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SQL/MED

● Management of External Data
● defined by ISO/IEC 9075-9:2003.



 

New in PostgreSQL 9.1

● Some previous grammar support
● 9.1 has first actual use



 

What does it do

● Makes external data look like a Postgres table
● Number of potential sources is limitless

– Other databases

– RPC sources (e.g. SOAP)

– Streaming sources

– File formats



 

Limitations

● Currently read-only
● Serious planner limitations

– and what there is has to be done by wrapper 
code



 

Four SQL level objects

● Foreign Data Wrapper
● Server (requires a Foreign Data Wrapper)
● User mapping (requires Server)
● Foreign Table (requires Server and User 

Mapping)



 

Foreign Data Wrapper

● Specifies a function that defines how the data 
will get to Postgres

● Optionally, also specifies 
– a validator function which will sanity check 

server, user mapping and FDW options

– Generic options to be used by the handler
● Could use same handler function in more than 

one FDW with different options



 

Example

● CREATE FUNCTION file_fdw_handler()
RETURNS fdw_handler
AS 'file_fdw' LANGUAGE C STRICT;

● CREATE FUNCTION 
file_fdw_validator(text[], oid)
RETURNS void
AS 'file_fdw' LANGUAGE C STRICT;

● CREATE FOREIGN DATA WRAPPER file_fdw
HANDLER file_fdw_handler
VALIDATOR file_fdw_validator;



 

Handler Requirements

● written in C
● take no arguments
● return special type 'fdw_handler'



 

Validator requirements

● take two arguments
– First of type text[], containing options

– Second of type oid, specifying catalog where 
the options came from

● server
● user mapping
● FDW
● Table



 

Server

● Marries FDW to connection parameters, if any
● Required in order to create a foreign table
● CREATE SERVER soap_server
FOREIGN DATA WRAPPER soap_fdw
OPTIONS 
(url 'http://my.dot.com/soap',
 method 'foo');

http://my.dot.com/soap


 

User Mapping

● Adds per user settings to a server
● Each user with USAGE privilege on the server 

can set their own mapping
● If user is PUBLIC then mapping is used as a 

default where no other mapping is found
● CREATE USER MAPPING 
FOR current_user 
SERVER soap_server 
OPTIONS (user 'mary', 
         password 'blurfl'); 



 

No default user mapping

● You must have a user mapping to use a FDW
● If your FDW doesn't require user options, just 

set up an empty PUBLIC maping for the 
server.



 

Foreign Table

● Ties server, user mapping, table options and 
data type together

– User mapping is only used at run time, not table 
definition time



 

Foreign Table Data Type

● Comma separated set of field specs
● Each field spec has

– Field name

– Data type

– Optionally, 'NOT NULL'

● No foreign key, check or uniqueness 
constraints, no defaults, no primary key

– Remember: data is not managed by Postgres



 

File FDW

● Shipped in contrib
● Uses COPY API

– Newly exposed in PostgreSQL 9.1

– Original patch copied large parts of COPY code

– Final patch was much smaller and saner

● Same basic functionality as COPY, BUT ...



 

It's a table

● So you can use it just like any table
– e.g. you can put a WHERE clause in your 

SELECT 



 

File FDW example

● CREATE FOREIGN TABLE pw
(username text, pw text, uid int, gid int, 
 comments text, homedir text, shell text)
SERVER file_fdw
OPTIONS (format 'csv', delimiter ':', 
         filename '/etc/passwd');

● SELECT username, shell
FROM pw
WHERE uid > 500;



 

Waiting in the wings

● postgres_fdw
–Should be in release 9.2
–Meanwhile, keep using dblink



 

Text_Array FDW

● Based on File FDW
● Reads a file into a single text[] 

field for each input record



 

Text_Array under the hood

● Uses two core changes:
–COPY code can now read 

arbitrarily many columns
–new COPY API allows client to 

construct a tuple



 

Text_array use case

● Users can upload CSVs in known 
format

● users are allowed to add 
comments and working notes to 
the right of known columns

● These must be ignored
● Load errors are forbidden



 

Current use:

● Ragged CSV patch
–COPY foo FROM '/path/to/file' 

