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Abstract

Interval analysis estimates the run-time values of numerical expressions in the source
code by computing a lower bound and an upper bound. Interval analysis for integral
types is useful in providing facts of the target program to help developers find issues such
as unsafe narrowing casts, out-of-bound array indices, numerical overflows/underflows,
divisions-by-zero, and dead branches.

Various approaches have been developed to achieve this goal. Pluggable type systems
such as the Checker Framework allow developers to customize type checkers of their own
interest by associating a type with a particular property and defining specific type rules
that restrict the program behaviors. However, the type checkers are intra-procedural, which
require manual annotations on all the subroutines invoked in the method being checked.
This annotation effort can be a heavy burden to the development of large-scale projects.

A solution to reduce the human effort is inter-procedural, whole-program type inference.
Whole-program type inference takes an unannotated program as input and outputs an
entire typing for the program that type-checks. If no such typing exists, the reason is
either a real type error or a false positive.

Checker Framework Inference is a framework for whole-program type inference built
upon the Checker Framework. Constraint variables and constraints are created throughout
the whole program based on syntactical type rules. Then the constraints are encoded and
solved by a solver.

Value Range Inference is a whole-program inference approach for integral range (inter-
val) analysis, which is implemented with Checker Framework Inference.

This thesis proposes Interval Type Inference, which improves Value Range Inference in
the following aspects:

e simplify the interval type hierarchy and the representation of interval types. Thereby
reduce the size of the SMT encoding.

e redefine certain type rules as well as the flow-sensitive refinement on comparison, espe-
cially in the context of a loop.

e redefine the SMT encoding of constraints including well-formedness constraints, com-
parison constraints, etc.

To evaluate Interval Type Inference, this thesis conducts experiments on selected open
source projects. The experimental results show that Interval Type Inference successfully
discovers issues including unsafe narrowing cast and use of invalid input.
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Chapter 1

Introduction

Interval analysis [1] estimates the possible run-time values of each expression in the source
code by computing a lower bound and an upper bound. The interval analysis for integral
types is useful in providing facts of the target program that help developers find issues
including unsafe narrowing casts, out-of-bound array indices, numerical overflows/under-
flows, divisions-by-zero, dead branches, etc. [2][3]. Various approaches have been developed
to achieve this goal, including static analysis. Static analysis is the type of program analysis
that is performed without executing the program, as opposed to dynamic analysis. Static
analysis has the advantage of zero run-time overhead, and it gives developers a guarantee
of the absence of domain-specific issues [].

A type system associates a type with a particular property and enforces a set of type
rules to the programming language syntax [5]. A type checker under the specific type
system guarantees that the associated property holds throughout the program. Therefore,
a type system in the interval domain can be defined by associating a type with the interval
of an expression’s run-time values, and enforcing the type rule: narrowing cast cannot
cause data loss. If a program type-checks in such a type system, narrowing casts in the
program are guaranteed to be safe.

The Checker Framework [0][7] is a framework that provides enhanced pluggable type
systems for Java in a variety of domains. It provides the built-in Constant Value Checker
that supports the analysis for integral value ranges.

However, the type checkers provided by the Checker Framework are intra-procedural,
i.e. methods are checked independently, which requires specifications on all the subroutines
invoked in the method being checked. If a subroutine is not manually annotated, the



Checker Framework makes sound but conservative assumptions that possibly lead to over-
approximation and false positives. Therefore, manual annotations are necessary to achieve
higher precision, which bring a heavy burden to the development of large-scale projects.

A solution to reduce the human effort is inter-procedural whole-program type inference
(8,9, 10, 11, 12, 13, 14]. Tt takes account of the entire program rather than just reasoning
one method at a time. Without making conservative assumptions, the whole-program type
inference takes an unannotated program as input and infers an entire typing that type-
checks. If no such typing exists, the reason is either a real type error or a false positive.

Checker Framework Inference! is a framework for constraint-based whole-program in-
ference [3][9] built upon the Checker Framework. The input source code is first compiled
by the Java compiler, which produces abstract syntax trees (AST hereinafter) [15] and
passes the control to Checker Framework Inference. The workflow of Checker Framework
Inference is as follows. First, an AST visitor creates a constraint variable for every type
use location, including fields, method parameters, method returns, local variables, etc.
Second, dataflow analysis is performed to refine the types of all the expressions with new
constraint variables. After the dataflow analysis is completed, a type visitor traverses the
ASTs and enforces type rules by generating constraints with the constraint variables that
are created before. Then, the constraint variables and constraints for the whole program
are encoded and solved by a solver. If the constraints are satisfiable, the solver yields a
solution, which is decoded to the typing of the input program. Otherwise the solver gives
the core of the unsatisfiable constraints to help with the trouble shooting.

Value Range Inference [10] is a whole-program type inference for the domain of integral
value range (or interval), which is implemented upon Checker Framework Inference. It pro-
poses the constraint rules regarding well-formedness of interval types, casting, arithmetic
operation, comparison, etc. It also provides the SMT encoding of the constraint rules.

This thesis proposes Interval Type Inference, a whole-program inference for the interval
abstract domain, which improves Value Range Inference. Compared with Value Range
Inference, Interval Type Inference

e simplifies the interval type hierarchy and the representation of a interval type, thereby
reduces the size of the SMT encoding;
e redefines the type rules regarding widening and narrowing;

e redefines constraints about flow-sensitive refinement on comparison;

thttps://github.com/opprop/checker-framework-inference



e redefines the SMT encoding for constraints including well-formedness constraints, com-
parison constraints, etc.

To evaluate Interval Type Inference, this thesis conducts experiments on selected open
source projects. The experimental results show that Interval Type Inference successfully
discovers issues including unsafe narrowing cast, use of invalid input, etc.

The thesis is organized as follows. Chapter 2 introduces the background including
pluggable type systems, whole-program type inference, and the related work Value Range
Inference. Chapter 3 introduces the improvements of Interval Type Inference compared to
Value Range Inference. Chapter 4 shows the implementation details and the evaluation
of Integral Type Inference. Experiments are performed on certain open source projects,
and the results are analyzed and compared with that of Value Range Inference. Finally,
Chapter 5 concludes the whole thesis and discusses the future work.



Chapter 2

Background and Related Work

2.1 Pluggable Type Systems

Statically-typed programming languages have built-in type systems that find and prevent
basic errors at compile time. For example, the Java compiler checks for errors such as using
variables without initialization, incompatible assignment, unreachable code, etc. However
the built-in type system is usually weak in precision and does not check type errors in a
variety of domains.

With pluggable type systems, developers can customize type systems of their own
interest by associating a type with a particular property and defining specific type rules that
restrict program behaviors [7, 17, 18, 19, 20, 21]. A syntax-based type checker guarantees
that property holds throughout the code and thereby proves the absence of domain-specific
issues.

2.1.1 Checker Framework

The Checker Framework enhances Java type system by providing framework that finds
and prevents type error in a variety of domains. It also provides a programming interface
that allows developers to customize a type checker based on special needs [22][23].

To design a type system, developers need to specify the type qualifiers in the type
system and build the type qualifier hierarchy based on their semantics. A type hierarchy
is formed of subtyping relations among type qualifiers. There are two kinds of relations
between any two qualifiers in a type hierarchy. If no partial order exists between the
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two qualifiers, then the two types are incompatible. Otherwise, one type qualifier is the
subtype of the other. In the Checker Framework, type qualifiers are defined and used as
Java annotations.

A type checker is implemented as an annotation processor. According to the compi-
lation workflow [15], after the Java compiler parses the source code and produces ASTs,
it invokes specified annotation processors including the type checker. The type checker
thereby runs an AST visitor (called “Type Visitor”) to traverse all the constructs in Java
source files.

When a Type Visitor visits a certain tree node, it first determines the type qualifier on
the tree from multiple possible sources in the following precedence.

e If the tree being visited is defined in the source code, the precedence is: (1) any explicit
annotation added by programmers, (2) default annotation.

e If the tree being visited is defined in bytecode (e.g JDK), the precedence is: (1) any
explicit annotation added by programmers, (2) annotation specified in the stub files,
(3) annotated JDK*, (4) default annotation.

After the annotation is determined, the annotated type for the tree is generated. The
Type Visitor checks the validity of the annotated type based on the type rules of the
specific type system.

The Checker Framework contains various built-in type checkers [7]. For example, the
Constant Value Checker estimates possible run-time values of primitive variables or expres-
sions. The Fenum Checker provides the same type-safe guarantees for sets of constants
as real enumeration types. Programmers can develop type checkers upon the Checker
Framework, e.g. a type checker that prevents unsafe end-of-file (EOF hereinafter) value
comparisons [24].

2.1.2 Dataflow Framework

With bare Checker Framework, the type checking process is flow-insensitive and easily
causes false positive. The Dataflow Framework [25] provides a framework for dataflow
analysis that estimates the abstract values? of each expression to improve the precision.

! Annotated JDK: https://github.com/opprop/jdk

2 Abstract value: a term from static analysis[1]. In contrast to concrete values in the concrete execution,
static analysis evaluates the expression to a value in an abstract domain. In the Checker Framework, the
abstract values to be computed are annotated types.



By default, the Checker Framework incorporates the Dataflow Framework as a pre-
pass, which firstly transforms the AST of each method into a control flow graph (CFG
hereinafter). It maintains a Store at each point of the CFG to store the refined types of
variables or expressions. The Dataflow Framework walks through all the CFG nodes by
running the corresponding transfer functions®. Whenever the type of a variable is refined
(through assignement, comparison, method post-condition, etc.), the refined type is stored
in Store. The process proceeds until it encounters the exit of the CFG. If the CFG contains
a loop, the Dataflow Framework iteratively evaluates the loop until it reaches a fixed-point
(Store values unchanged).

2.2 Whole-Program Type Inference

The type checking in this context is also called “modular type checking” [9]. Modular
type checking checks each method independently, which requires manual annotations on
all the subroutines invoked in the method being checked. If the annotation for a method
parameter or method return is default, the Checker Framework makes sound but conserva-
tive assumptions that possibly lead to over-approximation and false positives. Therefore,
manual annotations are necessary to achieve higher precision, but bring a heavy burden to
the development of large-scale projects.

