	the	capability	to	resize	memory	at	all.	On	such	interpreters,	setmemsize	will	 always	fail.
You	can	check	this	in	advance	with	the	ResizeMem	gestalt	selector.

Note	that	the	memory	size	is	considered	part	of	the	game	state.	If	you	restore	a	saved	game,	the	current	memory	size	is
changed	to	the	size	that	was	in	effect	when	the	game	was	saved.	If	you	restart,	the	current	memory	size	is	reset	to	its
initial	value.

2.9.	Memory	Allocation	Heap



Manage	the	memory	allocation	heap.

Glulx	is	able	to	maintain	a	list	of	dynamically-allocated	memory	objects.	These	objects	exist	in	the	memory	map,	above
ENDMEM.	The	malloc	and	mfree	opcodes	allow	the	game	to	request	the	allocation	and	destruction	of	these	objects.

Some	interpreters	do	not	have	the	capability	to	manage	an	allocation	heap.	On	such	interpreters,	malloc	will	always	fail.
You	can	check	this	in	advance	with	the	MAlloc	gestalt	selector.

When	you	first	allocate	a	block	of	memory,	the	heap	becomes	active.	The	current	end	of	memory	–	that	is,	the	current
getmemsize	value	–	becomes	the	beginning	address	of	the	heap.	The	memory	map	is	then	extended	to	accomodate	the
memory	block.

Subsequent	memory	allocations	and	deallocations	are	done	within	the	heap.	The	interpreter	may	extend	or	reduce	the
memory	map,	as	needed,	when	allocations	and	deallocations	occur.	While	the	heap	is	active,	you	may	not	manually
resize	the	memory	map	with	setmemsize;	the	heap	system	is	responsible	for	doing	that.

When	you	free	the	last	extant	memory	block,	the	heap	becomes	inactive.	The	interpreter	will	reduce	the	memory	map
size	down	to	the	heap-start	address.	(That	is,	the	getmemsize	value	returns	to	what	it	was	before	you	allocated	the	first
block.)	Thereafter,	it	is	legal	to	call	setmemsize	again.

It	is	legitimate	to	read	or	write	any	memory	address	in	the	heap	range	(from	ENDMEM	to	the	end	of	the	memory	map).
You	are	not	restricted	to	extant	blocks.	[The	VM's	heap	state	is	not	stored	in	its	own	memory	map.	So,	unlike	the	familiar
C	heap,	you	cannot	damage	it	by	writing	outside	valid	blocks.]

The	heap	state	(whether	it	is	active,	its	starting	address,	and	the	addresses	and	sizes	of	all	extant	blocks)	 is	part	of	the
saved	game	state.

These	opcodes	were	added	in	Glulx	version	3.1.

malloc	L1	S1

Allocate	a	memory	block	of	L1	bytes.	(L1	must	be	positive.)	This	stores	the	address	of	the	new	memory	block,	which	will
be	within	the	heap	and	will	not	overlap	any	other	extant	block.	The	interpreter	may	have	to	extend	the	memory	map
(see	section	2.8,	"Memory	Map")	to	accomodate	the	new	block.

This	operation	does	not	change	the	contents	of	the	memory	block	(or,	indeed,	the	contents	of	the	memory	map	at	all).	If
you	want	the	memory	block	to	be	initialized,	you	must	do	it	yourself.

If	the	allocation	fails,	this	stores	zero.

mfree	L1

Free	the	memory	block	at	address	L1.	This	must	be	the	address	of	an	extant	block	–	that	is,	a	value	returned	by	malloc
and	not	previously	freed.

This	operation	does	not	change	the	contents	of	the	memory	block	(or,	indeed,	the	contents	of	the	memory	map	at	all).

2.10.	Game	State

quit

Shut	down	the	terp	and	exit.	This	is	equivalent	to	returning	from	the	top-level	function,	or	for	that	matter	calling
glk_exit().

Note	that	(in	the	Glk	I/O	system)	Glk	is	responsible	for	any	"hit	any	key	to	exit"	prompt.	It	is	safe	for	you	to	print	a	bunch
of	final	text	and	then	exit	immediately.

restart

Restore	the	VM	to	its	initial	state	(memory,	stack,	and	registers).	Note	that	the	current	memory	size	is	reset,	as	well	as
the	contents	of	memory.

save	L1	S1



Save	the	VM	state	to	the	output	stream	L1.	It	is	your	responsibility	to	prompt	the	player	for	a	filespec,	open	the	stream,
and	then	destroy	these	objects	afterward.	S1	is	set	to	zero	if	the	operation	succeeded,	1	if	it	failed,	and	-1	if	the	VM	has
just	been	restored	and	is	continuing	from	this	instruction.

(In	the	Glk	I/O	system,	L1	should	be	the	ID	of	a	writable	Glk	stream.	In	other	I/O	systems,	it	will	mean	something
different.	In	the	"filter"	and	"null"	I/O	systems,	the	save	opcode	is	illegal,	as	the	interpreter	has	nowhere	to	write	the
state.)

restore	L1	S1

Restore	the	VM	state	from	the	input	stream	L1.	S1	is	set	to	1	if	the	operation	failed.	If	it	succeeded,	of	course,	this
instruction	never	returns	a	value.

saveundo	S1

Save	the	VM	state	in	a	temporary	location.	The	terp	will	choose	a	location	appropriate	for	rapid	access,	so	this	may	be
called	once	per	turn.	S1	is	set	to	zero	if	the	operation	succeeded,	1	if	it	failed,	and	-1	if	the	VM	state	has	just	been
restored.

restoreundo	S1

Restore	the	VM	state	from	temporary	storage.	S1	is	set	to	1	if	the	operation	failed.

hasundo	S1

Test	whether	a	VM	state	is	available	in	temporary	storage.	S1	is	set	to	0	if	a	state	is	available,	1	if	not.	If	this	returns	0,
then	restoreundo	is	expected	to	succeed.

discardundo

Discard	a	VM	state	(the	most	recently	saved)	from	temporary	storage.	If	none	is	available,	this	does	nothing.

The	hasundo	and	discardundo	opcodes	were	added	in	Glulx	3.1.3.	You	can	check	for	their	existence	with	the	ExtUndo
gestalt	selector.

protect	L1	L2

Protect	a	range	of	memory	from	restart,	restore,	restoreundo.	The	protected	range	starts	at	address	L1	and	has	a	length
of	L2	bytes.	This	memory	is	silently	unaffected	by	the	state-restoring	operations.	(However,	if	the	result-storage	S1	is
directed	into	the	protected	range,	that	is	not	blocked.)

When	the	VM	starts	up,	there	is	no	protection	range.	Only	one	range	can	be	protected	at	a	time.	Calling	protect	cancels
any	previous	range.	To	turn	off	protection,	call	protect	with	L1	and	L2	set	to	zero.

It	is	important	to	note	that	the	protection	range	itself	(its	existence,	location,	and	length)	is	 not	part	of	the	saved	game
state!	If	you	save	a	game,	move	the	protection	range	to	a	new	location,	and	then	restore	that	game,	it	is	the	new	range
that	will	be	protected,	and	the	range	will	remain	there	afterwards.

verify	S1

Perform	sanity	checks	on	the	game	file,	using	its	length	and	checksum.	S1	is	set	to	zero	if	everything	looks	good,	1	if
there	seems	to	be	a	problem.	(Many	interpreters	will	do	this	automatically,	before	the	game	starts	executing.	This
opcode	is	provided	mostly	for	slower	interpreters,	where	auto-verify	might	cause	an	unacceptable	delay.)

Notes:

All	the	save	and	restore	opcodes	can	generate	diagnostic	information	on	the	current	output	stream.

A	terp	may	support	several	levels	of	temporary	storage.	You	should	not	make	any	assumptions	about	how	many	times
restoreundo	can	be	called.	If	the	player	so	requests,	you	should	keep	calling	it	until	the	hasundo	opcode	indicates	that	no
more	are	available.	(Or,	if	the	interpreter	does	not	support	hasundo,	keep	calling	until	restoreundo	fails.)

Glk	opaque	objects	(windows,	streams,	filespecs)	are	not	part	of	the	saved	game	state.	Therefore,	when	you	restore	a
game,	all	the	object	IDs	you	have	in	Glulx	memory	must	be	considered	invalid.	(This	includes	both	IDs	in	main	memory



and	on	the	stack.)	You	must	use	the	Glk	iteration	calls	to	go	through	all	the	opaque	objects	in	existence,	and	recognize
them	by	their	rocks.