CSV RAGGED;
● Textarray FDW means a patched 

Postgres is no longer necessary



 

Other uses

● ETL tools
● Cherry pick columns from a file
● Validate fields and trap errors



 

Text_Array Example

● CREATE FOREIGN TABLE pwta (t text[])
SERVER file_text_array_fdw
OPTIONS (format 'csv', delimiter ':', 
         filename '/etc/passwd');

● SELECT t[1] as username, t[5] as shell
FROM pwta
WHERE t[2]::int > 500;



 

Original file_fdw Code

ExecClearTuple(slot);
found = NextCopyFrom(festate->cstate, NULL,
  slot->tts_values, slot->tts_isnull, NULL);
if (found)
    ExecStoreVirtualTuple(slot);



 

text_array_fdw Code

ExecClearTuple(slot);
found =  NextCopyFromRawFields(
       festate->cstate, &raw_fields, &nfields);
if (found)
{
    makeTextArray(festate, slot, 
                  raw_fields, nfields);
    ExecStoreVirtualTuple(slot);
}



 

And Now, Announcing ...

● Fixed Length Record FDW
● Very common format in COBOL world
● Very fast to parse

– No searching for field separators



 

Fixed Length Record Test file

[andrew@aurelia ]$ cat /tmp/testme
1234567890
abcdefghij



 

Fixed Length Record Example

andrew=# CREATE EXTENSION file_fixed_length_fdw;
CREATE EXTENSION
andrew=# CREATE SERVER file_fixed_length_fdw_server FOREIGN 
DATA WRAPPER file_fixed_length_fdw;
CREATE SERVER
andrew=# CREATE FOREIGN TABLE fixed_test (x text[]) SERVER 
file_fixed_length_fdw_server OPTIONS (filename '/tmp/testme', 
field_lengths '3,4,3', record_separator 'lf');
CREATE FOREIGN TABLE
andrew=# CREATE USER MAPPING FOR PUBLIC SERVER 
file_fixed_length_fdw_server;
CREATE USER MAPPING
andrew=# select * from fixed_test;
       x
----------------
 {123,4567,890}
 {abc,defg,hij}
(2 rows)



 

Possible Fixed Length Record 
enhancements

● Return a typed tuple instead of a text array
● Trim trailing blanks
● Turn all blank fields into nulls
● More validity checks



 

Current state of my FDW work

● Text array: beta quality, published on github
● Fixed length record file: alpha quality, published 

on github later today
● SNMP: work in progress, not published
● Watch https://github.com/adunstan
● In due course, these will be published on 

PGXN, see http://pgxn.org/

https://github.com/adunstan
http://pgxn.org/


 

But what's in the FDW handler?

● Almost nothing. All it does is register six 
callback functions:
Datum
snmp_fdw_handler(PG_FUNCTION_ARGS)
{
    FdwRoutine *fdwroutine = makeNode(FdwRoutine);

    fdwroutine->PlanForeignScan = snmpPlanForeignScan;
    fdwroutine->ExplainForeignScan = snmpExplainForeignScan;
    fdwroutine->BeginForeignScan = snmpBeginForeignScan;
    fdwroutine->IterateForeignScan = snmpIterateForeignScan;
    fdwroutine->ReScanForeignScan = snmpReScanForeignScan;
    fdwroutine->EndForeignScan = snmpEndForeignScan;

    PG_RETURN_POINTER(fdwroutine);
}



 

Function summary

● Begin: set up state variables
● Iterate: provide next row
● End: cleanup
● Rescan: start again
● Plan: provide cost estimates to planner
● Explain: provide output for EXPLAIN calls



 

How to write the six functions?

● Steal code
● Maybe best place for now to steal it is fixed file 

FDW
– Because it doesn't use the COPY API to do 

lots of its work



 

The ForeignScanState * object

● Parameter of all the functions (except the Plan 
function)

● Has a member fdw_state where the FDW 
stashes private information

● Main job of Begin function is to set this up



 

We need more FDWs

● Good GSOC projects
● Be creative about where data might come 

from
– Stock price feeds

– News feeds

– LDAP

– PostModern databases (Redis, Mongo etc)

– Traditional RDBMS



 

We need a write capability

● volunteers?
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