Whole-program type inference reduces the human effort by taking account of the entire
program rather than just reasoning one method at a time. Without making assumptions,
the whole-program type inference takes unannotated program as input, and outputs an
entire typing for the program that type-checks under the type rules. If no such typing
exists, the reason is either a real type error or a false positive.

2.2.1 Checker Framework Inference

Built upon the Checker Framework, Checker Framework Inference provides a constraint-
based whole-program inference framework. Figure 2.1 shows the workflow of Checker
Framework Inference.

The input source code is parsed by the Java compiler, which produces the intermediate
ASTs and invokes an annotation processor that starts Checker Framework Inference.

3A transfer function represents the effect of a single CFG-node on the dataflow. It computes the next
Store based on the previous Store and the current CFG node.



The syntax-based Tree Annotator adds a constraint variable to every type use location
including fields, method parameters, method returns, local variables, type arguments, type
variables, etc. Constraint variables created by the Tree Annotator are referred to as source
variables, defined as follows®.

e Source Variables These kind of constraint variables are created to represent the type
uses in any declarations. The inferred result of source variables are inserted into the
source code to provide specifications for those declarations.

Checker Framework Inference
source
variables
¥ TreeAnnotator
« refinement
4 » arithmetic
- S CFG‘_ Transfer | * least upper bound
"1 Function
AST con;traint
variables
Y SMT
Source : AST . constraints fomula
Enile —» javac » InferenceVisitor | ConstraintEncoder » Z3 Solver
annotations solution
SolutionDecoder [

Figure 2.1: Diagram of Checker Framework Inference

The Inference Visitor traverses the AST, gets the annotated type of AST node (which
is represented by constraint variable created in the annotating phases), and enforces the
type rules by forming constraints with the related constraint variables. As a comparison,
in the Checker Framework, when the Nullness Type Visitor visits an assignment tree, and
determines the declared type of a left-hand-side (LHS hereinafter) variable is @NonNull,
and the type of the right-hand-side (RHS hereinafter) expression is @Nullable, it issues an
error. In Checker Framework Inference, the Nullness Inference Visitor use the constraint
variable created by the Tree Annotator (denoted by vyys and vrys) to generates subtype
constraint vrys <: vrgs (introduced in the following subsection).

4 In contrast, other kinds of constraint variables are created by dataflow analysis and are described in
the following section.



Dataflow Analysis in Inference

Dataflow analysis in the inference context is different from that in type checking. In
type checking, a transfer function computes the real type of a CFG node with the real
abstract values in the previous Store. While in inference, a transfer function creates a
new constraint variable to refine the type of a CFG node, and relates the new constraint
variable with the previous ones through certain constraints.

Different kinds of constraint variables are created depending on the effect of a tree
node. In Checker Framework Inference, constraint variables are classified into the following
categories.

e Refinement Variables These kind of constraint variables are created to represent
the refined type of the LHS of an assignment context.

e Least-Upper-Bound Variables These kind of constraint variables are created to
represent the type of a variable after multiple execution paths are merged.

e Comparison Variables These kind of constraint variables are created to represent the
refined type of a variable appears in a comparison expression. Comparison variables
are usually created in pairs, one for the then-branch and one for the else-branch.

e Arithmetic Variables These kind of constraint variables are created to represent the
type of an arithmetic or bit-wise operation.

Constraints

Checker Framework Inference provides the following basic constraints to express type rules
of a given type system [3].

e Subtype Constraint (v; <: v9) constraint variable v; is a subtype of vy. Subtype con-
straints are usually used to express type rules regarding assignment, pseudo assign-
ment, etc.

e Equality Constraint (v; = vy) constraint variable v; and vy are equal. Equality con-
straints are usually used in flow-sensitive refinement.

e Inequality Constraint (v; # v,) constraint variable v; and vy are different. Inequality
constraints are often used to forbid a constraint variable being assigned a certain type
qualifier.



e Preference Constraint (v = ¢) constraint variable v equals to type qualifier ¢ by
a certain weight. Preference constraints are breakable and are used to express pro-
grammers’ preference to achieve more precise solutions.

Work Modes

Checker Framework Inference provides three work modes for different purposes [9]: type-
check mode, inference mode and annotation mode. Type-check mode fulfills modular type
checking. Inference mode and annotation mode fulfill the whole-program type inference.
The difference between inference mode and annotation mode is described as follows.

Inference mode is intended to ensure the absence of domain-specific errors in the whole
program. The solver only checks the satisfiability of the constraints. If satisfiable, the
program is guaranteed to be absent of type errors. If UNSAT, the solver reports the
core of the conflicting constraints, so that developers can locate the problematic code and
resolve the conflict. This process is repeated until the solver yields satisfiable.

Working upon inference mode, annotation mode gets a model from the solver when the
constraints are satisfiable, and then annotates the original source code with the selected
model. However, for a given set of mandatory constraints, the model may not be unique.
Annotation mode is expected to find a precise typing that is consistent with developers’
intention. Therefore breakable, weighted preference constraints (soft constraints) are in-
troduced, so that a MaxSAT solver chooses the model with the least penalty for unsatisfied
preference constraints [26]. Compared with inference mode, annotation mode improves the
precision at cost of performance.

A Demontration of Checker Framework Inference

We demonstrate the process of whole-program type inference through the Nullness In-
ference built in Checker Framework Inference. The Nullness type hierarchy is as Figure
2.2.

Figure 2.3 gives an example and illustrates the generated constraint variables. The
annotation @VarAnnot (i) ¢ € N uniquely identifies the constraint variable for a type
use location. In the example, @VarAnnot(5) is the declaration bound for class Demo;
@VarAnnot (6) is the declared type for field; @VarAnnot(8) is the return type of the
method getField; @VarAnnot(9) is the type of method receiver. The new Object in-
stantiation is constant @NonNull, therefore no constraint variable is created for it. The



@Nullable

9

@MNonNull

Figure 2.2: Type hierarchy of the Nullness type system

constraint variables mentioned above are created by the purely syntax-based Tree Anno-
tator, which is flow-insensitive.

The constraint variables created in dataflow analysis are not displayed in Figure 2.3.
The dataflow analysis process is as follows.

Line 10 For field == null, a comparison variable @VarAnnot (10) of field is created
and updates the Store at the beginning of the then-branch, while comparison variable
@VarAnnot (11) of field is created and updates the Store at the beginning of the
else-branch.

Meanwhile, one comparison constraint is created for each of the then-branch and
else-branch with the comparison variables, as

@VarAnnot (10) = @Nullable, @VarAnnot(11) # @Nullable

Line 11 For the assignment, a refinement variable @VarAnnot (12) is created, and the ab-
stract value of field in the Store after the assignment is updated to @VarAnnot (12).
Meanwhile a refinement constraint is created, which is expressed by an equality con-
straint between the refinement constraint variable and the RHS types:

@VarAnnot (12) = @ONonNull

if-End At the end of the if-then block when two branches merge, the abstract value
of field in the then-branch (i.e. @VarAnnot(12)) and that in the else-branch (i.e.
@VarAnnot (11)) is merged. A least-upper-bound variable @VarAnnot (13) is created,
i.e.
@VarAnnot (13) = @VarAnnot (12) LI @VarAnnot (11)

which is expressed by two subtype constraints:

@VarAnnot (12) <: @VarAnnot(13) A @VarAnnot(11l) <: @VarAnnot(13)

10



class Demo {
Object field;

Object getField () A
if (field == null) {
field = new Object();
}

return field;

import checkers.inference.qual.VarAnnot;

@VarAnnot (5)

class Demo {
@VarAnnot (6)
int field;

@VarAnnot (8)
Object getField(@VarAnnot (9) Demo this) {
if (field == null) {
field = new Object();
}

return field;

Figure 2.3: An example to illustrate the creation of constraint variables

11



After merging, the abstract value of field in the Store is updated to @VarAnnot (13)

Figure 2.4 shows the Store at each point of the CFG when the dataflow analysis process

completes.

field: @\arAnnot{10)

Store

Store

Store

field=new Object(); field: @VarAnnot(11)

Store

field: @VarAnnot{12)

-~

Store

field: @VarAnnot(13)

Y

Figure 2.4: CFG for the example in Figure 2.3

After dataflow analysis, the Inference Visitor traverses the AST and creates constraints
as follows.

Line 11 The Inference Visitor encounters an assignment. It creates a subtype constraint
to enforce the type rule regarding assignment: @NonNull <: @VarAnnot (6)

Line 13 The Inference Visitor encounters a return tree. It creates a subtype con-
straint to enforce the type rule regarding pseudo-assignment, @VarAnnot(13) <:
@VarAnnot (8)

12



Combine all the constraints mentioned above. The deterministic constraint variables
are

@VarAnnot (10)=@Nullable, @VarAnnot(11)=0NonNull, @VarAnnot(12)=@NonNull

However, the solutions for @VarAnnot(8) and @VarAnnot(13) are not unique. Ad-
ditional preference constraints are needed to improve the precision. For example, pro-
grammers may prefer non-null references and introduce a preference constraint for every
constraint variable as follows.

@VarAnnot(i)=@NonNull,i € N
Then the optimal solution for @VarAnnot (8) and @VarAnnot (13) is
@VarAnnot (8)=@NonNull, @VarAnnot (13)=@NonNull

2.3 Related Work

2.3.1 Constant Value Checker

Constant Value Checker is a built-in type checker of the Checker Framework, which es-
timates possible run-time values of expressions. It supports analyses of integer values,
float-point values, string values, etc. For integral value analysis, it provides annotations
@IntVal and @IntRange. @IntVal specifies the possible concrete values at run-time and
takes as argument a set of integers, such as @IntVal({1, 3, 5}). While @IntRange takes
two arguments, a lower bound and an upper bound, such as @IntRange(from=1, to=5).
The possible run-time values of an expression are between the bounds (inclusive). There-
fore @IntVal({1, 3, 5}) can be converted to @IntRange(from=1,to0=5), even through
the even integers in between are impossible values.