The	same	applies	after	restoreundo,	to	a	lesser	extent.	Since	saveundo/restoreundo	only	operate	within	a	single	play
session,	you	can	rely	on	the	IDs	of	objects	created	before	the	first	saveundo.	However,	if	you	have	created	any	objects
since	then,	you	must	iterate	and	recognize	them.

The	restart	opcode	is	a	similar	case.	You	must	do	an	iteration	as	soon	as	your	program	starts,	to	find	objects	created	in
an	earlier	incarnation.	Alternatively,	you	can	be	careful	to	close	all	opaque	objects	before	invoking	restart.

[Another	approach	is	to	use	the	protect	opcode,	to	preserve	global	variables	containing	your	object	IDs.	This	will
work	within	a	play	session	–	that	is,	with	saveundo,	restoreundo,	and	restart.	You	must	still	deal	with	save	and
restore.]

2.11.	Output

getiosys	S1	S2

Return	the	current	I/O	system	mode	and	rock.

Due	to	a	long-standing	bug	in	the	reference	interpreter,	the	two	store	operands	must	be	of	the	same	general	type:	both
main-memory/global	stores,	both	local	variable	stores,	or	both	stack	pushes.

setiosys	L1	L2

Set	the	I/O	system	mode	and	rock.	If	the	system	L1	is	not	supported	by	the	interpreter,	it	will	default	to	the	"null"	system
(0).

These	systems	are	currently	defined:

·		0:	The	null	system.	All	output	is	discarded.	(When	the	Glulx	machine	starts	up,	this	is	the	current	system.)
·		1:	The	filtering	system.	The	rock	(L2)	value	should	be	the	address	of	a	Glulx	function.	This	function	will	be	called	for

every	character	output	(with	the	character	value	as	its	sole	argument).	The	function's	return	value	is	ignored.
·		2:	The	Glk	system.	All	output	will	be	handled	through	Glk	function	calls,	sent	to	the	current	Glk	stream.
·		20:	The	FyreVM	channel	system.	See	 section	0.2,	"Glulx	and	Other	IF	Systems" .

The	values	140-14F	are	reserved	for	extension	projects	by	ZZO38.	These	are	not	documented	here.

It	is	important	to	recall	that	when	Glulx	starts	up,	the	Glk	I/O	system	is	 not	set.	And	when	Glk	starts	up,	there	are	no
windows	and	no	current	output	stream.	To	make	anything	appear	to	the	user,	you	must	first	do	three	things:	select	the
Glk	I/O	system,	open	a	Glk	window,	and	set	its	stream	as	the	current	one.	(It	is	illegal	in	Glk	to	send	output	when	there	is
no	stream	set.	Sending	output	to	Glulx's	"null"	I/O	system	is	legal,	but	pointless.)

streamchar	L1

Send	L1	to	the	current	stream.	This	sends	a	single	character;	the	value	L1	is	truncated	to	eight	bits.

streamunichar	L1

Send	L1	to	the	current	stream.	This	sends	a	single	(32-bit)	character.

This	opcode	was	added	in	Glulx	version	3.0.

streamnum	L1

Send	L1	to	the	current	stream,	represented	as	a	signed	decimal	number	in	ASCII.

streamstr	L1

Send	a	string	object	to	the	current	stream.	L1	must	be	the	address	of	a	Glulx	string	object	(type	E0,	E1,	or	E2.)	The	string
is	decoded	and	sent	as	a	sequence	of	characters.

When	the	Glk	I/O	system	is	set,	these	opcodes	are	implemented	using	the	Glk	API.	You	can	bypass	them	and	directly	call
glk_put_char(),	glk_put_buffer(),	and	so	on.	Remember,	however,	that	glk_put_string()	only	accepts	unencoded	string



(E0)	objects;	glk_put_string_uni()	only	accepts	unencoded	Unicode	(E2)	objects.

Note	that	it	is	illegal	to	decode	a	compressed	string	(E1)	if	there	is	no	string-decoding	table	set.

getstringtbl	S1

Return	the	address	the	terp	is	currently	using	for	its	string-decoding	table.	If	there	is	no	table,	set,	this	returns	zero.

setstringtbl	L1

Change	the	address	the	terp	is	using	for	its	string-decoding	table.	This	may	be	zero,	indicating	that	there	is	no	table	(in
which	case	it	is	illegal	to	print	any	compressed	string).	Otherwise,	it	must	be	the	address	of	a	valid	string-decoding	table.

[This	does	not	change	the	value	in	the	header	field	at	address	001C.	The	header	is	in	ROM,	and	never	changes.	To
determine	the	current	table	address,	use	the	getstringtbl	opcode.]

A	string-decoding	table	may	be	in	RAM	or	ROM,	but	there	may	be	speed	penalties	if	it	is	in	RAM.	See	 section	1.6.1.4,	"The
String-Decoding	Table".

2.12.	Floating-Point	Math

Recall	that	floating-point	values	are	encoded	as	single-precision	(32-bit)	IEEE-754	values	(see	 section	1.7,	"Floating-Point
Numbers").	The	interpreter	must	convert	values	(from	memory	or	the	stack)	before	performing	a	floating-point
operation,	and	unconvert	them	afterwards.

[In	other	words,	passing	a	float	value	to	an	integer	arithmetic	opcode	will	operate	on	the	IEEE-754-encoded	32-bit
value.	Such	an	operation	would	be	deterministic,	albeit	mathematically	meaningless.	The	same	is	true	for	passing
an	integer	to	a	float	opcode.]

Float	operations	which	produce	inexact	results	are	not	guaranteed	to	be	identical	on	every	platform.	That	is,	1.0	plus	1.0
will	always	be	2.0,	because	that	can	be	represented	exactly.	But	acos(-1.0),	which	should	be	pi,	may	generate	either
40490FDA	(3.14159250...)	or	40490FDB	(3.14159274...).	Both	are	approximations	of	the	correct	result,	but	which	one	you
get	depends	on	the	interpreter's	underlying	math	library.

If	any	argument	to	a	float	operation	is	a	NaN	("not	a	number")	value,	the	result	will	be	a	NaN	value.	(Except	for	the	pow
opcode,	which	has	some	special	cases.)

[Speaking	of	special	cases:	I	have	tried	to	describe	all	the	important	ones	for	these	operations.	However,	you	should
also	consult	the	Glulxercise	unit	test	(available	on	the	Glulx	web	site).	Consider	it	definitive	if	this	document	is
unclear.]

These	opcodes	were	added	in	Glulx	version	3.1.2.	However,	not	all	interpreters	may	support	them.	You	can	test	for	their
availability	with	the	Float	gestalt	selector.

numtof	L1	S1

Convert	an	integer	value	to	the	closest	equivalent	float.	(That	is,	if	L1	is	1,	then	3F800000	–	the	float	encoding	of	1.0	–	will
be	stored	in	S1.)	Integer	zero	is	converted	to	(positive)	float	zero.

If	the	value	is	less	than	-1000000	or	greater	than	1000000	(hex),	the	conversion	may	not	be	exact.	(More	specifically,	it
may	round	to	a	nearby	multiple	of	a	power	of	2.)

ftonumz	L1	S1

Convert	a	float	value	to	an	integer,	rounding	towards	zero	(i.e.,	truncating	the	fractional	part).	If	the	value	is	outside	the
32-bit	integer	range,	or	is	NaN	or	infinity,	the	result	will	be	7FFFFFFF	(for	positive	values)	or	80000000	(for	negative
values).

ftonumn	L1	S1

Convert	a	float	value	to	an	integer,	rounding	towards	the	nearest	integer.	Again,	overflows	become	7FFFFFFF	or
80000000.

fadd	L1	L2	S1



fsub	L1	L2	S1
fmul	L1	L2	S1
fdiv	L1	L2	S1

Perform	floating-point	arithmetic.	Overflows	produce	infinite	values	(with	the	appropriate	sign);	underflows	produce
zero	values	(ditto).	0/0	is	NaN.	Inf/Inf,	or	Inf-Inf,	is	NaN.	Any	finite	number	added	to	infinity	is	infinity.	Any	nonzero
number	divided	by	an	infinity,	or	multiplied	by	zero,	is	a	zero.	Any	nonzero	number	multiplied	by	an	infinity,	or	divided
by	zero,	is	an	infinity.

fmod	L1	L2	S1	S2

Perform	a	floating-point	modulo	operation.	S1	is	the	remainder	(or	modulus);	S2	is	the	quotient.

