

PostgreSQL Foreign Data Wrappers

Andrew Dunstan

andrew@dunslane.net
andrew.dunstan@pgexperts.com

mailto:andrew@dunslane.net
mailto:andrew.dunstan@pgexperts.com

SQL/MED

● Management of External Data
● defined by ISO/IEC 9075-9:2003.

New in PostgreSQL 9.1

● Some previous grammar support
● 9.1 has first actual use

What does it do

● Makes external data look like a Postgres table
● Number of potential sources is limitless

– Other databases

– RPC sources (e.g. SOAP)

– Streaming sources

– File formats

Limitations

● Currently read-only
● Serious planner limitations

– and what there is has to be done by wrapper
code

Four SQL level objects

● Foreign Data Wrapper
● Server (requires a Foreign Data Wrapper)
● User mapping (requires Server)
● Foreign Table (requires Server and User

Mapping)

Foreign Data Wrapper

● Specifies a function that defines how the data
will get to Postgres

● Optionally, also specifies
– a validator function which will sanity check

server, user mapping and FDW options

– Generic options to be used by the handler
● Could use same handler function in more than

one FDW with different options

Example

● CREATE FUNCTION file_fdw_handler()
RETURNS fdw_handler
AS 'file_fdw' LANGUAGE C STRICT;

● CREATE FUNCTION
file_fdw_validator(text[], oid)
RETURNS void
AS 'file_fdw' LANGUAGE C STRICT;

● CREATE FOREIGN DATA WRAPPER file_fdw
HANDLER file_fdw_handler
VALIDATOR file_fdw_validator;

Handler Requirements

● written in C
● take no arguments
● return special type 'fdw_handler'

Validator requirements

● take two arguments
– First of type text[], containing options

– Second of type oid, specifying catalog where
the options came from

● server
● user mapping
● FDW
● Table

Server

● Marries FDW to connection parameters, if any
● Required in order to create a foreign table
● CREATE SERVER soap_server
FOREIGN DATA WRAPPER soap_fdw
OPTIONS
(url 'http://my.dot.com/soap',
 method 'foo');

http://my.dot.com/soap

User Mapping

● Adds per user settings to a server
● Each user with USAGE privilege on the server

can set their own mapping
● If user is PUBLIC then mapping is used as a

default where no other mapping is found
● CREATE USER MAPPING
FOR current_user
SERVER soap_server
OPTIONS (user 'mary',
 password 'blurfl');

No default user mapping

● You must have a user mapping to use a FDW
● If your FDW doesn't require user options, just

set up an empty PUBLIC maping for the
server.

Foreign Table

● Ties server, user mapping, table options and
data type together

– User mapping is only used at run time, not table
definition time

Foreign Table Data Type

● Comma separated set of field specs
● Each field spec has

– Field name

– Data type

– Optionally, 'NOT NULL'

● No foreign key, check or uniqueness
constraints, no defaults, no primary key

– Remember: data is not managed by Postgres

File FDW

● Shipped in contrib
● Uses COPY API

– Newly exposed in PostgreSQL 9.1

– Original patch copied large parts of COPY code

– Final patch was much smaller and saner

● Same basic functionality as COPY, BUT ...

It's a table

● So you can use it just like any table
– e.g. you can put a WHERE clause in your

SELECT

File FDW example

● CREATE FOREIGN TABLE pw
(username text, pw text, uid int, gid int,
 comments text, homedir text, shell text)
SERVER file_fdw
OPTIONS (format 'csv', delimiter ':',
 filename '/etc/passwd');

● SELECT username, shell
FROM pw
WHERE uid > 500;

Waiting in the wings

● postgres_fdw
–Should be in release 9.2
–Meanwhile, keep using dblink

Text_Array FDW

● Based on File FDW
● Reads a file into a single text[]

field for each input record

Text_Array under the hood

● Uses two core changes:
–COPY code can now read

arbitrarily many columns
–new COPY API allows client to

construct a tuple

Text_array use case

● Users can upload CSVs in known
format

● users are allowed to add
comments and working notes to
the right of known columns

● These must be ignored
● Load errors are forbidden

Current use:

● Ragged CSV patch
–COPY foo FROM '/path/to/file'

CSV RAGGED;
● Textarray FDW means a patched

Postgres is no longer necessary

Other uses

● ETL tools
● Cherry pick columns from a file
● Validate fields and trap errors

Text_Array Example

● CREATE FOREIGN TABLE pwta (t text[])
SERVER file_text_array_fdw
OPTIONS (format 'csv', delimiter ':',
 filename '/etc/passwd');

● SELECT t[1] as username, t[5] as shell
FROM pwta
WHERE t[2]::int > 500;

Original file_fdw Code

ExecClearTuple(slot);
found = NextCopyFrom(festate->cstate, NULL,
 slot->tts_values, slot->tts_isnull, NULL);
if (found)
 ExecStoreVirtualTuple(slot);

text_array_fdw Code

ExecClearTuple(slot);
found = NextCopyFromRawFields(
 festate->cstate, &raw_fields, &nfields);
if (found)
{
 makeTextArray(festate, slot,
 raw_fields, nfields);
 ExecStoreVirtualTuple(slot);
}

And Now, Announcing ...

● Fixed Length Record FDW
● Very common format in COBOL world
● Very fast to parse

– No searching for field separators

Fixed Length Record Test file

[andrew@aurelia]$ cat /tmp/testme
1234567890
abcdefghij

Fixed Length Record Example

andrew=# CREATE EXTENSION file_fixed_length_fdw;
CREATE EXTENSION
andrew=# CREATE SERVER file_fixed_length_fdw_server FOREIGN
DATA WRAPPER file_fixed_length_fdw;
CREATE SERVER
andrew=# CREATE FOREIGN TABLE fixed_test (x text[]) SERVER
file_fixed_length_fdw_server OPTIONS (filename '/tmp/testme',
field_lengths '3,4,3', record_separator 'lf');
CREATE FOREIGN TABLE
andrew=# CREATE USER MAPPING FOR PUBLIC SERVER
file_fixed_length_fdw_server;
CREATE USER MAPPING
andrew=# select * from fixed_test;
 x

 {123,4567,890}
 {abc,defg,hij}
(2 rows)

Possible Fixed Length Record
enhancements

● Return a typed tuple instead of a text array
● Trim trailing blanks
● Turn all blank fields into nulls
● More validity checks

Current state of my FDW work

● Text array: beta quality, published on github
● Fixed length record file: alpha quality, published

on github later today
● SNMP: work in progress, not published
● Watch https://github.com/adunstan
● In due course, these will be published on

PGXN, see http://pgxn.org/

https://github.com/adunstan
http://pgxn.org/

But what's in the FDW handler?

● Almost nothing. All it does is register six
callback functions:
Datum
snmp_fdw_handler(PG_FUNCTION_ARGS)
{
 FdwRoutine *fdwroutine = makeNode(FdwRoutine);

 fdwroutine->PlanForeignScan = snmpPlanForeignScan;
 fdwroutine->ExplainForeignScan = snmpExplainForeignScan;
 fdwroutine->BeginForeignScan = snmpBeginForeignScan;
 fdwroutine->IterateForeignScan = snmpIterateForeignScan;
 fdwroutine->ReScanForeignScan = snmpReScanForeignScan;
 fdwroutine->EndForeignScan = snmpEndForeignScan;

 PG_RETURN_POINTER(fdwroutine);
}

Function summary

● Begin: set up state variables
● Iterate: provide next row
● End: cleanup
● Rescan: start again
● Plan: provide cost estimates to planner
● Explain: provide output for EXPLAIN calls

How to write the six functions?

● Steal code
● Maybe best place for now to steal it is fixed file

FDW
– Because it doesn't use the COPY API to do

lots of its work

The ForeignScanState * object

● Parameter of all the functions (except the Plan
function)

● Has a member fdw_state where the FDW
stashes private information

● Main job of Begin function is to set this up

We need more FDWs

● Good GSOC projects
● Be creative about where data might come

from
– Stock price feeds

– News feeds

– LDAP

– PostModern databases (Redis, Mongo etc)

– Traditional RDBMS

We need a write capability

● volunteers?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