Based on the semantic above, @IntRange is more efficient in specifying the abstract
domain of intervals. A type qualifier @IntRange (from=I[,to=u) corresponds to the abstract
value of interval [[,u] [I, Section 6.1]. And the subtype relations in the type qualifier
hierarchy regarding @IntRange corresponds to the subset relations between abstract values
of intervals, i.e.

@IntRange (from=a, to=b) <: @IntRange(from=c, to=d) < [a,b] C [c,d]

The maximal interval supported by Constant Value Checker is [—25% 203 — 1] the
magnitude of long.

13



2.3.2 Value Range Inference

The research work described in this thesis is based on a prototype of whole-program type
inference for integral intervals — Value Range Inference [16, Chapter 4], which is imple-
mented on Checker Framework Inference.

Value Range Inference reuses the type qualifier hierarchy from Constant Value Checker,
but focuses on integral types. The main annotations supported in Value Range Inference
are @UnknownVal(T), @IntRange, @BottomVal(l), where @UnknownVal is equivalent to
@IntRange (from=—2%3, £0=263 —1).

Value Range Inference proposes the constraint rules regarding well-formedness of inter-
vals, casting, arithmetic operation, comparison, etc. It also provides the SMT encoding for
the constraints. Value Range Inference introduces soft constraints to support annotation
mode, which relies on the Z3 MaxSMT solver [27] to find the optimal solution.

14



Chapter 3

Improvements of Interval Type
Inference

This chapter introduces the improvements of Interval Type Inference compared to Value
Range Inference. First, the type hierarchy is simplified by decreasing the number of type
qualifiers in it, making the SMT encoding more lightweight, as described in Section 3.1.
Second, the type rules regarding integral type operations are refined, as described in Section
3.2. Then, more expressive and more precise flow-sensitive refinement on comparison is
introduced in Section 3.3. The encoding of the constraint variables and the constraints are
demonstrated in Section 3.4.

3.1 Improvements to Type Hierarchy

Value Range Inference contains three kinds of type qualifiers — @UnknownVal(T ), @Bottom-
Val(l) and @IntRange (with an upper bound and a lower bound), which require at most
five SMT variables to represent a constraint variable: three boolean vairables to select a
type qualifier from @UnknownVal, @BottomVal and @IntRange. If @IntRange is selected,
then two integer variables are used to represent the lower bound and the upper bound.

To simplify the type hierarchy, Interval Type Inference separates the original type
hierarchy into two type hierarchies: the integral type hierarchy and the non-integral type
hierarchy. The integral type hierarchy is exclusive for integral types (byte, short, char,
int, long and the corresponding wrapper classes) and contains exactly one kind of type
qualifier — @IntRange. The non-integral type hierarchy is exclusive for non-integral types
and contains two kinds of type qualifiers — @UnknownVal(T) and @BottomVal(.Ll).
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3.1.1 Integral Type Hierarchy

The Interval Type System does not assign separate type qualifiers to T and L. The integral
type hierarchy contains exactly one kind of type qualifier — @IntRange.

e @IntRange(from=I/, to=u) the interval of the underlying type is [/, u|, where l,u €
[—263,263 — 1]. In this context, | denotes the lower bound of the interval, and u
denotes the upper bound of the interval. There are three special cases as follows.

1. If | = u, the underlying expression has constant value.
2. If | > u, the interval type is L.
3. If | = —2% and u = 2% — 1, the interval type is T.

Therefore, the type hierarchy of the Interval Type System is defined as follows.

Ya,b,c,d € 7Z.N[-2%,2% — 1], where[a, b] C [c, d],
@IntRange(from=a, to=b) <: @IntRange(from=c, to=d)

3.1.2 Non-Integral Type Hierarchy

In Interval Type Inference, the non-integral type hierarchy is a two-type type hierarchy
consisted of @UnknownVal (T) and @BottomVal (). We apply @UnknownVal to any non-
integral types, with the semantic — “the interval is unknown”. ©@BottomVal is only used
as the default lower bound of a generic type parameter!.

Since the Java compiler’s built-in type checking forbids direct assignment between non-
integral types and integral types, these two type hierarchies are disjoint.

Value Range Inference creates constraint variables and constraints for both integral
types and non-integral types uniformly. This causes a waste in the computational resources,
since the interval domain is not applicable to non-integral types. Interval Type Inference
improves this by creating constraint variables and constraints only for integral types. Each
constraint variable is eventually inferred to a type qualifier in the integral type hierarchy.
As a result, the simplified interval type hierarchy significantly reduces the size of the
constraint variables and constraints, which boosts the performance (see Section 4.2.6).

!The Checker Framework allows developers to specify both the upper and the lower bound for a type
parameter.
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3.1.3 Polymorphic qualifiers
@PolyVal

Value Range Inference supports type qualifier polymorphism for methods, which allows
a method having different annotations depending on the concrete method use [16, Sec-
tion 4.2]. The polymorphic qualifier in Value Range Inference is @PolyVal. A use case
for @PolyVal is boxing of primitive types, which converts a primitive value (e.g. int) to
an object of the corresponding wrapper class (e.g. Integer). The boxing methods are
annotated with @PolyVal as follows.

static @PolyVal Integer valueOf (Q@PolyVal int argO);

Value Range Inference handles a method invocation of Byte.valueOf in the follow-
ing way. When it encounters a method invocation of Byte.valueOf, it replaces all the
@PolyVal in the method declaration with a constraint variable v;.;.

static Qu,.; Integer valueOf(@Qu,. int arg0);

Then it gets the constraint variable that represents the argument type (denoted by
Uarg). According to the subtype relation between the actual argument (RHS) and the
formal parameter (LHS), a subtype constraint v,., <: v,e is created. This allows the
interval of the method return varying with the interval of the method argument, which can
be arbitrary.

However, this method is still under-constrained. According to the semantic of the
method Integer.valueOf, the method return has the same interval as the method argu-
ment. The subtype constraint cannot guarantee that the input and the output have the
same interval. In Interval Type Inference, we add additional equality constraint vg,g = Vper
to get more precise solution, especially for the annotation mode. For example, in the
following method,

Integer read(InputStream in) throws IOException {
return in.read () ;

3

in.read returns an int value in [-1, 255]. Since the method return type is the
wrapper class Integer, the boxing method Integer.valueOf is implicitly invoked, as
Integer.valueOf (in.read()). Assume the constraint variable for the interval of Integer.
valueOf (in.read()) is V;, Value Range Inference creates a subtype constraint [—1, 255]
<: Vi regarding the polymorphism. In addition, assume the declared type of the method
return is V5, then the subtype constraint V; <: V5 is created according to the subtype
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relation between the expression being returned (RHS) and the declared return type (LHS).
Therefore, the constraints are

[—1,255] <: V;, Vi <V,

With the two subtype constraints above, we cannot precisely infer the specification of the
method as
@IntRange(from=-1,t0=255) Integer read(InputStream in) throws IOException

Additional soft constraints are needed to improve the precision. For example, we can
add two soft equality constraints [—1,255] = V; and V; = V5.

In contrast, Interval Type Inference creates the following hard constraints.
[—1,255] =V, Vi<V,

To get the expected specification of the method, only one soft constraint V; = V5, is added.
This reduces the number of the constraints and simplifies the encoding.

3.2 Improvements to Type Rules

3.2.1 Conversions between Integral and Non-integral Types

Since integral types and non-integral types have disjoint type hierarchies (Section 3.1),
Interval Type Inference defines the type rules regarding conversions between integral types
and non-integral types as follows.

1. If an integral expression is cast to a non-integral type, such as

Integer x = 0; Object o = (Object) x;
the type of the casting is @UnknownVal.

2. When a non-integral expression obj is cast to an integral type, such as
Object o = list.get(0); Integer x = (Integer) o;

the type of the casting is @IntRange (from=—23!, to=23! —1).
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3.2.2 Widening and Narrowing

Widening or Narrowing conversions (explicit or implicit) of integral types (primitive or
boxed type) happen in the following scenarios [28, Section 5.1].

e Cast Expression A widening or narrowing conversion occurs explicitly in the form of
(T')e, where the expression e is converted to the type 7.

e Binary Operation In Java, the widening conversions related to binary operations be-
tween integral expressions are performed in the following steps.

1. If one of the operands is long and the other is not, then the other operand is
firstly widened to long before the binary operation is performed.

2. If none of the operands are long, and one of the operands is shorter than int,
that operand is firstly widened to int before the binary operation is performed.

e Assignment An implicit widening is performed if the RHS type is narrower than the
LHS type (e.g., byte to int), while an implicit narrowing is not supported, i.e., the
Java compiler issues an error if the RHS type is wider than the LHS type.

e Compound Assignment For compound assignment like x += 1, the Java compiler
handles it in the following way. If the type of x is narrower than int, x is firstly
widened to int. Then the arithmetic addition is performed. Finally, the arithmetic
result is cast to the original type of x and assigned to x.

e Prefix/Postfix Expression Similar to compound assignment, the increment/decre-
ment of prefix/postfix expressions also follow the ”Widen-Compute-Narrow-Assign”
pattern if the type of the underlying variable is narrower than int.

Narrowing conversions that cause data loss are forbidden. For example, one com-
mon misuse of the JDK method InputStream.read is the premature conversion from the
read int to byte [21]. InputStream.read returns an int value in the interval [-1, 255]
(InputStream.read returns -1 when the input stream reaches EOF). Converting the re-
turn value to an unsigned byte without EOF test is unsafe. When the value is -1, it is
converted to unsigned 8-bit value 255 and handled as a normal byte of data, which may
cause unexpected behaviors.

