Gap Penalties

CMSC 423

General Gap Penalties

AAAGAATTCA Vs AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT” into the first string could change
it into the second.

* Now), the cost of a run of k gaps is gap X k

* |t might be more realistic to support general gap penalty, so that
the score of a run of k gaps is gap(k) < gap * k.

 Then, the optimization will prefer to group gaps together.

General Gap Penalties

AAAGAATTCA AAAGAATTCA

A-A-A-T-CA Vs AAA----TCA

Previous DP no longer works with general gap penalties because

the score of the last character depends on details of the previous
alignment:

AAAGAAC AAAGAATC

AAA-——|- vs. AAA-———|-

Instead, we need to “know” how long a final run of gaps is in
order to give a score to the last subproblem.

Three Matrices

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[I..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in X.

Y[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in Y.

M[Z o 17] - 1]
M]i, j] = match(i, j) + max { X[i — 1,5 — 1]
Y[Z o 17.7 o 1]

(M[i,j — k] — gap(k) for 1<k < j

o
03] = s T gap(h) for 1< k<)

M[i — k,§] — gap(k) for 1<k <i

Yii. 1 — max
i, J] = max X[i — k, j] — gap(k) for 1 <k <i

\

The M Matrix

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[I..i] and y[1..j] ending with a character-
character match or mismatch.

X[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in X.

Y[i,j] = score of best alignment of x[I..i] and y[I..j] ending with a space in Y.

By definition, alignhment
ends in a match.

\[M[Z_17]_1]
Mz, 7| = match(z, j) + max Xt—1,7 —1]
Yi—1,5—1

A D

Any kind of alignment is
allowed before the match.

The X (and Y) matrices

ik k decides how long to
Ge—— — make the gap.

.ACGT G We have to make the

whole gap at once in order
l to know how to score it.

Mli,j — k] —gap(k) for 1<k <
Yi,j — k] —gap(k) for1<k<j

The X (and Y) matrices

i k N k decides how long to
X G — make the gap.
4 ,Pj‘CGT G We have to make the
=) whole gap at once in order
l to know how to score it.
Mii, 53 — k| — k) forl1 <k<jy
X = { M6 H =0l o 155
Yii,j — k] —gap(k) forl1 <k <
T This case is automatically
ik handled. bk
X G——— - b
X I . o e
-CGTG
! ik , y .(I;(CGT G
J- J

Running Time for Gap Penalties

M[Z_ 17] o 1]
M|, j] = match(i, j) + max < X[i — 1,7 — 1]
Y[Z_ 17] o 1]

Mli,j — k] —gap(k) for1<k<j

i —
0] maX{Y[i,]’ — k] —gap(k) for1<k<j

Mli —k,j] — gap(k) for1 <k <1
X[t —k,j] —gap(k) forl <k <

Yi, j] = max {

Final score is max {M[n,m], X[n,m],Y[n,m]}.

How do you do the traceback!?

Runtime:
e Assume |X]| = |Y| = n for simplicity: 3n? subproblems
e 2n? subproblems take O(n) time to solve (because we have to try all k)

= O(n’) total time

Affine Gap Penalties

O(n?) for general gap penalties is usually too slow...

We can still encourage spaces to group together using a special case
of general penalties called daffine gap penalties:

gap_start = the cost of starting a gap

gap_extend = the cost of extending a gap by one more space

Same idea of using 3 matrices, but now we don’t need to search over
all gap lengths, we just have to know whether we are starting a new
gap or not.

Affine Gap Penalties

M[Z o 17.] - 1]
M|i, 7| = match(i,j) + max ¢ X[i — 1,5 — 1]
Y[Z_ 17] o 1]

_/
3 .
gap_start + gap_extend + M i, j — 1]

Xli, j] = max < gap_extend + X[i, j — 1]
gap_start + gap_extend + Y'|i, j — 1]

gap_start + gap_extend + M i — 1, j]

Y|i, 7] = max { gap_start + gap_extend + X[i — 1, j]
gap_extend + Y|t — 1, j]

Affine Gap as Finite State Machine

match(i,j?

gs+ge
gs+ge f
match(i,))
match(i,j)
[\ <«— 95+0¢€

ge e
gs+ge 4 g

%

Affine Base Cases (Global)

M[O, i] =“score of best alignment between 0 characters of x and i
characters of y that ends in a match” = -00 because no such alignment

can exist.

X[0, i] =“score of best alignment between 0 characters of x and i
characters of y that ends in a gap in x” = gap start + i X gap extend

because this alignment looks like:

YYYYYYYYY

X[i, 0] ="score of best alignment between i characters of x and 0

characters of y that ends in a gap in X" = -00

XX XXXXXXX=-

< not allowed

MIi, 0] = MJO0,i] and Y[O, i] and Y[i,0] are computed using the same logic

as X[i,0] and X][0,i]

Affine Gap Runtime

 3mn subproblems
e Each one takes constant time
 Total runtime O(mn):

* back to the run time of the basic running time.

Traceback

* Arrows now can point between matrices.
* The possible arrows are given, as usual, by the recurrence.

e E.g.What arrows are possible leaving a cell in the M matrix?

Why do you "need” 3 matrices?

e Alternative WRONG algorithm:

M[1i][]J] = max(
M[1i-1][J-1] + cost(x[1i], y[1]),
M[i-1][]J] + gap + (gap start if Arrow[i-1][]] != €),
M[J][1i-1] + gap + (gap start if Arrow[i][]-1] != ¢)

WRONG Intuition: we only need to know whether we are starting a gap or
extending a gap.

The arrows coming out of each subproblem tell us how the best alighment ends, so we
can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends
in a gap.

PROBLEM:The best alignment for strings
——e x[I..i] and y[I..j] doesn’t have to be used

The best alignment in the best alignment between

up to this cell ends
in a mateh. x[l..i+1] and y[I..j+1]

Why 3 Matrices: Example

match = 10, mismatch = -2, gap = -/, gap_start = -15

CART OPT (4, 3) = optimal score=30-15-/=28
CA-T / -
CARTS WRONG(5,3) = 30 - 15-7- 15 -7=-14
CA-T-

CARTS OPT(5,3)=20-2-15- 14 =-]1
CAT--

this is why we need to keep the X and Y matrices around.
they tell us the score of ending with a gap in one of the sequences.

Side Note: Lower Bounds

Suppose the lengths of x and y are n.

Clearly, need at least)(n) time to find their global alignment
(have to read the strings!)

The DP algorithms show global alignment can be done in O(n?) time.

Side Note: Lower Bounds

Suppose the lengths of x and y are n.

Clearly, need at least)(n) time to find their global alignment
(have to read the strings!)

The DP algorithms show global alignment can be done in O(n?) time.

A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n? / log n) time.
* We probably won’t talk about the Four Russians Speedup.
e The important thing to remember is that only one of the four authors is Russian...

(Alrazaroy, Dinic, Kronrod, Faradzeyv, 1970)

Open questions: Can we do better! Can we prove that we can’t do
better! No one knows...

Recap

* Local alignment: extra “0” case.
e General gap penalties require 3 matrices and O(n?) time.

e Affine gap penalties require 3 matrices, but only O(n?) time.

What you should know by now...

Dynamic programming framework

Global & local sequence alighment algorithms with basic gap
penalties

Alignment with general gap penalties
Alignment with affine gap penalties
Longest common subsequence (board lecture)

Subset Sum (board lecture)