S2	is	L1/L2,	rounded	(towards	zero)	to	an	integral	value.	S1	is	L1-(S2*L2).	Note	that	S1	always	has	the	same	sign	as	L1;	S2
has	the	appropriate	sign	for	L1/L2.

If	L2	is	1,	this	gives	you	the	fractional	and	integer	parts	of	L1.	If	L1	is	zero,	both	results	are	zero.	If	L2	is	infinite,	S1	is	L1
and	S2	is	zero.	If	L1	is	infinite	or	L2	is	zero,	both	results	are	NaN.

ceil	L1	S1
floor	L1	S1

Round	L1	up	(towards	+Inf)	or	down	(towards	−Inf)	to	the	nearest	integral	value.	(The	result	is	still	in	float	format,
however.)	These	opcodes	are	idempotent.

The	result	keeps	the	sign	of	L1;	in	particular,	floor(0.5)	is	0	and	ceil(−0.5)	is	−0.	Rounding	−0	up	or	down	gives	−0.
Rounding	an	infinite	value	gives	infinity.

sqrt	L1	S1
exp	L1	S1
log	L1	S1

Compute	the	square	root	of	L1,	e^L1,	and	log	of	L1	(base	e).

sqrt(−0)	is	−0.	sqrt	returns	NaN	for	all	other	negative	values.	exp(+0)	and	exp(−0)	are	1;	exp(−Inf)	is	+0.	log(+0)	and	log(−0)
are	−Inf.	log	returns	NaN	for	all	other	negative	values.

pow	L1	L2	S1

Compute	L1	raised	to	the	L2	power.

The	special	cases	are	breathtaking.	The	following	is	quoted	(almost)	directly	from	the	libc	man	page:

·		pow(±0,	y)	returns	±Inf	for	y	an	odd	integer	<	0.
·		pow(±0,	y)	returns	+Inf	for	y	<	0	and	not	an	odd	integer.
·		pow(±0,	y)	returns	±0	for	y	an	odd	integer	>	0.
·		pow(±0,	y)	returns	+0	for	y	>	0	and	not	an	odd	integer.
·		pow(−1,	±Inf)	returns	1.
·		pow(1,	y)	returns	1	for	any	y,	even	a	NaN.
·		pow(x,	±0)	returns	1	for	any	x,	even	a	NaN.
·		pow(x,	y)	returns	a	NaN	for	finite	x	<	0	and	finite	non-integer	y.
·		pow(x,	−Inf)	returns	+Inf	for	|x|	<	1.
·		pow(x,	−Inf)	returns	+0	for	|x|	>	1.
·		pow(x,	+Inf)	returns	+0	for	|x|	<	1.
·		pow(x,	+Inf)	returns	+Inf	for	|x|	>	1.
·		pow(−Inf,	y)	returns	−0	for	y	an	odd	integer	<	0.
·		pow(−Inf,	y)	returns	+0	for	y	<	0	and	not	an	odd	integer.
·		pow(−Inf,	y)	returns	-Inf	for	y	an	odd	integer	>	0.
·		pow(−Inf,	y)	returns	+Inf	for	y	>	0	and	not	an	odd	integer.
·		pow(+Inf,	y)	returns	+0	for	y	<	0.
·		pow(+Inf,	y)	returns	+Inf	for	y	>	0.
·		pow(x,	y)	returns	NaN	if	x	is	negative	and	y	is	not	an	integer	(both	finite).

sin	L1	S1



cos	L1	S1
tan	L1	S1
acos	L1	S1
asin	L1	S1
atan	L1	S1

Compute	the	standard	trigonometric	functions.

sin	and	cos	return	values	in	the	range	−1	to	1.	sin,	cos,	and	tan	of	infinity	are	NaN.

asin	is	always	in	the	range	−pi/2	to	pi/2;	acos	is	always	in	the	range	0	to	pi.	asin	and	acos	of	values	greater	than	1,	or	less
than	−1,	are	NaN.	atan(±Inf)	is	±pi/2.

atan2	L1	L2	S1

Computes	the	arctangent	of	L1/L2,	using	the	signs	of	both	arguments	to	determine	the	quadrant	of	the	return	value.
(Note	that	the	Y	argument	is	first	and	the	X	argument	is	second.)

Again	with	the	special	cases:

·		atan2(±0,	−0)	returns	±pi.
·		atan2(±0,	+0)	returns	±0.
·		atan2(±0,	x)	returns	±pi	for	x	<	0.
·		atan2(±0,	x)	returns	±0	for	x	>	0.
·		atan2(y,	±0)	returns	+pi/2	for	y	>	0.
·		atan2(y,	±0)	returns	−pi/2	for	y	<	0.
·		atan2(±y,	−Inf)	returns	±pi	for	finite	y.
·		atan2(±y,	+Inf)	returns	±0	for	finite	y.
·		atan2(±Inf,	x)	returns	±pi/2	for	finite	x.
·		atan2(±Inf,	−Inf)	returns	±3*pi/4.
·		atan2(±Inf,	+Inf)	returns	±pi/4.

2.13.	Double-Precision	Math

Most	of	these	opcodes	exactly	parallel	the	floating-point	opcodes	described	in	 section	2.12,	"Floating-Point	Math".

However,	recall	that	each	double-precision	value	is	encoded	as	 two	32-bit	Glulx	words	(see	 section	1.7.1,	"Double-
Precision	Floating-Point	Numbers").	Every	opcode	in	this	section	has	two	operands	for	every	double-precision
argument.

By	convention,	read	operands	always	read	the	high	word	first.	Write	operands	always	write	the	 low	word	first.	So,	for
example,	the	addition	opcode	dadd	is	used	like	this:

dadd	Xhi	Xlo	Yhi	Ylo	RESlo	REShi;

This	adds	the	values	Xhi:Xlo	+	Yhi:Ylo,	storing	the	result	in	REShi:RESlo.	Note	that	the	result	operands	are	reversed.

[This	is	extremely	confusing	but	it	allows	us	to	read	and	write	double-pairs	to	and	from	the	stack	consistently.	If	you
perform	dadd	Xhi	Xlo	Yhi	Ylo	sp	sp;	then	the	result	value	is	ordered	on	the	stack	for	the	next	operation.]

[The	assembly	macros	@dload	and	@dstore	make	it	easier	to	load/store	a	double-pair	to	and	from	memory.	See
section	2.21,	"Assembly	Language".]

These	opcodes	were	added	in	Glulx	version	3.1.3.	However,	not	all	interpreters	may	support	them.	You	can	test	for	their
availability	with	the	Double	gestalt	selector.

numtod	L1	S1	S2

Convert	an	integer	value	to	the	closest	equivalent	double.	Integer	zero	is	converted	to	(positive)	double	zero.	The	result
is	stored	as	S2:S1.

dtonumz	L1	L2	S1

Convert	a	double	value	L1:L2	to	an	integer,	rounding	towards	zero	(i.e.,	truncating	the	fractional	part).	If	the	value	is



outside	the	32-bit	integer	range,	or	is	NaN	or	infinity,	the	result	will	be	7FFFFFFF	(for	positive	values)	or	80000000	(for
negative	values).

dtonumn	L1	L2	S1

Convert	a	double	value	L1:L2	to	an	integer,	rounding	towards	the	nearest	integer.	Again,	overflows	become	7FFFFFFF
or	80000000.

ftod	L1	S1	S2

Convert	a	float	value	L1	to	a	double	value,	stored	as	S2:S1.

dtof	L1	L2	S1

Convert	a	double	value	L1:L2	to	a	float	value,	stored	as	S1.

dadd	L1	L2	L3	L4	S1	S2
dsub	L1	L2	L3	L4	S1	S2
dmul	L1	L2	L3	L4	S1	S2
ddiv	L1	L2	L3	L4	S1	S2

Perform	arithmetic	on	doubles.	The	arguments	are	L1:L2	and	L3:L4;	the	result	is	stored	as	S2:S1.

dmodr	L1	L2	L3	L4	S1	S2
dmodq	L1	L2	L3	L4	S1	S2

Perform	a	floating-point	modulo	operation.	dmodr	gives	the	remainder	(or	modulus)	of	L1:L2	and	L3:L4;	dmodq	gives
the	quotient.	The	result	is	stored	as	S2:S1.

Unlike	fmod,	there	are	separate	opcodes	to	compute	the	remainder	and	modulus.