Therefore, the type rule for a narrowing conversion is formalized as follows. Let I’
be the environment before a narrowing conversion. Under I' an integral expression e has
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type @ T; (denoted as I' e : @ T1), where @ is the interval type qualifier and T; is the
underlying Java type. Converting e to a narrower Java type Ty (i.e. Ty <: T}) through
(T3)e is allowed only if the interval @ is contained in the maximal interval of T. After the
narrowing conversion, the interval type qualifier of the casting (73)e remains (). The type

rule is
F'Fe:QTy Ty<:Ty Q <:MaxInterval(T3)

Fl_(TQ)e:QTQ

Widening conversions between integral types do not cause data loss [28, Section 5.1.2].
Therefore the interval of an expression after a widening conversion does not change. The
type rule is formalized as follows. Given the environment I' - e : @) T}, where @) is the
interval type qualifier and 77 is the underlying Java type. When e is converted to a wider
Java type Ty (i.e. 11 <: T3), the interval type qualifier of the casting (73) e remains Q.
The type rule is

F"@ZQTl T1<IT2
'+ (TQ) € Q T2

Both of the narrowing and widening rules mentioned above are expressed by an equal-
ity constraint. Let the constraint variable for the expression e be V;, and the constraint
variable for the converted type T3 be V5. Then the equality constraint is V; = V5.

Instead of Vi = V4, Value Range Inference creates a subtype constraint V; <: V5. In
certain cases, it may yield different results regarding constraint satisfiability. For example
in Figure 3.1, the comparison x > -200 is always true, so the else-branch is a dead branch.

1 int foo(byte x) {

2 if (x > -200) {
3 return true;
4 }

5 return false;

6

Figure 3.1: An example of widening

Assume the type of the parameter x is V4. In the comparison, the left operand x is first
widened to int before comparing. Assume the type of the widening conversion is V5. In
Interval Type Inference, the equality constraint V; = V5 ensures that the interval of the
parameter x is equally propagated to the result of the widening conversion, such that V5 C

20



[—128,127]. Then the comparison constraint ensures the refined type in the else-branch is
L. Since L is forbidden in interval type inference, the constraints are unsatisfiable, and
thereby this dead-branch issue is discovered.

However, if a subtype constraint V; <: V5 is created, the constraints are satisfiable
(a solution is V; = [—128,127], V5 = [—23!,231 — 1]), which is less precise and misses the
dead-branch issue.

3.3 Improvements to Flow-sensitive Refinement

There are two forms of flow-sensitive refinement in the dataflow analysis process of Interval
Type Inference: refinement on assignment and refinement on comparison. Interval Type
Inference utilizes the refinement on assignment from Value Range Inference and focuses on
improving refinement on comparison.

3.3.1 Refinement on Comparison

Flow-sensitive refinement on comparison is essential to improve precision and reduce false
positives. For example, InputStream.read() returns a int value of the interval [-1, 255].
After checking the value is not equal to EOF, the interval is refined to [0, 255]. Then
narrowing it to byte is type-safe.

When encountering a comparison expression, Value Range Inference introduces a pair of
comparison constraint variables to refine each of the variables in the comparison expression,
one for the then-branch and one for the else-branch. Comparison constraint variables for
the same branch form specific comparison constraints based on the comparison operator
[16, Section 4.3.1].

Value Range Inference performs refinement on the following two cases of comparisons.

e One operand of the comparison is a variable, the other operand is constant, such as
x <= 0.

e Both operands of the comparison are variables, e.g. x ==
Interval Type Inference proposes a new approach of refinement on comparison to sup-

port general linear expressions in the form "ax + by op ¢”, where a, b, ¢ are constant
integers, a # 0 or b # 0. op is one of the six comparison operators =, #, <, <, > >.
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To reduce the complexity of the constraint encoding and improve the solving perfor-
mance, comparisons that contain nonlinear expressions are not refined in Interval Type
Inference. Comparisons that contain linear expressions of more than two variables are
also not refined, because the size of the encoded SMT formulas grows exponentially to
the number of variables in the expression. Moreover, comparison expressions in the form
“cray + oy + ...cpry Op ¢ (¢; # 0,n > 2) are rarely used in practice according to a
case study on Apache commons-csv in this thesis: among 101 comparisons that are linear
expressions, only 2 comparisons consist of more than two variables.

In Interval Type Inference, when encountering a comparison expression, it first exam-
ines whether the expression can be unified to the form “ax + by op ¢”. If so, for each of
the then-branch and else-branch, two comparison constraint variables are created to refine
x and y respectively, and stored as the initial state in the corresponding branch. The com-
parison constraint variables of x and y for the then-branch form the comparison constraint
indicated by op. Similarly, the comparison constraint variables for the else-branch form the
comparison constraint opposite to op. In this thesis, we define the comparison constraint
for a comparison “ax + by op ¢” with a 6-tuple (Xoefore, Xafters Yoefores Yafters [> OP),
where Xpefore, Yoefore are the abstract values of x,y before comparison, X, fier, Yo frer are
the abstract values of z,y after comparison (either in the then-branch or the else-branch),
f represents the unified linear function ax + by — ¢, and op is the comparison operator.
When the comparison expression contains a single variable, as “ax op ¢”, the comparison
constraint is simplified to a 4-tuple (Xpefore, Xafters fo OD).

Note that the unification is performed in the domain of the SMT encoding (where
variables are unbounded) instead of the domain of the program execution (where variables
are bounded). Therefore, the change to the form of the comparison expression (e.g. from
x==y+1 to x-y-1 ==0) does not raise overflow /underflow issues.

The unification unsoundly omits the possible overflow /underflow in the original condi-
tion. For example, in the following case

int y = Integer.MAX_VALUE;

int x = Integer .MIN_VALUE;
if (x ==y + 1) { // true, overflow occurs
}

Since the unification is performed in the domain of the SMT encoding (where variables
are unbounded), the unified condition x-y-1==0 is always false, which contradicts to
the actual program execution. In the future work, additional constraints are added to
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both operands of the comparison before the unification to ensure no overflows/underflows
occur, so that the unification is sound. For the above case, suppose the intervals of x and
y before the comparison are V,,V}, respectively, then the following constraints are added
before unification.

‘/x E [_231’231 o 1], ‘/;/ + 1 E [_2317231 o 1]
These two constraints cause UNSAT, which warns developers the existence of an overflow.

If a comparison expression cannot be unified to the form "ax + by op ¢”, the vari-
ables in the comparison expression are not refined. The state prior to the comparison
is propagated to both of the then-branch and the else-branch for soundness, which is an
over-approximation and may cause false positives.

3.3.2 A Demonstration of Refinement on Comparison in
if-condition

This section demonstrates the flow-sensitive refinement in the context of an if-statement
through the example in Figure 3.2. Figure 3.3 shows the corresponding CFG and the
constraint variables V; created at each point of the execution. Vj is the declared type
of the method parameter x. The if-condition x<100 satisfies the requirements in Section
3.3.1, so Interval Type Inference performs refinement by creating a comparison constraint
variable V5 as the initial state of the then-branch, and a comparison constraint variable
V3 as the initial state of the else-branch. Meanwhile, the comparison constraint for the
then-branch is created with the 4-tuple ( V3, V5, ‘x — 100’, ¢ <’ ); and the comparison
constraint for the else-branch is created with the 4-tuple ( V4, V3, ‘@ —100’, * > 7). The
encoding of comparison constraints are introduced in Section 3.4.6.

int foo(int x) {
if (x < 100) {
return 100;
T

return Xx;

3

Figure 3.2: An example of if statement
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Figure 3.3: CFG for the example in Figure 3.2

3.3.3 A Demonstration of Refinement on Comparison in Loops

The refinement on a loop condition is the same as the refinement on an if-condition. The
complexity of the flow refinement in the context of a loop is introduced by the additional
backward flow that merges with the flow before the loop condition. Here we demonstrate
the refinement for loops through the example in Figure 3.4. Figure 3.5 shows the cor-
responding CFG and the fixed-point state at each point of the program execution. The
left sub-figure is the partial CFG without the backward flow. The right sub-figure is the
complete CFG, which shows the effect of the backward flow on the CFG.

Let V; (i € {1,2,3,4}) denote the abstract value of x at each point of the flow refinement
(the value in each Store), and V; = [a;, b;]. The flow-refinement process for the example is
as follows.

Line 2 After variable initialization, the interval of x is refined to [0, 0].

Line 3 When encountering the loop condition x < 100, Interval Type Inference creates
comparison constraint variable V; to refine the type of x in the then-branch, and V5
to refine the type of x in the else-branch.

Meanwhile, the comparison constraint for the then-branch is created with the 4-tuple
( [0,0], V4, ‘@ —100’, * <’ ), and the comparison constraint for the else-branch is
created with the 4-tuple ( [0,0], V5, ‘@ — 100", * >").

Line 4 The refinement for the increment x = x + 1 contains the following steps: (1)
an arithmetic constraint variable (denoted by V,) is created for the RHS addition.
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Vo =la1 +1,b; +1]. (2) a refinement constraint variable V3 is created for x, such
that V3 = V.

Loop End The backward flow at the end of the loop body is merged with the flow
before the loop. Therefore, a least-upper-bound constraint variable V} is created to
represent the merge between [0, 0] and V3, i.e. V, = V31 1[0,0].

Comparison Update Since the backward flow changes the abstract value of x before the
comparison at line 3, the comparison constraints need to be updated by substituting
Vj for [0, 0], such that

L VitV =V,

2. The comparison constraints for the then-branch and the else-branch are updated
to ( Vy, Vi, ‘@ —100", ‘<’ ) and ( Vy, Vo, ‘@ — 100", * > ) respectively.

1 int foo() {

2 int x = 0;

3 while (x < 100) {
4 x = x + 1;

5 }

6 return x;

7 3}

Figure 3.4: An example of while loop

The encoding introduced in Section 3.4 ensure the following solution.

Vi = [0,99], V3 = [100, 100], V5 = [1,100], V4 = [0, 100]

3.4 Changes to Encoding

This section introduces the SMT encoding in Interval Type Inference. Section 3.4.1 de-
scribes the encoding of constraint variables. Section 3.4.2 summarizes the reused part of
encoding from Value Range Inference. Because of the improvements to type hierarchy (Sec-
tion 3.1) and flow-sensitive refinement (Section 3.3), the encoding of well-formedness con-
straints, least-upper-bound constraints, arithmetic constraints and comparison constraints
are changed and optimized accordingly, as described in Section 3.4.3 to 3.4.6.
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Figure 3.5: CFG for the example in Figure 3.4. The left sub-figure is the partial CFG
without the backward flow, while the right sub-figure shows the effect of the backward
flow.

3.4.1 Constraint Variables

As mentioned in Section 3.1.1, Interval Type Inference contains exactly one kind of type
qualifier — @IntRange. To encode a constraint variable that stands for a real type qualifier,
only two variables «, § are required to represent the lower bound and the upper bound of
the interval, i.e. @IntRange(from=a, to=(3). Since Value Range Inference represents a
constraint variable using three boolean variables and two integer variables, our approach
decreases the number of SMT variables by up to 60%.

3.4.2 Constraint Encoding from Value Range Inference

Interval Type Inference reuses the constraint encoding from Value Range Inference for
subtype constraints, equality constraints and refinement constraints [16, Section 4.4]. This
section briefly summarizes the encoding of these constraints for the completeness of the
thesis.
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The following constraints involve multiple constraint variables. Denote the constraint
variables
V; := @QIntRange(from = oy, to = 3;),i € Z*

Subtype Constraint V| <: 1,

When a constraint variable V] is a subtype of V5, it means the interval represented by V5
contains the interval represented by Vi, i.e. the encoding is

a;p > as AP < B

Equality Constraint V; = 15

When two constraint variables are equal, they have equal lower bounds and equal upper
bounds, i.e. the encoding is

ap =g A\ B = B

Refinement Constraint Vi[ V] | =14

The refinement constraint refers to the constraint created for refinement on assignment.
(For the refinement on comparison, a comparison constraint is created. See Section 3.4.6.)
For an assignment x = e, a refinement constraint V3[ Vi | = V4 is created, where V;
represents the declared type of x, V5 represents the interval of the RHS expression e, and
V3 is the refinement constraint variable for the assignment. After refinement, the type of
x is updated to V3 and stored until the next refinement on x occurs.

V5[ V1 | = V4 is equivalent to a subtype constraint Vo <: V; and an equality constraint
V3 = V5. Therefore the encoding is

WBiVil=V, & > A <fihNag=asAfs=[

3.4.3 Well-formedness Constraint
Well-formedness constraints ensure that a constraint variable represents a valid interval

[16]. Since Interval Type Inference improves the encoding of constraint variables, the well-
formedness constraints for constraint variables are re-encoded. Given a constraint variable
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V := @IntRange (from=a,to=3), the well-formedness constraint is encoded depending on
the kind of V, as follows.

Source Variables
a<pB AN az>min(T)Np < max(T)

where T stands for an integral Java types. Based on the Java Language Specification
[28, Section 4.2],
e If T is char (or Character), min(T) = 0, max(T) = 2'¢ — 1;
e If T is int (or Integer), min(T) = —23! max(T) = 23! — 1;
e If T is 1long (or Long), min(T) = —25, max(T) = 26 — 1;

According to the case study on certain Apache Commons projects (Section 4.2), we
found that unsigned byte and unsigned short are frequently used in applications that
involve IO operations. For example, InputStream.read() returns an int value in [0, 255]

when it reads data successfully, or -1 when the input stream reaches EOF. A common use
case is to convert the int value to unsigned byte after EOF test.

Therefore, Interval Type Inference supports unsigned byte and unsigned short as
follows. If the underlying Java type is byte or Byte, the encoding of the well-formedness
constraint is

a<B A ((a>-128AB8<127)V(a>0AB < 255))

If the underlying Java type is short or Short, the well-formedness constraint is encoded
as
a<B A ((a>=2"A3<2P 1)V (a>0A3<20—1))

Refinement Variables

Since the lower bound and the upper bound of a refinement variable rely on that of the RHS
expression, it is redundant to constrain it with the Java integral type bounds. Therefore,

a<p
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Arithmetic Variables

Considering the possibility of arithmetic overflow/underflow, additional variables are in-
troduced to represent the computed interval of an arithmetic operation. Denote o', 5
as the computed lower bound and upper bound of the arithmetic operation. If [o/, ﬂ'] C
[min(7"), max(7")], then the actual bounds [, 3] = [, 3']; Otherwise we over-approximate
the interval to the maximal interval for soundness, i.e. [, 8] = [min(7"), max(T")]. There-
fore, the well-formedness encoding is as follows.

a<p

A
((@ >min(T) A f <max(T) A a=a A B=8)V
(@' <min(T) A o = min(T) A § = max(T)) V
(8" > max(T) A a = min(T) A 8 = max(T)) )

Least-Upper-Bound Variables

Since the lower bound and the upper bound of a least-upper-bound variable rely on the
constraint variables that merge to the least upper bound, it is redundant to constrain it
with the Java integral type bounds. Therefore,

a<p

Comparison Variables

Since the lower bound and the upper bound of a comparison variable never exceed the
interval of the variable it refines, it is redundant to constrain it with the Java integral type
bounds. Therefore,

a<p
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3.4.4 Least-Upper-Bound Constraint

When a constraint variable V3 is the least upper bound of V; and V5, the interval represented
by V3 is the union of Vi and V5. The constraint is denoted as V3 =V} U V5.

Value Range Inference represents V3 = Vi U V5 with two subtype constraints V) <: V3
and V5 <: V3. This is not precise because it only ensures that V3 is an upper bound of
Vi and V5 in the lattice, not the least upper bound. Therefore, it does not give the exact
lower bound and upper bound of V3.

In Interval Type Inference, the lower bound and the upper bound of V3 are expressed

using V; and V5, as

Vs=ViuVy, & a3=min(ay,as) A fs = max(f1, fa)

where az=min(ay, ay) is equivalent to

(O[lgOéz/\Oégzal) V (Oé1>(]12/\(13:0[2)

and fs=max(f;, f2) is equivalent to

(B < BaANBs=P2) V (1> P2 Ps=ph)

3.4.5 Arithmetic Constraint

In contrast to Value Range Inference, Interval Type Inference avoids any non-linear arith-
metic operations in the SMT encoding to use the theory of linear integer arithmetic for
decidability and higher performance. The non-linear arithmetic operations include mul-
tiplication between two constraint variables, division/modulo where the divisor is a con-
straint variable, bit-shift where the number of positions to shift is a constraint variable,
etc.

In Section 3.4.3, we introduced computed lower bound «; and upper bound §; for
arithmetic constraint variables, which are used in the encoding of arithmetic constraints.
Take addition V3 = V; + V, as an example, the computed lower bound and upper bound
are as follows.

Vi=Vi+Ve & az=ar+asABy=p+ B
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If either of the computed bounds exceeds the limit of the underlying Java integral
types (which means an overflow /underflow is possible), then the real interval for V3 is over-
approximated to the maximal interval of the underlying type of the arithmetic operation
for soundness. Assume the underlying types of Vi, V5 are int, then the encoding is

ay < By
A
((ag<—2"Nag=-2""AB;=2"—1)v
(By> 2" —1Nag= -2 APy =21 1) v
(a5 > =28 A By <2 —1Aas=asABs =) )

3.4.6 Comparison Constraint

According to Section 3.3.1, the comparison constraint for a comparison in the form “ax +
by op ¢” is defined by a 6-tuple

(Xbefm"eu Xaftera }/befm"e; }/aftem f> OAp)

where Xpefore, Yoefore are the abstract values of x,y before comparison, X, fier, Yafrer are
the abstract values of z,y after comparison, f represents the unified linear function ax +
by — ¢, and op is the comparison operator. When the comparison expression contains a
single variable, as “ax op ¢”, then the comparison constraint is simplified to a 4-tuple
(Xbefore, Xafters f, 0p). In this section we present the encoding for the more general
2-variable expressions, and it is easy to simplify it to 1-variable expressions.

A comparison constraint is encoded by expressing the bounds of X ¢ter, Y prer With the
bounds of Xie fore; Yoefore, based on the particular linear function f and the relation op, i.e.

Ogafter = fL(abeforea Bbefore)

ﬁafter = fU(abeforea ﬁbefore)

where afier = (x50, O, ., ) i a 2-dimension vector consisted of the lower bounds of
Xafters Yafter - Bagter = (Bx, feers DY, fm) is a 2-dimension vector consisted of the upper
bounds of X tier, Yafter- The similar for apegore and Bpefore. Functions fr, fy vary with
the linear function f and comparison operator op.
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To determine f;, fr, we perform case analysis on the lower bound and upper bound of
Xafters Yafter separately. We take the lower bound of X ., for example, and simplify the
notation by letting

Xbefore - [1'1,172], YEJefore = [y1>y2]7Xafter = [$37$4]7 Yafter = [y?n ?/4]

1. The lower bound before comparison is the lower bound after comparison (i.e. x3 =
x1), iff Jy € [y1, y2] such that the comparison condition is true (i.e. f(x1,y) dp 0).

2. Otherwise, the lower bound before comparison cannot be the lower bound after com-
parison. Then the lower bound after comparison is a value between x; + 1 and x5
(i.e. 23 > x1). In this case, z3 is reasoned from the following constraints.

(a) Jy € [y1,y2] such that the pair of (x3, y) satisfies the comparison condition, and

(b) Py € [y1, yo] such that the pair of (z3 — 1, y) satisfies the comparison condition.

The detailed encoding for comparison constraints vary with the comparison operators.
Here we demonstrate the encoding details of “equal-to” and “less-than”.

“Equal-To” Comparison

Given a general two-variable “equal-to” comparison ¢;x 4 ¢y = k (c1, 2, k are constant
integers, ¢; # 0, ¢ # 0). We first unify the expression to the standard form ¢;z + coy = k
where ¢; and ¢y are positive integers. This minimizes the size of the encoding without
considering the polarity of the coefficients.