[The	I6	compiler	is	not	set	up	to	support	an	opcode	with	four	store	operands.	It	was	easier	to	split	up	dmodr	and
dmodq	than	to	change	this.]

dceil	L1	L2	S1	S2
dfloor	L1	L2	S1	S2

Round	L1:L2	up	(towards	+Inf)	or	down	(towards	−Inf)	to	the	nearest	integral	value.	(The	result	is	still	in	double	format,
however.)	The	result	is	stored	as	S2:S1.	These	opcodes	are	idempotent.

dsqrt	L1	L2	S1	S2
dexp	L1	L2	S1	S2
dlog	L1	L2	S1	S2

Compute	the	square	root	of	L1:L2,	e^L1:L2,	and	log	of	L1:L2	(base	e).

dpow	L1	L2	L3	L4	S1	S2

Compute	L1:L2	raised	to	the	L3:L4	power.	The	result	is	stored	as	S2:S1.

dsin	L1	L2	S1	S2
dcos	L1	L2	S1	S2
dtan	L1	L2	S1	S2
dacos	L1	L2	S1	S2
dasin	L1	L2	S1	S2
datan	L1	L2	S1	S2

Compute	the	standard	trigonometric	functions.

datan2	L1	L2	L3	L4	S1	S2

Computes	the	arctangent	of	L1:L2/L3:L4,	using	the	signs	of	both	arguments	to	determine	the	quadrant	of	the	return
value.	(Note	that	the	Y	argument	is	first	and	the	X	argument	is	second.)	The	result	is	stored	as	S2:S1.



2.14.	Floating-Point	Comparisons

All	these	branch	opcodes	specify	their	destinations	with	an	offset	value.	See	 section	2.2,	"Branches".

Most	of	these	opcodes	never	branch	if	any	argument	is	NaN.	(Exceptions	are	jisnan	and	jfne.)	In	particular,	NaN	is
neither	less	than,	greater	than,	nor	equal	to	NaN.

These	opcodes	were	added	in	Glulx	version	3.1.2.	However,	not	all	interpreters	may	support	them.	You	can	test	for	their
availability	with	the	Float	gestalt	selector.

jisnan	L1	L2

Branch	to	L2	if	the	floating-point	value	L1	is	a	NaN	value.	(See	 section	1.7,	"Floating-Point	Numbers".)

jisinf	L1	L2

Branch	to	L2	if	the	floating-point	value	L1	is	an	infinity	(7F800000	or	FF800000).

jfeq	L1	L2	L3	L4

Branch	to	L4	if	the	difference	between	L1	and	L2	is	less	than	or	equal	to	(plus	or	minus)	L3.	The	sign	of	L3	is	ignored.

If	any	of	the	arguments	are	NaN,	this	will	not	branch.	If	L3	is	infinite,	this	will	always	branch	–	unless	L1	and	L2	are
opposite	infinities.	(Opposite	infinities	are	never	equal,	regardless	of	L3.	Infinities	of	the	same	sign	are	always	equal.)

If	L3	is	(plus	or	minus)	zero,	this	tests	for	exact	equality.	Note	that	+0	is	considered	exactly	equal	to	−0.

jfne	L1	L2	L3	L4

The	reverse	of	jfeq.	This	will	branch	if	any	of	the	arguments	is	NaN.

jflt	L1	L2	L3
jfle	L1	L2	L3
jfgt	L1	L2	L3
jfge	L1	L2	L3

Branch	to	L3	if	L1	is	less	than	(less	than	or	equal	to,	greater	than,	greater	than	or	equal	to)	L2.

+0	and	−0	behave	identically	in	comparisons.	In	particular,	+0	is	considered	equal	to	−0,	not	greater	than	−0.

2.15.	Double-Precision	Comparisons

These	opcodes	are	parallel	to	those	in	 section	2.14,	"Floating-Point	Comparisons",	except	that	each	double	value	is	a	pair
of	operands.

These	opcodes	were	added	in	Glulx	version	3.1.3.	However,	not	all	interpreters	may	support	them.	You	can	test	for	their
availability	with	the	Double	gestalt	selector.

jdisnan	L1	L2	L3

Branch	to	L3	if	the	double	value	L1:L2	is	a	NaN	value.

jdisinf	L1	L2	L3

Branch	to	L3	if	the	double	value	L1:L2	is	an	infinity.

jdeq	L1	L2	L3	L4	L5	L6	L7

Branch	to	L7	if	the	difference	between	L1:L2	and	L3:L4	is	less	than	or	equal	to	(plus	or	minus)	L5:L6.	The	sign	of	L5:L6	is
ignored.

jdne	L1	L2	L3	L4	L5	L6	L7

The	reverse	of	jdeq.



jdlt	L1	L2	L3	L4	L5
jdle	L1	L2	L3	L4	L5
jdgt	L1	L2	L3	L4	L5
jdge	L1	L2	L3	L4	L5

Branch	to	L5	if	L1:L2	is	less	than	(less	than	or	equal	to,	greater	than,	greater	than	or	equal	to)	L3:L4.

2.16.	Random	Number	Generator

random	L1	S1

Return	a	random	number	in	the	range	0	to	(L1-1);	or,	if	L1	is	negative,	the	range	(L1+1)	to	0.	If	L1	is	zero,	return	a
random	number	in	the	full	32-bit	integer	range.	(Remember	that	this	may	be	either	positive	or	negative.)

setrandom	L1

Seed	the	random-number	generator	with	the	value	L1.	If	L1	is	zero,	subsequent	random	numbers	will	be	as	genuinely
unpredictable	as	the	terp	can	provide;	it	may	include	timing	data	or	other	random	sources	in	its	generation.	If	L1	is
nonzero,	subsequent	random	numbers	will	follow	a	deterministic	sequence,	always	the	same	for	a	given	nonzero	seed.

The	terp	starts	up	in	the	"nondeterministic"	mode	(as	if	setrandom	0	had	been	invoked.)

The	random-number	generator	is	not	part	of	the	saved-game	state.

2.17.	Block	Copy	and	Clear

mzero	L1	L2

Write	L1	zero	bytes,	starting	at	address	L2.	This	is	exactly	equivalent	to:

for	(ix=0:	ix<L1:	ix++)	L2->ix	=	0;

mcopy	L1	L2	L3

Copy	L1	bytes	from	address	L2	to	address	L3.	It	is	safe	to	copy	a	block	to	an	overlapping	block.	This	is	exactly	equivalent
to:

if	(L3	<	L2)
		for	(ix=0:	ix<L1:	ix++)	L3->ix	=	L2->ix;
else
		for	(ix=L1-1:	ix>=0:	ix--)	L3->ix	=	L2->ix;

For	both	of	these	opcodes,	L1	may	be	zero,	in	which	case	the	opcodes	do	nothing.	The	operands	are	considered
unsigned,	so	a	"negative"	L1	is	a	very	large	number	(and	almost	certainly	a	mistake).

These	opcodes	were	added	in	Glulx	version	3.1.	You	can	test	for	their	availability	with	the	MemCopy	gestalt	selector.

2.18.	Searching

Perform	a	generic	linear,	binary,	or	linked-list	search.

[These	are	outrageously	CISC	for	an	hardware	CPU,	but	easy	enough	to	add	to	a	software	terp;	and	taking	advantage
of	them	can	speed	up	a	program	considerably.	Advent,	under	the	Inform	library,	runs	15-20%	faster	when	property-
table	lookup	is	handled	with	a	binary-search	opcode	instead	of	Inform	code.	A	similar	change	in	the	dictionary
lookup	trims	another	percent	or	so.]

All	three	of	these	opcodes	operate	on	a	collection	of	fixed-size	data	structures	in	memory.	A	key,	which	is	a	fixed-length
array	of	bytes,	is	found	at	a	known	position	within	each	data	structure.	The	opcodes	search	the	collection	of	structures,
and	find	one	whose	key	matches	a	given	key.

The	following	flags	may	be	set	in	the	Options	argument.	Note	that	not	all	flags	can	be	used	with	all	types	of	searches.