1. If ¢4 < 0, convert the expression to —cix — coy = —k, and update ¢; < —cq,co
—c9, k < —k. Otherwise go to step 2.

2. For the intermediate result c;x + coy = k (where ¢; > 0) from step 1, if co < 0,
introduce an auxiliary variable z. Let z = —y and update ¢y + —co. Otherwise
z =y. Done.

The unified comparison expression to be encoded is
1w+ ez — k=0 (c1,c0 €27,k €7)

Denote f(x,z) = cix + coz — k in the following text for brevity.
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Assume before comparison, the environment I' = 2 : X, I' - 2z : Z;.. In the then-branch
after refinement, I' = x : Xop, I' = 2 : Z,;. Here we introduce the approach to represent
the after-comparison state X, Z,r using the before-comparison state Xj., Zp.. Let

Xpe = [T1, 2], Zpe = [21, 22), Xap = (3, 4], Zay = [23, 24

For the lower bound of X, we perform the following case analysis:

1. x3 = xy if 32 € [21, 29, such that f(x,z) =0, i.e. [z1, 22] contains a zero-crossing for
the equation f(z1,2) = 0. Therefore,

f([El,Zl) SO A f(Il,ZQ) 20 = T3 =2

2. Otherwise, fiz € [z, 2o], such that f(x1,2) = 0. Either the maximum value f(z,, z5) <
0 or the minimum value f(z1,21) > 0 (note that in the latter case the f(z,y) is al-
ways positive), i.e. f(x1,22) < 0. Then 1 < z3 < x5, and x5 satisfies the following
constraints:

(a) 3z € |21, 22, such that f(x3,2) =0. &
f(x3,21) <0 A f(az,22) 20
(b) Pz € [21, 22], such that f(z3 —1,2) =0. & Vz € [21,2), flas—1,2) <0 <
flrs—1,29) <0
Combining the two cases, the encoding for the lower bound of X, (i.e. z3) is as follows.

(f([lfl,Zl) SO A f(l'l,ZQ) 20/\.1'3:.1'1)
V
(flz1,22) <O A flas,21) SO A flag,22) 20 A fzg—1,22) <0)

For the upper bound of X,;, we perform the following case analysis:

1. x4 = xy if 32 € [z, 25, such that f(x9,2) = 0, i.e. [z1, 22 contains a zero-crossing
for the equation f(xs,z) = 0. Therefore,

flza,21) <O A f(22,20) >0 = 14 =19
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2. Otherwise, $z € [z, 20], such that f(x,2) = 0. Either the maximum value f (2, 25) <
0 or the minimum value f(xs,21) > 0 (note that in the former case the f(x,y) is
always negative), i.e. f(zg,21) > 0. Then z; < x4 < x9, and x4 satisfies the following
constraints:

(a) 3z € [21, 22], such that f(x4,2) =0, i.e.
f(za,21) SO A f(24,22) 20
(b) Pz € [21, 2], such that f(z4+1,2) =0. & Vz € [z, 2], f(ra+1,2) >0 &

flzg+1,2)>0

Combining the two cases, the encoding for the upper bound of X, (i.e. x4) is as follows.

(f(w2,21) SO A f(wg,20) 20N w4 =125)
V
(flwo,21) >0 A f(oa,21) SO A f(24,22) 20 A fra+1,21) >0)

Symmetrically, Z,; is encoded in the same way as above.

“Less-Than” Comparison

Given a general two-variable “less-than” comparison c1x + coy < k (c1, ¢2, k are constant
integers, ¢; # 0 and ¢y # 0). We first unify the expression to the standard form c;x+coy < k
or c1x + coy > k where ¢; and ¢y are positive integers. The steps are as follows.

1. If ¢ > 0, go to step 2; otherwise convert the expression to —cix — coy > —k, and
update ¢; < —cq, ¢ < —co, k < —k. Then go to step 3.

2. For the current intermediate result ¢;x + coy < k (where ¢; > 0), if ¢o < 0, introduce
an auxiliary variable z. Let z = —y, and update ¢y < —co. Otherwise z = y. Done.

3. For the current intermediate result c;x + coy > k (where ¢; > 0), if ¢; < 0, introduce
an auxiliary variable z. Let z = —y, and update cy < —cy. Otherwise z = y.
Done. Since the original “less-than” comparison is converted to a “greater-than”
comparison, the encoding of “greater-than” comparison is applied and is
omitted here.
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The unified comparison expression to be encoded is
1w+ oz —k <0 (c1,c0 €21k €7)

Denote f(x,z) = ciz + c2z — k in the following text for brevity.

Assume before comparison the environment I' - x : Xy, I' = 2 : Zp.. In the then-branch
after refinement, I' =z : Xy, I' = 2 : Z,;. Here we introduce the approach to represent
the after-comparison state X,r, Z,r using the before-comparison state Xj., Zp.. Let

Xpe = [21,T2], Zpe = [21, 22), Xap = [T3, T4], Zaf = [23, 24]

For the lower bound of X,f, x5 = ;.

For the upper bound of X,¢, we perform the following case analysis:

1. If 32 € [z, 29, such that f(xs,z) < 0, then x4 = 9, i.e.

f(l’g,Zl) <0 = z4=129

2. Otherwise, iz € [z1, 2], such that f(x9,2) < 0,1i.e. f(z2,21) > 0. Thenz; < 24 < 9,
and x4 satisfies the following constraints:

(a) 3z € [21, 22], such that f(x4,2) <0, i.e.
flxg,21) <0
(b) Pz € [21, 2], such that f(zs +1,2) < 0. & Vz € [z, 2), flaa+1,2) >0 &
flzag+1,2)>0
Combining the two cases, the encoding for the upper bound of X, is as follows.

(f($2,21)<0 A IE4:LE‘2)
V
( f(:Eg,Zl) Z 0 A f($4,21) <0 A f(l’4 + 1,21) Z 0 )

Symmetrically, Z,s is encoded in the same way as above.
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3.4.7 A Demonstration of Encoding

This section demonstrates the encoding of the example in Figure 3.6. InputStream.read is
a library method which returns an int value in [-1, 255]. Therefore at line 2, the interval of
the RHS expression in.read() is a constant interval [-1, 255]. At line 3, data is compared
with -1 (i.e. EOF) before casting to ensure the interval of data is within the magnitude
of unsigned byte, [0, 255]. Therefore, the narrowing cast is safe.

In the context of Interval Type Inference, the following constraint variables are cre-
ated. An invisible constraint variable @VarAnnot(6) is the declared type of the local
variable data. An invisible constraint variable @VarAnnot (8) is the refinement constraint
variable when data is assigned the return value of in.read() at line 2. @VarAnnot(10)
and @VarAnnot(11) (not shown in the annotated code) are the comparison constraint
variables for the then-branch and else-branch separately after the comparison at line 3.
@VarAnnot (12) is the interval type of the narrowing cast to byte at line 4. Another invisi-
ble constraint variable @VarAnnot (13) is the least-upper-bound constraint variable created
for data when the two branches merge. @VarAnnot(14) is the interval type of the method
return. For brevity, we use V; (i € N) to refer to @VarAnnot (i) in the rest of this section,
and let V; := [a;, b;]. Figure 3.7 shows the result of dataflow analysis.

1 byte foo(InputStream in) throws IOException {
2 int data = in.read(); // RHS: [-1,255]
3 if (data > -1) {

4 return (byte) data;

5 }

6 throw new EOFException();

7}

8

9

10 @VarAnnot (14) byte foo(InputStream in) throws IOException {
11 int data = in.read();

12 if (data > -1) {

13 return (@VarAnnot (12) byte) data;

14 }

15 throw new EOFException();

16 7

Figure 3.6: A example to illustrate constraint encoding. Lines 1-7 are the raw code. Lines
10-16 are the annotated code with the constraint variables.

The constraints created through the dataflow analysis and the Type Visitor are as
follows.
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| data = in.read() |

Store

data: [a8, b8]

data = -1

Store
Store

data; [all, bll]

data: [al0, blQ]

Y

| (byte) data | ‘thruw new EOFException

Figure 3.7: CFG for the example in Figure 3.6.

Line 2 : A refinement constraint Vi[Vs] = [—1,255] is created for the assignment. The
refinement constraint is converted to a subtype constraint [—1,255] <: V4, and an
equality constraint Vg = [—1,255]. Therefore ag = —1,bg = 255.

Line 3 : A comparison constraint of 4-tuple (Vg, Vip, ‘x + 1',¢ > ) is created for the
refinement on the then-branch. The comparison constraint is encoded by representing
the bounds of Vjy with the bounds of V4, as follows.

For the upper bound of Vig, bijg = bg = 255. For the lower bound of Vig, a9, we
perform the following case analysis.

1. If the lower bound of V; satisfies the greater-than condition, i.e. ag > —1, then
ag is the lower bound of Vjq, i.e. a19 = ag. However, this case is not applicable
because it is already derived from the previous constraints that ag = —1.

2. Otherwise, the lower bound of Vg does not satisfy the greater-than condition.
Then the lower bound of Vi, aig is a value between ag + 1 and bg. Therefore
the following constraints hold: a;g > —1 Aayp—1<—-1. = a;g=0.

Similarly, a comparison constraint of 4-tuple (Vg, Vi1, ‘x + 17, <) is created for the
refinement on the else-branch. The comparison constraint is encoded by representing
the bounds of Vj; with the bounds of V%, as follows.
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For the lower bound of Vi1, a;; = ag = —1. For the upper bound of Vjq, by, we
perform the following case analysis.

1. If the upper bound of Vg satisfies the less-than-equal condition, i.e. by < —1,
then bg is the upper bound of Vjq, i.e. b;; = bg. However, this case is not
applicable because it is already derived from the above constraints that bg =
255.

2. Otherwise, the upper bound of Vg does not satisfy the less-than-equal condition.
Then the upper bound of Vi1, by; is a value between ag and by — 1. Therefore
the following constraints hold: by; < —1 Ab;+1>—-1. = b =—1.

Line 4 : An equality constraint Vi, = Vjq is created to enforce the type rule of narrowing
conversion. i.e. ajp = ajg = 0, b1y = byg = 255.

Meanwhile, the type of the narrowing cast is a subtype of the method’s return type,
so a subtype constraint Vi, <: V4 is created and encoded as a1y < aja A byg > bis.
Combine the well-formedness constraint of Vj4 (whose underlying type is byte) =
14 = 0, 1)14 = 255.

Therefore, the solution for the example is

Vs = [—1,255], Vip = [0,255], Vi1 =[—1,—1], V12 =[0,255], V14 = [0,255]
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Chapter 4

Implementation and Evaluation

In this chapter, Section 4.1 introduces the implementation details of Interval Type Inference
upon Checker Framework Inference. Section 4.2 introduces the experiments performed to
evaluate Interval Type Inference and a comparison between Value Range Inference and
Interval Type Inference. A docker image! is provided to reproduce the experiments, and
the implementation of Interval Type Inference is available on Github?.

4.1 Implementation

Interval Type Inference is implemented upon Checker Framework Inference. It utilizes the
basic components shown in Figure 2.1 and extends the functionality of certain components
(colored in Figure 4.1). Section 4.1.1 to 4.1.5 introduce the extended components in detail.
Section 4.1.6 summarizes the limitations in the implementation.

4.1.1 Tree Annotator

The Tree Annotator in Interval Type Inference extends the base type from the following
aspects.

1. If the tree is not integral, add the constant annotation @UnknownVal to it.

Thttps://hub.docker.com /repository/docker /wongdi/artifact
2https://github.com/d367wang/value-inference/tree/artifact
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Interval Type Inference
source
variables
| TreeAnnotator
+ refinement
4 » arithmetic
M crcsuilder CFG‘_ Transfer » least upper bound
"l Eunction
AST con_straint
variables
Y SMT
Source ) AST - constraints fomula
Code —» javac » InferenceVisitor P ConstraintEncoder » Z3 Solver
annotations solution
SolutionDecoder |

Figure 4.1: Diagram of Interval Type Inference. It is implemented upon Checker Frame-
work Inference (Figure 2.1) by extending the components in gray color.

2. If the tree has constant integral value ¢ (integral literal or final static variable), add
the constant annotation @IntRange (from=c, to=c) to it.

3. Otherwise, call the base Tree Annotator to create a source variable.

4.1.2 Stub Classes

The Tree Annotator in Section 4.1.1 adds annotations only to source code. For fields and
methods from bytecode, the annotations are specified through Java stubs.

A Java stub file allows omitting the method bodies and only listing the annotated
signatures of library (e.g. JDK) methods [29, Section 34.5]. Checker Framework Inference
supports stub classes as follows. When the Tree Annotator encounters a field access or
method invocation which is specified in a stub file, it adds the annotations specified in
the stub-version field/method declaration. If no such stub file exists, then the default
annotation is applied.

The stub classes annotated in Interval Type Inference are mainly 1/O libraries such as
java.io and java.nio. The manual annotations are added based on the specifications in
JDK documentation.
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4.1.3 Transfer Function

Transfer Functions for interval are extended in the following aspects.

Transfer Function for Comparison

The transfer function first checks if the comparison operands are integral. If not, no
comparison constraint is created.

We implement a lightweight tree visitor that extracts and unifies the comparison ex-
pression. When the expression is a linear expression of at most 2 variables, the transfer
function for the comparison tree creates a comparison constraint variable for each variable
in the expression in both of the then-branch and the else-branch. Meanwhile, a comparison
constraint is created for each of the then-branch and the else-branch separately (see Section
3.3). Then the output Store of the transfer function is updated with the comparison con-
straint variable. Otherwise the transfer function passes the input Store to the successive
nodes in the CFG, meaning no refinement is performed for any variable in the expression.

Transfer Function for Assignment

The transfer function first checks if the underlying type of the assignment expression is
integral. If not, no refinement constraint is created.

4.1.4 Inference Visitor

The Inference Visitor in Interval Type Inference extends the base type by implementing
the type rules regarding widening and narrowing in Section 3.2.

4.1.5 Constraint Encoder

The Constraint Encoder transforms the constraint variables and constraints to SMT-LIB2

format as the input of the Z3 solver, according to the encoding described in Section 3.4.
The Constraint Encoder utilizes Z3 Java API to generate SMT-LIB2 file and then the Z3
solver is invoked.

41



4.1.6 Limitations

Interval Type Inference currently does not support the full features of Java language,
including:

1. It does not perform flow-sensitive refinement when a comparison expression contains:

(a) method invocations;

(b) conditional expressions, e.g. if (Constants.CR != (i > 0 ? buf[i - 1]
lastChar));

(c) postfix increment/decrement operations, e.g. while (count++ < 10).

2. It does not correctly handle a comparison within a loop body, e.g.

int x = 0;
while (obj !'= null) {
if (x > 10) {
break;
}
x += 1;

}

The dataflow analysis in Interval Type Inference only evaluates the first iteration of a
loop. After the backward flow is merged with the flow before the loop condition obj
= null, the dataflow analysis quits the loop and proceeds. Therefore, the update
of x caused by the flow merge is not propagated to the comparison x > 10.

A solution to this issue is to adapt the dataflow analysis to evaluate two iterations
of a loop:

(a) In the first iteration, walk through all the CFG nodes in the loop by running the
corresponding transfer functions. In the case above, two comparison constraints
are created at the comparison, as (Vo, Vipen, “@ — 107, “ > ") and (Vy, Vise, “x —
107, “ <), where Vj is the initial state of x, Vi, is the abstract value in the
then-branch, and V. is the abstract value in the else-branch.

(b) In the second iteration, only check each comparison within the loop body. If
the abstract value of any variable in the comparison expression is changed after
the flow merge at the begining of the loop condition, update the corresponding
comparison constraints. In the above case, x += 1 updates the abstract value

42



of x at the end of the first iteration, which is then merged with the flow be-
fore the loop condition. The merge causes the creation of a LUB constraint
variable Vi g. The LUB constraint variable is the fixed-point state of x at
the point before x > 10. Therefore, the comparison constraint is updated to
(Veuss Viken, “o —107,“ > ") and (Viup, Veise, “v — 107, “ < 7).

4.2 Evaluation

The experiments are conducted on a 64-bit Ubuntu 20.04 platform with an eight-core
CPU and 16GB RAM. We run Interval Type Inference on 5 Apache Commons projects:
commons-bcel, commons-crypto, commons-csv, commons-io and commons-text, all of which
are chosen for uses of narrowing conversions. Interval Type Inference runs in inference mode

(Section 2.2.1) in the following steps.

1. Run Interval Type Inference on the target project. If the result is SAT, collect the
statistics, and the experiment on the target project is completed.

2. Otherwise, get the UNSAT core constraints and locate the conflicting constraints.
Analyze the reason of the conflict, resolve it and repeat step 1.

All the 5 projects yield UNSAT in the first run. By analyzing the UNSAT core con-
straints, we find multiple reasons that cause UNSAT: unsafe narrowing casts, uses of
invalid input, dead branches, false positives. Table 4.1 shows the statistics on the

UNSAT causes.

Project Unsafe Narrowing

Using Invalid Input

Dead Branch

False Positive

commons-bcel 11
commons-crypto
COMIMONs-csv
commons-io
commons-text

N = O

1

O NN OO

0

0
0
1
1

5

SRS Bo T

Table 4.1: The statistics on UNSAT causes
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4.2.1 Unsafe Narrowing Cast

Unsafe narrowing conversions between integral types are the most common issues in the
experiments. For example in commons-io, method SwappedDataIlnputStream.readByte
is defined as

@0verride

public byte readByte() throws IOException, EOFException {

return (byte)in.read();

}

The interval type of in.read() is @IntRange (from=-1,t0=255). Casting it to byte
without EOF test is unsafe, because both -1 and 255 have the same byte representation.
According to the specification of readByte, an EOFException is thrown when the input
stream reaches EOF. Therefore, a possible fix is

Q0verride
public byte readByte() throws IOException, EOFException {
int data = in.read();

if (data > -1) {

return (byte)in.read();
}
throw new EOFException();

Another issue is found in commons-bcel. Method Signature.matchIdent contains the
following code fragment.

1 final StringBuilder buf2 = new StringBuilder ();

2 ch = in.read();

3 do {

4 buf2.append ((char) ch);

5 ch = in.read () ;

6 } while ((ch '= -1) && (Character.isJavaldentifierPart ((char) ch)
7 [1 (ch == 2/7)));

8 buf.append(buf2.toString () .replace(’/’, ’.7));

At line 2, ch is assigned the result of in.read (). Then at line 3, ch is directly converted
to char and appended to the StringBuilder buf2 without EOF test. If the value is -1, the
character corresponding to 65535 is appended to buf2. A possible fix to this issue is to
use while loop instead of do...while loop, as follows.

final StringBuilder buf2 = new StringBuilder () ;
ch = in.read();
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while ((ch '= -1) && (Character.isJavaldentifierPart ((char) ch)
[l (ch == */?))){
buf2.append ((char) ch);
ch = in.read();
}
buf . append (buf2.toString () .replace(’/’, ’.7));

For other issues of unsafe narrowing conversions, please refer to Appendix A.

4.2.2 Using Invalid Input

In commons-io, class NullInputStream extends the JDK class InputStream and overrides

method int read(final byte[] bytes, final int offset, final int length). The
overriding method directly uses the input length as the output without sanity check, which

may return arbitray negative integer values and violate the method specification: the return

interval is [-1, 231 — 1], where -1 means the input stream reaches EOF.

A fix to this issue is to explicitly annotate the parameter length with @IntRange (from=0,
t0=2147483647), which guarantees that only non-negative integer is passed for length.
An alternative is to validate the input length before using it.

For other issues of uses of invalid input, please refer to Appendix B.

4.2.3 Dead Branches

For the current encoding of Interval Type Inference, the existence of a dead branch causes
the constraints to be UNSAT. This is because the well-formedness constraints of comparison
variables enforce the intervals after comparison are valid (not L) in both then-branch and
else-branch. Therefore, if a dead branch exists, the intervals in the dead branch are L, so
that the well-formedness constraints in the dead branch cannot be satisfied.