·		KeyIndirect	(0x01):	This	flag	indicates	that	the	Key	argument	passed	to	the	opcode	is	the	address	of	the	actual	key.	If
this	flag	is	not	used,	the	Key	argument	is	the	key	value	itself.	(In	this	case,	the	KeySize	must	be	1,	2,	or	4	–	the	native



sizes	of	Glulx	values.	If	the	KeySize	is	1	or	2,	the	lower	bytes	of	the	Key	are	used	and	the	upper	bytes	ignored.)
·		ZeroKeyTerminates	(0x02):	This	flag	indicates	that	the	search	should	stop	(and	return	failure)	if	it	encounters	a

structure	whose	key	is	all	zeroes.	If	the	searched-for	key	happens	to	also	be	all	zeroes,	the	success	takes	precedence.
·		ReturnIndex	(0x04):	This	flag	indicates	that	search	should	return	the	array	index	of	the	structure	that	it	finds,	or	-1

(0xFFFFFFFF)	for	failure.	If	this	flag	is	not	used,	the	search	returns	the	address	of	the	structure	that	it	finds,	or	0	for
failure.

linearsearch	L1	L2	L3	L4	L5	L6	L7	S1

·		L1:	Key
·		L2:	KeySize
·		L3:	Start
·		L4:	StructSize
·		L5:	NumStructs
·		L6:	KeyOffset
·		L7:	Options
·		S1:	Result

An	array	of	data	structures	is	stored	in	memory,	beginning	at	Start,	each	structure	being	StructSize	bytes.	Within	each
struct,	there	is	a	key	value	KeySize	bytes	long,	starting	at	position	KeyOffset	(from	the	start	of	the	structure.)	Search
through	these	in	order.	If	one	is	found	whose	key	matches,	return	it.	If	NumStructs	are	searched	with	no	result,	the
search	fails.

NumStructs	may	be	-1	(0xFFFFFFFF)	to	indicate	no	upper	limit	to	the	number	of	structures	to	search.	The	search	will
continue	until	a	match	is	found,	or	(if	ZeroKeyTerminates	is	used)	a	zero	key.

The	KeyIndirect,	ZeroKeyTerminates,	and	ReturnIndex	options	may	be	used.

binarysearch	L1	L2	L3	L4	L5	L6	L7	S1

·		L1:	Key
·		L2:	KeySize
·		L3:	Start
·		L4:	StructSize
·		L5:	NumStructs
·		L6:	KeyOffset
·		L7:	Options
·		S1:	Result

An	array	of	data	structures	is	in	memory,	as	above.	However,	the	structs	must	be	stored	in	forward	order	of	their	keys
(taking	each	key	to	be	a	big-endian	unsigned	integer.)	There	can	be	no	duplicate	keys.	NumStructs	must	indicate	the
exact	length	of	the	array;	it	cannot	be	-1.

The	KeyIndirect	and	ReturnIndex	options	may	be	used.

linkedsearch	L1	L2	L3	L4	L5	L6	S1

·		L1:	Key
·		L2:	KeySize
·		L3:	Start
·		L4:	KeyOffset
·		L5:	NextOffset
·		L6:	Options
·		S1:	Result

The	structures	need	not	be	consecutive;	they	may	be	anywhere	in	memory,	in	any	order.	They	are	linked	by	a	four-byte
address	field,	which	is	found	in	each	struct	at	position	NextOffset.	If	this	field	contains	zero,	it	indicates	the	end	of	the
linked	list.

The	KeyIndirect	and	ZeroKeyTerminates	options	may	be	used.

2.19.	Accelerated	Functions



To	improve	performance,	Glulx	incorporates	some	complex	functions	which	replicate	code	in	the	Inform	library.	 [Yes,
this	is	even	more	outrageously	CISC	than	the	search	opcodes.]

Rather	than	allocating	a	new	opcode	for	each	function,	Glulx	offers	an	expandable	function	acceleration	system.	Two
functions	are	defined	below.	The	game	may	request	that	a	particular	address	–	the	address	of	a	VM	function	–	be
replaced	by	one	of	the	available	functions.	This	does	not	alter	memory;	but	any	subsequent	call	to	that	address	might
invoke	the	terp's	built-in	version	of	the	function,	instead	of	the	VM	code	at	that	address.

(A	"call"	includes	any	function	invocation	of	that	address,	including	the	call,	tailcall,	and	callf	(etc.)	opcodes.	It	also
includes	invocation	via	the	filter	I/O	system,	and	function	nodes	in	the	string-decoding	table.	Branches	to	the	address
are	not	affected;	neither	are	returns,	throws,	or	other	ways	the	terp	might	reach	it.)

A	terp	may	implement	any,	all,	or	none	of	the	functions	on	the	list.	If	the	game	requests	an	accelerated	function	which
is	not	available,	the	request	is	ignored.	Therefore,	the	game	must	be	sure	that	it	only	requests	an	accelerated	function	at
an	address	which	actually	matches	the	requested	function.

Some	functions	may	require	values	(or	addresses)	which	are	compiled	into	the	game	file,	or	otherwise	stored	by	the
game.	The	interpreter	maintains	a	table	of	these	parameters	–	whichever	ones	are	needed	by	the	functions	it	supports.
All	parameters	in	the	table	are	initially	zero;	the	game	may	supply	values	as	needed.

The	set	of	active	acceleration	requests,	and	the	values	in	the	parameter	table,	are	not	part	of	the	saved-game	state.

The	behavior	of	an	accelerated	function	is	somewhat	limited.	The	state	of	the	VM	during	the	function	is	not	defined,	so
there	is	no	way	for	an	accelerated	function	to	call	a	normal	VM	function.	The	normal	printing	mechanism	(as	in	the
streamchar	opcode,	etc)	is	not	available,	since	that	can	call	VM	functions	via	the	filter	I/O	system.	[Not	that	I/O	functions
are	likely	to	be	worth	accelerating	in	any	case.]

Errors	encountered	during	an	accelerated	function	will	be	displayed	to	the	user	by	some	convenient	means.	For
example,	an	interpreter	may	send	the	error	message	to	the	current	Glk	output	stream.	However,	the	terp	may	have	no
recourse	but	to	invoke	a	fatal	error.	(For	example,	if	there	is	no	current	Glk	output	stream.)	Therefore,	accelerated
functions	are	defined	with	no	error	conditions	that	must	be	recoverable.

[In	practice	it	is	safer	to	silently	discard	errors	if	the	current	I/O	system	is	not	2	(Glk).]

These	opcodes	were	added	in	Glulx	version	3.1.1.	Since	a	3.1.1	game	file	ought	to	run	in	a	3.1.0	interpreter,	you	 may	not
use	these	opcodes	without	first	testing	the	Acceleration	gestalt	selector.	If	it	returns	zero,	your	game	is	running	on	a
3.1.0	terp	(or	earlier),	and	it	is	your	responsibility	to	avoid	executing	these	opcodes.	[Of	course,	the	way	the	opcodes	are
defined	should	ensure	that	skipping	them	does	not	affect	the	behavior	of	your	game.]

accelfunc	L1	L2

Request	that	the	VM	function	with	address	L2	be	replaced	by	the	accelerated	function	whose	number	is	L1.	If	L1	is	zero,
the	acceleration	for	address	L2	is	cancelled.

If	the	terp	does	not	offer	accelerated	function	L1,	this	does	nothing.

If	you	request	acceleration	at	an	address	which	is	already	accelerated,	the	previous	request	is	cancelled	before	the	new
one	is	considered.	If	you	cancel	at	an	unaccelerated	address,	nothing	happens.

A	given	accelerated	function	L1	may	replace	several	VM	functions	(at	different	addresses)	at	the	same	time.	Each
request	is	considered	separate,	and	must	be	cancelled	separately.

accelparam	L1	L2

Store	the	value	L2	in	the	parameter	table	at	position	L1.	If	the	terp	does	not	know	about	parameter	L1,	this	does	nothing.

The	list	of	accelerated	functions	is	as	follows.	They	are	defined	as	if	in	Inform	6	source	code.	(Consider	Inform's	"strict"
mode	to	be	off,	for	the	purposes	of	operators	such	as	.&	and	-->.)	ERROR()	represents	code	which	displays	an	error,	as
described	above.

(Functions	may	be	added	to	this	list	in	future	versions	of	the	Glulx	spec.	Existing	functions	will	not	be	removed	or
altered.	Functions	and	parameters	numbered	0x1100	to	0x11FF	are	reserved	for	extension	projects	by	Dannii	Willis.
Functions	and	parameters	numbered	0x1400	to	0x14FF	are	reserved	for	extension	projects	by	ZZO38.	These	are	not
documented	here.	See	section	0.2,	"Glulx	and	Other	IF	Systems" .)



Note	that	functions	2	through	7	are	deprecated;	they	behave	badly	if	the	Inform	6	NUM_ATTR_BYTES	option	(parameter
7)	is	changed	from	its	default	value	(7).	They	will	not	be	removed,	but	new	games	should	use	functions	8	through	13
instead.

Constant	PARAM_0_classes_table	=	#classes_table;
Constant	PARAM_1_indiv_prop_start	=	INDIV_PROP_START;
Constant	PARAM_2_class_metaclass	=	Class;
Constant	PARAM_3_object_metaclass	=	Object;
Constant	PARAM_4_routine_metaclass	=	Routine;
Constant	PARAM_5_string_metaclass	=	String;
Constant	PARAM_6_self	=	#globals_array	+	WORDSIZE	*	#g$self;
Constant	PARAM_7_num_attr_bytes	=	NUM_ATTR_BYTES;
Constant	PARAM_8_cpv__start	=	#cpv__start;

!	OBJ_IN_CLASS:	utility	function;	implements	"obj	in	Class".
[	OBJ_IN_CLASS	obj;
		return	((obj	+	13	+	PARAM_7_num_attr_bytes)-->0
				==	PARAM_2_class_metaclass);
];

!	FUNC_1_Z__Region:	implements	Z__Region()	as	of	Inform	6.31.
[	FUNC_1_Z__Region	addr
		tb	endmem;	!	locals
		if	(addr<36)	rfalse;
		@getmemsize	endmem;
		@jgeu	addr	endmem?outrange;		!	branch	if	addr	>=	endmem	(unsigned)
		tb=addr->0;
		if	(tb	>=	$E0)	return	3;
		if	(tb	>=	$C0)	return	2;
		if	(tb	>=	$70	&&	tb	<=	$7F	&&	addr	>=	(0-->2))	return	1;
.outrange;
		rfalse;
];

!	FUNC_2_CP__Tab:	implements	CP__Tab()	as	of	Inform	6.31.
[	FUNC_2_CP__Tab	obj	id
		otab	max	res;	!	locals
		if	(FUNC_1_Z__Region(obj)~=1)	{
				ERROR("[**	Programming	error:	tried	to	find	the	~.~	of	(something)	**]");
				rfalse;
		}
		otab	=	obj-->4;
		if	(otab	==	0)	return	0;
		max	=	otab-->0;
		otab	=	otab+4;
		@binarysearch	id	2	otab	10	max	0	0	res;
		return	res;
];

!	FUNC_3_RA__Pr:	implements	RA__Pr()	as	of	Inform	6.31.
[	FUNC_3_RA__Pr	obj	id
		cla	prop	ix;	!	locals
		if	(id	&	$FFFF0000)	{
				cla	=	PARAM_0_classes_table-->(id	&	$FFFF);
				if	(~~FUNC_5_OC__Cl(obj,	cla))	return	0;
				@ushiftr	id	16	id;
				obj	=	cla;
		}
		prop	=	FUNC_2_CP__Tab(obj,	id);
		if	(prop==0)	return	0;
		if	(OBJ_IN_CLASS(obj)	&&	cla	==	0)	{
				if	(id	<	PARAM_1_indiv_prop_start
								||	id	>=	PARAM_1_indiv_prop_start+8)
						return	0;
		}
		if	(PARAM_6_self-->0	~=	obj)	{
				@aloadbit	prop	72	ix;



				if	(ix)	return	0;
		}
		return	prop-->1;
];

!	FUNC_4_RL__Pr:	implements	RL__Pr()	as	of	Inform	6.31.
[	FUNC_4_RL__Pr	obj	id
		cla	prop	ix;	!	locals
		if	(id	&	$FFFF0000)	{
				cla	=	PARAM_0_classes_table-->(id	&	$FFFF);
				if	(~~FUNC_5_OC__Cl(obj,	cla))	return	0;
				@ushiftr	id	16	id;
				obj	=	cla;
		}
		prop	=	FUNC_2_CP__Tab(obj,	id);
		if	(prop==0)	return	0;
		if	(OBJ_IN_CLASS(obj)	&&	cla	==	0)	{
				if	(id	<	PARAM_1_indiv_prop_start
								||	id	>=	PARAM_1_indiv_prop_start+8)
						return	0;
		}
		if	(PARAM_6_self-->0	~=	obj)	{
				@aloadbit	prop	72	ix;
				if	(ix)	return	0;
		}
		@aloads	prop	1	ix;
		return	WORDSIZE	*	ix;
];

!	FUNC_5_OC__Cl:	implements	OC__Cl()	as	of	Inform	6.31.
[	FUNC_5_OC__Cl	obj	cla
		zr	jx	inlist	inlistlen;	!	locals
		zr	=	FUNC_1_Z__Region(obj);
		if	(zr	==	3)	{
				if	(cla	==	PARAM_5_string_metaclass)	rtrue;
				rfalse;
		}
		if	(zr	==	2)	{
				if	(cla	==	PARAM_4_routine_metaclass)	rtrue;
				rfalse;
		}
		if	(zr	~=	1)	rfalse;
		if	(cla	==	PARAM_2_class_metaclass)	{
				if	(OBJ_IN_CLASS(obj)
						||	obj	==	PARAM_2_class_metaclass	or	PARAM_5_string_metaclass
									or	PARAM_4_routine_metaclass	or	PARAM_3_object_metaclass)
						rtrue;
				rfalse;
		}
		if	(cla	==	PARAM_3_object_metaclass)	{
				if	(OBJ_IN_CLASS(obj)
						||	obj	==	PARAM_2_class_metaclass	or	PARAM_5_string_metaclass
									or	PARAM_4_routine_metaclass	or	PARAM_3_object_metaclass)
						rfalse;
				rtrue;
		}
		if	(cla	==	PARAM_5_string_metaclass	or	PARAM_4_routine_metaclass)
				rfalse;
		if	(~~OBJ_IN_CLASS(cla))	{
				ERROR("[**	Programming	error:	tried	to	apply	'ofclass'	with	non-class	**]");
				rfalse;
		}
		inlist	=	FUNC_3_RA__Pr(obj,	2);
		if	(inlist	==	0)	rfalse;
		inlistlen	=	FUNC_4_RL__Pr(obj,	2)	/	WORDSIZE;
		for	(jx=0	:	jx<inlistlen	:	jx++)	{
				if	(inlist-->jx	==	cla)	rtrue;
		}



		rfalse;
];

!	FUNC_6_RV__Pr:	implements	RV__Pr()	as	of	Inform	6.31.
[	FUNC_6_RV__Pr	obj	id
		addr;	!	locals
		addr	=	FUNC_3_RA__Pr(obj,	id);
		if	(addr	==	0)	{
				if	(id	>	0	&&	id	<	PARAM_1_indiv_prop_start)	{
						return	PARAM_8_cpv__start-->id;
				}
				ERROR("[**	Programming	error:	tried	to	read	(something)	**]");
				return	0;
		}
		return	addr-->0;
];

!	FUNC_7_OP__Pr:	implements	OP__Pr()	as	of	Inform	6.31.
[	FUNC_7_OP__Pr	obj	id
		zr;	!	locals
		zr	=	FUNC_1_Z__Region(obj);
		if	(zr	==	3)	{
				if	(id	==	print	or	print_to_array)	rtrue;
				rfalse;
		}
		if	(zr	==	2)	{
				if	(id	==	call)	rtrue;
				rfalse;
		}
		if	(zr	~=	1)	rfalse;
		if	(id	>=	PARAM_1_indiv_prop_start
						&&	id	<	PARAM_1_indiv_prop_start+8)	{
				if	(OBJ_IN_CLASS(obj))	rtrue;
		}
		if	(FUNC_3_RA__Pr(obj,	id)	~=	0)
				rtrue;
		rfalse;
];

!	FUNC_8_CP__Tab:	implements	CP__Tab()	as	of	Inform	6.33.
[	FUNC_8_CP__Tab	obj	id
		otab	max	res;	!	locals
		if	(FUNC_1_Z__Region(obj)~=1)	{
				ERROR("[**	Programming	error:	tried	to	find	the	~.~	of	(something)	**]");
				rfalse;
		}
		otab	=	obj-->(3+(PARAM_7_num_attr_bytes/4));
		if	(otab	==	0)	return	0;
		max	=	otab-->0;
		otab	=	otab+4;
		@binarysearch	id	2	otab	10	max	0	0	res;
		return	res;
];

!	FUNC_9_RA__Pr:	implements	RA__Pr()	as	of	Inform	6.33.
[	FUNC_9_RA__Pr	obj	id
		cla	prop	ix;	!	locals
		if	(id	&	$FFFF0000)	{
				cla	=	PARAM_0_classes_table-->(id	&	$FFFF);
				if	(~~FUNC_11_OC__Cl(obj,	cla))	return	0;
				@ushiftr	id	16	id;
				obj	=	cla;
		}
		prop	=	FUNC_8_CP__Tab(obj,	id);
		if	(prop==0)	return	0;
		if	(OBJ_IN_CLASS(obj)	&&	cla	==	0)	{
				if	(id	<	PARAM_1_indiv_prop_start
								||	id	>=	PARAM_1_indiv_prop_start+8)



						return	0;
		}
		if	(PARAM_6_self-->0	~=	obj)	{
				@aloadbit	prop	72	ix;
				if	(ix)	return	0;
		}
		return	prop-->1;
];

!	FUNC_10_RL__Pr:	implements	RL__Pr()	as	of	Inform	6.33.
[	FUNC_10_RL__Pr	obj	id
		cla	prop	ix;	!	locals
		if	(id	&	$FFFF0000)	{
				cla	=	PARAM_0_classes_table-->(id	&	$FFFF);
				if	(~~FUNC_11_OC__Cl(obj,	cla))	return	0;
				@ushiftr	id	16	id;
				obj	=	cla;
		}
		prop	=	FUNC_8_CP__Tab(obj,	id);
		if	(prop==0)	return	0;
		if	(OBJ_IN_CLASS(obj)	&&	cla	==	0)	{
				if	(id	<	PARAM_1_indiv_prop_start
								||	id	>=	PARAM_1_indiv_prop_start+8)
						return	0;
		}
		if	(PARAM_6_self-->0	~=	obj)	{
				@aloadbit	prop	72	ix;
				if	(ix)	return	0;
		}
		@aloads	prop	1	ix;
		return	WORDSIZE	*	ix;
];

!	FUNC_11_OC__Cl:	implements	OC__Cl()	as	of	Inform	6.33.
[	FUNC_11_OC__Cl	obj	cla
		zr	jx	inlist	inlistlen;	!	locals
		zr	=	FUNC_1_Z__Region(obj);
		if	(zr	==	3)	{
				if	(cla	==	PARAM_5_string_metaclass)	rtrue;
				rfalse;
		}
		if	(zr	==	2)	{
				if	(cla	==	PARAM_4_routine_metaclass)	rtrue;
				rfalse;
		}
		if	(zr	~=	1)	rfalse;
		if	(cla	==	PARAM_2_class_metaclass)	{
				if	(OBJ_IN_CLASS(obj)
						||	obj	==	PARAM_2_class_metaclass	or	PARAM_5_string_metaclass
									or	PARAM_4_routine_metaclass	or	PARAM_3_object_metaclass)
						rtrue;
				rfalse;
		}
		if	(cla	==	PARAM_3_object_metaclass)	{
				if	(OBJ_IN_CLASS(obj)
						||	obj	==	PARAM_2_class_metaclass	or	PARAM_5_string_metaclass
									or	PARAM_4_routine_metaclass	or	PARAM_3_object_metaclass)
						rfalse;
				rtrue;
		}
		if	(cla	==	PARAM_5_string_metaclass	or	PARAM_4_routine_metaclass)
				rfalse;
		if	(~~OBJ_IN_CLASS(cla))	{
				ERROR("[**	Programming	error:	tried	to	apply	'ofclass'	with	non-class	**]");
				rfalse;
		}
		inlist	=	FUNC_9_RA__Pr(obj,	2);
		if	(inlist	==	0)	rfalse;



		inlistlen	=	FUNC_10_RL__Pr(obj,	2)	/	WORDSIZE;
		for	(jx=0	:	jx<inlistlen	:	jx++)	{
				if	(inlist-->jx	==	cla)	rtrue;
		}
		rfalse;
];

!	FUNC_12_RV__Pr:	implements	RV__Pr()	as	of	Inform	6.33.
[	FUNC_12_RV__Pr	obj	id
		addr;	!	locals
		addr	=	FUNC_9_RA__Pr(obj,	id);
		if	(addr	==	0)	{
				if	(id	>	0	&&	id	<	PARAM_1_indiv_prop_start)	{
						return	PARAM_8_cpv__start-->id;
				}
				ERROR("[**	Programming	error:	tried	to	read	(something)	**]");
				return	0;
		}
		return	addr-->0;
];

!	FUNC_13_OP__Pr:	implements	OP__Pr()	as	of	Inform	6.33.
[	FUNC_13_OP__Pr	obj	id
		zr;	!	locals
		zr	=	FUNC_1_Z__Region(obj);
		if	(zr	==	3)	{
				if	(id	==	print	or	print_to_array)	rtrue;
				rfalse;
		}
		if	(zr	==	2)	{
				if	(id	==	call)	rtrue;
				rfalse;
		}
		if	(zr	~=	1)	rfalse;
		if	(id	>=	PARAM_1_indiv_prop_start
						&&	id	<	PARAM_1_indiv_prop_start+8)	{
				if	(OBJ_IN_CLASS(obj))	rtrue;
		}
		if	(FUNC_9_RA__Pr(obj,	id)	~=	0)
				rtrue;
		rfalse;
];

2.20.	Miscellaneous

nop

Do	nothing.

gestalt	L1	L2	S1

Test	the	Gestalt	selector	number	L1,	with	optional	extra	argument	L2,	and	store	the	result	in	S1.	If	the	selector	is	not
known,	store	zero.

The	reasoning	behind	the	design	of	a	Gestalt	system	is,	I	hope,	too	obvious	to	explain.

[This	list	of	Gestalt	selectors	has	nothing	to	do	with	the	list	in	the	Glk	library.]

The	list	of	L1	selectors	is	as	follows.	Note	that	if	a	selector	does	not	mention	L2,	you	should	always	set	that	argument	to
zero.	[This	will	ensure	future	compatibility,	in	case	the	selector	definition	is	extended.]

·		GlulxVersion	(0):	Returns	the	version	of	the	Glulx	spec	which	the	interpreter	implements.	The	upper	16	bits	of	the
value	contain	a	major	version	number;	the	next	8	bits	contain	a	minor	version	number;	and	the	lowest	8	bits	contain
an	even	more	minor	version	number,	if	any.	This	specification	is	version	3.1.3,	so	a	terp	implementing	it	would
return	0x00030103.	I	will	try	to	maintain	the	convention	that	minor	version	changes	are	backwards	compatible,	and
subminor	version	changes	are	backwards	and	forwards	compatible.



·		TerpVersion	(1):	Returns	the	version	of	the	interpreter.	The	format	is	the	same	as	the	GlulxVersion.	 [Each
interpreter	has	its	own	version	numbering	system,	defined	by	its	author,	so	this	information	is	not	terribly	useful.
But	it	is	convenient	for	the	game	to	be	able	to	display	it,	in	case	the	player	is	capturing	version	information	for	a	bug
report.]

·		ResizeMem	(2):	Returns	1	if	the	terp	has	the	potential	to	resize	the	memory	map,	with	the	setmemsize	opcode.	If	this
returns	0,	setmemsize	will	always	fail.	[But	remember	that	setmemsize	might	fail	in	any	case.]

·		Undo	(3):	Returns	1	if	the	terp	has	the	potential	to	undo.	If	this	returns	0,	saveundo,	restoreundo,	and	hasundo	will
always	fail.

·		IOSystem	(4):	Returns	1	if	the	terp	supports	the	I/O	system	given	in	L2.	(The	constants	are	the	same	as	for	the
setiosys	opcode:	0	for	null,	1	for	filter,	2	for	Glk,	20	for	FyreVM.	0	and	1	will	always	succeed.)

·		Unicode	(5):	Returns	1	if	the	terp	supports	Unicode	operations.	These	are:	the	E2	Unicode	string	type;	the	04	and	05
string	node	types	(in	compressed	strings);	the	streamunichar	opcode;	the	type-14	call	stub.	If	the	Unicode	selector
returns	0,	encountering	any	of	these	will	cause	a	fatal	interpreter	error.

·		MemCopy	(6):	Returns	1	if	the	interpreter	supports	the	mzero	and	mcopy	opcodes.	(This	must	true	for	any	terp
supporting	Glulx	3.1.)

·		MAlloc	(7):	Returns	1	if	the	interpreter	supports	the	malloc	and	mfree	opcodes.	(If	this	is	true,	MemCopy	and
ResizeMem	must	also	both	be	true,	so	there	is	no	need	to	check	all	three.)

·		MAllocHeap	(8):	Returns	the	start	address	of	the	heap.	This	is	the	value	that	getmemsize	had	when	the	first	memory
block	was	allocated.	If	the	heap	is	not	active	(no	blocks	are	extant),	this	returns	zero.

·		Acceleration	(9):	Returns	1	if	the	interpreter	supports	the	accelfunc	and	accelparam	opcodes.	(This	must	true	for	any
terp	supporting	Glulx	3.1.1.)

·		AccelFunc	(10):	Returns	1	if	the	terp	implements	the	accelerated	function	given	in	L2.
·		Float	(11):	Returns	1	if	the	interpreter	supports	the	floating-point	arithmetic	opcodes.
·		ExtUndo	(12):	Returns	1	if	the	interpreter	supports	the	hasundo	and	discardundo	opcodes.
·		Double	(13):	Returns	1	if	the	interpreter	supports	the	double-precision	floating-point	arithmetic	opcodes.

Selectors	0x1000	to	0x10FF	are	reserved	for	use	by	FyreVM.	Selectors	0x1100	to	0x11FF	are	reserved	for	extension
projects	by	Dannii	Willis.	Selectors	0x1200	to	0x12FF	are	reserved	for	iOS	extension	features	by	Andrew	Plotkin.
Selectors	0x1400	to	0x14FF	are	reserved	for	iOS	extension	features	by	ZZO38.	These	are	not	documented	here.	See	section
0.2,	"Glulx	and	Other	IF	Systems".

[The	Unicode	selector	is	slightly	redundant.	Since	the	Unicode	operations	exist	in	Glulx	spec	3.0	and	higher,	you	can
get	the	same	information	by	testing	GlulxVersion	against	0x00030000.	However,	it's	clearer	to	have	a	separate
selector.	Similarly,	the	MemCopy	selector	is	true	exactly	when	GlulxVersion	is	0x00030100	or	higher.]

[The	Unicode	selector	does	not	guarantee	that	your	Glk	library	supports	Unicode.	For	that,	you	must	check	the	Glk
gestalt	selector	gestalt_Unicode.	If	the	Glk	library	is	non-Unicode,	the	Glulx	Unicode	operations	are	still	legal;
however,	Unicode	characters	(beyond	FF)	will	be	printed	as	3F	("?").]

debugtrap	L1

Interrupt	execution	to	do	something	interpreter-specific	with	L1.	If	the	interpreter	has	nothing	in	mind,	it	should	halt
with	a	visible	error	message.

[This	is	intended	for	use	by	debugging	interpreters.	The	program	might	be	sprinkled	with	consistency	tests,	set	to
call	debugtrap	if	an	assertion	failed.	The	interpreter	could	then	be	set	to	halt,	display	a	warning,	or	ignore	the
debugtrap.]

This	should	not	be	used	as	an	arbitrary	interpreter	trap-door	in	a	finished	(non-debugging)	program.	If	you	really	want
to	add	interpreter	functionality	to	your	program,	and	you're	willing	to	support	an	alternate	interpreter	to	run	it,	you
should	add	an	entirely	new	opcode.	There	are	still	2^28	of	them	available,	give	or	take.

glk	L1	L2	S1

Call	the	Glk	API	function	whose	identifier	is	L1,	passing	in	L2	arguments.	The	return	value	is	stored	at	S1.	(If	the	Glk
function	has	no	return	value,	zero	is	stored	at	S1.)

The	arguments	are	passed	on	the	stack,	last	argument	pushed	first,	just	as	for	the	call	opcode.

Arguments	should	be	represented	in	the	obvious	way.	Integers	and	character	are	passed	as	integers.	Glk	opaque	objects
are	passed	as	integer	identifiers,	with	zero	representing	NULL.	Strings	and	Unicode	strings	are	passed	as	the	addresses
of	Glulx	string	objects	(see	section	1.6.1,	"Strings".)	References	to	values	are	passed	by	their	addresses.	Arrays	are	passed
by	their	addresses;	note	that	an	array	argument,	unlike	a	string	argument,	is	always	followed	by	an	array	length



argument.

Reference	arguments	require	more	explanation.	A	reference	to	an	integer	or	opaque	object	is	the	address	of	a	32-bit
value	(which,	being	in	main	memory,	does	not	have	to	be	aligned,	but	must	be	big-endian.)	Alternatively,	the	value	-1
(FFFFFFFF)	may	be	passed;	this	is	a	special	case,	which	means	that	the	value	is	read	from	or	written	to	the	stack.
Arguments	are	always	evaluated	left	to	right,	which	means	that	input	arguments	are	popped	from	the	stack	first-
topmost,	but	output	arguments	are	pushed	on	last-topmost.

A	reference	to	a	Glk	structure	is	the	address	of	an	array	of	32-bit	values	in	main	memory.	Again,	-1	means	that	all	the
values	are	written	to	the	stack.	Also	again,	an	input	structure	is	popped	off	first-topmost,	and	an	output	structure	is
pushed	on	last-topmost.

All	stack	input	references	(-1	addresses)	are	popped	after	the	Glk	argument	list	is	popped.	 [This	should	be	obvious,	since
the	-1	occurs	in	the	Glk	argument	list.]	Stack	output	references	are	pushed	after	the	Glk	call,	but	before	the	S1	result
value	is	stored.

[The	difference	between	strings	and	character	arrays	is	somewhat	confusing.	These	are	the	same	type	in	the	C	Glk
API,	but	different	in	Glulx.	Calls	such	as	glk_put_buffer()	and	glk_request_line_event()	take	character	arrays;	this	is
the	address	of	a	byte	array	containing	character	values,	followed	by	an	integer	array	length.	The	byte	array	itself	has
neither	a	length	field	or	a	terminator.	In	contrast,	calls	such	as	glk_put_string()	and	glk_fileref_create_by_name()
take	string	arguments,	which	must	be	unencoded	Glulx	string	objects.	An	unencoded	Glulx	string	object	is	nearly	a
byte	array,	but	not	quite;	it	has	an	E0	byte	at	the	beginning	and	a	zero	byte	at	the	end.	Similarly,	calls	such	as
glk_put_string_uni()	take	unencoded	(E2)	Unicode	objects.]

[Previous	versions	of	this	spec	said	that	string	arguments	could	be	unencoded	 or	encoded	string	objects.	This	use	of
encoded	strings	has	never	been	supported,	however,	and	it	is	withdrawn	from	the	spec.]

[The	convention	that	"address"	-1	refers	to	the	stack	is	a	feature	of	the	Glk	invocation	mechanism;	it	applies	only	to
Glk	arguments.	It	is	not	part	of	the	general	Glulx	definition.	When	instruction	operands	are	being	evaluated,	-1	has
no	special	meaning.	This	includes	the	L1,	L2,	and	S1	arguments	of	the	glk	opcode.]

2.21.	Assembly	Language

Glulx	uses	the	same	assembly	format	which	Inform	offers	for	the	Z-machine:

@opcode	[	op	op	op	...	]	;

Where	each	"op"	is	a	constant,	the	name	of	a	local	variable,	the	name	of	a	global	variable,	or	"sp"	(for	stack	push/pop
modes).

[It	would	be	convenient	to	have	a	one-line	form	for	the	opcodes	that	pass	arguments	on	the	stack	(call	and	glk).]

To	make	life	a	little	easier	for	cross-platform	I6	code,	Inform	accepts	the	macro	"@push	val"	for	"@copy	val	sp",	and
"@pull	val"	for	"@copy	sp	val".	(These	parallel	"@push"	and	"@pull"	opcodes	which	are	native	to	the	Z-machine.)

Two	more	macros	support	double-precision	math	operations.	"@dload	addr	xlo	xhi"	reads	a	double	from	an	array	in
memory	and	stores	it	into	two	variables	or	stack	pushes.	(The	high	word	comes	from	addr-->0;	the	low	word	from
addr-->1.)	"@dstore	addr	xhi	xlo"	does	the	reverse;	it	takes	two	variables	or	stack	pulls	and	stores	the	double	in	 addr--
>0	(high)	and	addr-->1	(low).	The	operand	order	is	consistent	with	the	double	opcodes.

Supporting	these	macro	forms	is	recommended	for	any	Glulx	Inform	assembler.

You	can	synthesize	opcodes	that	the	compiler	does	not	know	about:

@"FlagsCount:Code"	[	op	op	op	...	]	;

The	optional	Flags	can	include	"S"	if	the	last	operand	is	a	store;	"SS"	if	the	last	two	operands	are	stores;	"B"	for	branch
format;	"R"	if	execution	never	continues	after	the	opcode.	The	Count	is	the	number	of	arguments	(0	to	9).	The	Code	is	a
decimal	integer	representing	the	opcode	number.	So	these	two	lines	generate	the	same	code:

@add	x	1	y;
@"S3:16"	x	1	y;

...because	the	@add	opcode	has	number	16	(decimal),	and	has	format	"@add	L1	L2	S1".
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