In commons-io, method ByteArrayQutputStream.write contains if-condition
(off < 0)|]...||(Len < 0)||...]|(Coff + len) < 0)

According to short-circuiting, after the refinement on the first two comparison expressions
off < 0 and len < 0, each of off and len is refined with a comparison constraint vari-
able whose lower bound is greater than or equal to 0. Therefore, the last comparison
off + len < 0 is always false and is redundant. The UNSAT core can be resolved by
removing the redundant condition.
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4.2.4 False Positives

The false-postive cases found in the experiments are caused by various reasons as follows.

Under-Constrained Integer.parselnt

The JDK method Integer.parselnt parses a given string to an integer. In some cases,
the length of the input string is constant and determines the lower bound and upper bound
of the result integer. A string of length 2 is capable to represent integers in [-15, 255] (from
“F” to “FF”). Figure 4.2 is a code fragment in commons-bcel. The enclosing method
of the code fragment is invoked by another method, which converts the method return to
byte.

After the refinement for i at line 1 and the refinement for j at line 3, the parsing result
at line 9 is an integer in [0, 255] (from “00” to “FF”), and is safe to be cast and used as a
byte. However, Interval Type Inference makes conservative assumptions that the interval
of Integer.parselnt is [—23! 23! — 1] and falsely issues an error.

1 if (((i >= 207) && (i <= °9’)) || (1 >= ’a’) && (i <= ’£2))) {
2 final int j = in.read();

3 if (j < 0) {

4 return -1;

5 }

6 final char[] tmp = {

7 (char) i, (char) j

8 s

9 final int s = Integer.parselnt(new String(tmp), 16);
10 return s;

1 3}

Figure 4.2: A false-positive case caused by under-constrained Integer.parselnt

We can resolve these kind of false positives by introducing additional constraint vari-
ables associated with string lengths and additional constraints to express the input-output
relation of Integer.parselnt.

Under-Constrained Math.min/Math.max

The min/max methods have implied relations between input and output. Figure 4.3 is a
use case of Math.min in commons-io.
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1 long remain = toSkip;

2 while (remain > 0) {

3 skipByteBuffer.position(0);

4 skipByteBuffer.limit ((int) Math.min(remain, 2048));
5 final int n = input.read(skipByteBuffer);

6 if (n == EOF) {

7 break;

8 }

9 remain -= n;

0

10 }

Figure 4.3: A false-positive case caused by under-constrained Math.min

At line 4, the actual interval of Math.min(remain, 2048) is [1, 2048]. Therefore,
narrowing it to int is safe. However, Interval Type Inference over-estimates the interval of
Math.min to [—253,2%3 — 1] and issues an unsafe narrowing cast, which is a false positive.

We can resolve these kind of false positives by introducing additional constraints to
express the input-output relations of Math.min / Math.max.

Unconstrained Post-conditions

A false positive caused by unconstrained post-conditions is shown in Figure 4.4, which
comes from commons-bcel. Not aware of the post-conditions of Instruction.isValidByte
and Instruction.isValidShort, Interval Type Inference falsely issues errors at line 5 and
line 7 for “unsafe narrowing conversions”.

To avoid these kind of false positives, specific post-condition qualifiers should be sup-
ported. A post-condition qualifier for method declarations is proposed in [16, Chapter 3]
as follows.

@EnsuresIntRangelf(result=b, expression=¢, from=I, to=u) indicates a conditional
method post-condition: if the annotated method returns boolean value b, then the
interval of the given expression e is [[, u].

By adding the post-condition qualifier to the method Instruction.isValidByte at
line 16, it guarantees that when the method returns true, the input is in the range [-
128, 127], so that in the then branch at line 5, casting value to byte is safe. Similarly,
by adding the post-condition qualifier to Instruction.isValidShort at line 21, casting
value to short is safe at line 7.
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W N =

13

public PUSH(final ConstantPoolGen cp, final int value) {
if ((value >= -1) && (value <= 5)) {
instruction = InstructionConst.getInstruction(Const.ICONST_O +
value) ;
} else if (Instruction.isValidByte(value)) {
instruction = new BIPUSH((byte) value);
} else if (Instruction.isValidShort(value)) {
instruction = new SIPUSH((short) value);
} else {
instruction = new LDC(cp.addInteger (value));
}
}

public abstract class Instruction implements Cloneable {

@EnsuresRangelf (result=true, expression="#1", from=-128, to=127)
public static boolean isValidByte(final int value) {

return value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE;
3

@EnsuresRangelf (result=true, expression="#1", from=-32768, to=32767)
public static boolean isValidShort(final int value) A

return value >= Short.MIN_VALUE && value <= Short.MAX_VALUE;
}

}

Figure 4.4: A false-positive case caused by unconstrained post-conditions. By adding post-
condition qualifiers to the method isValidByte and isValidShort, the false positives at
line 5 and line 7 can be avoided.
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Interval Type Inference can support the above post-condition qualifier by introducing
new constraint variables and constraints when a method annotated with the qualifier is
invoked.

Relation Insensitivity

Built upon Checker Framework Inference, Interval Type Inference does not keep track of
relations between variables. Figure 4.5 shows a false-positive case in commons-text. After
the if-statement at line 10, pos < StrBuilder.this.size(). Then at line 14, the RHS is
always positive, so at line 18, the return value len is always positive, which satisfies the
method specification that the return value is in [—1, 23! — 1].

However, in Interval Type Inference, the intervals of both pos and StringBuilder.this
.size() at line 14 are [0, 23! —1]. Therefore the interval of the subtraction is [—231+1, 23! —
1], so that at line 18, the interval of the return is [—23! 4+ 1,231 — 1], which violates the
method specification.

1 @Overrides

2 public int read(final char[] b, final int off, int len) {
3 if (off < 0 || len < O || off > b.length

4 Il (off + len) > b.length || (off + len) < 0) {
5 throw new IndexOutOfBoundsException();

6 }

7 if (len == 0) {

8 return O;

9 }

10 if (pos >= StrBuilder.this.size()) {

11 return -1;

12 }

13 if (pos + len > size()) {

14 len = StrBuilder.this.size() - pos;

15 }

16 StrBuilder.this.getChars(pos, pos + len, b, off);

17 pos += len;

18 return len;

19 }

Figure 4.5: A false positive case caused by missing relational analysis

A solution for such false positives is to use deductive verification tools to prove the
properties regarding relations between variables, which introduces a significant specification
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and verification overhead. A method to achieve a balance between scalability and precision
is to combing type systems with deductive program verification approaches [30].

4.2.5 Performance

Table 4.2 shows the performance of Interval Type Inference. We measure the time con-
sumption of different stages of the inference process. The SMT-serialization time t e, iqrize
represents the time to generate the SMT formulas from the constraints. The SMT-solving
time t,0e represents the time to check the satisfiability of the SMT formulas and get a
model. The total time ;. is the entire running time of Interval Type Inference on the
target program, which is the summation of .. iaiize, tsole and the time consumed by other
procedures including code compilation, dataflow analysis, AST traversal and constraint
generation. The result shows that procedures including code compilation, dataflow analy-
sis, AST traversal and constraint generation consume the largest proportion of the entire
running time.

Interval Type Inference

Project kLOC tserialize Zfsolve ttotal
commons-bcel 30.4 2.07 15.09 161.78
commons-crypto 2.9 0.3 0.3 12.10

COMmMons-csv 1.6 0.26 0.45 10.68
commons-1o 10.0 0.99 3.77  36.09
commons-text 5.9 1.15 4.80 43.11

Table 4.2: Performance of Interval Type Inference. kLOC is the number of thousands of
lines of non-comment code, counted by the tool cloc*. t.riaize is the SMT-serialization
time, tsope is the SMT-solving time, and t;,, is the total running time. All the time
consumption are in seconds.

4.2.6 Comparison with Value Range Inference

The comparison between Value Range Inference and Interval Type Inference is performed
from two aspects: constraint size and performance.

4http://cloc.sourceforge.net/
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Comparison of Constraint Size

Table 4.3 and Table 4.4 compare the numbers of constraint and constraint variables between
Value Range Inference and Interval Type Inference. Interval Type Inference significantly
reduces the numbers of the constraint variables and constraints.

Value Range Inference Interval Type Inference
Project Vg UR VA vy, Vo total Vg VR VA vy, Vo total
commons-bcel | 18551 4523 908 3257 3084 30323 | 4958 1697 718 1150 2168 10691
commons-crypto | 1834 404 113 304 304 2959 | 712 167 95 111 198 1283
COMMONS-CSV 891 247 67 357 306 1868 | 235 129 64 164 266 858
commons-io 5943 1286 556 1726 1594 11105 | 1702 645 451 621 964 4383
commons-text | 3909 1084 624 1499 1422 5838 | 1557 803 585 772 1050 4787

Table 4.3: A comparison of the number of constraint variables. vg, vg, v4, v1,, vc represent
the numbers of source variables, refinement variables, arithmetic variables, least-upper-
bound variables and comparison variables respectively.

Value Range Inference Interval Type Inference
PI‘Oj ect Csub Ceq Car Ccomp Csub C'eq szr Ccomp
commons-bcel | 43132 5241 909 1758 | 8151 1912 718 1296
commons-crypto | 2951 608 113 254 | 993 196 95 156
€COMMONS-csv 2205 372 67 184 618 149 64 148
commons-io 11859 2228 556 1272 | 3281 828 451 672
commons-text 9911 1461 624 1068 | 3496 982 585 712

Table 4.4: A comparison of the number of constraints. Cyup, Ceq, Car, Ceomp represent the
numbers of subtype constraints, equality constraints, arithmetic constraints and compari-
son constraints respectively.

Comparison of Performance

We measure the running time of Value Range Inference and Interval Type Inference on
commons-csv, as shown in Figure 4.5.

The following conclusions are drawn from the comparison.

1. tseriatize depends on the number of the constraints in the entire program. By simpli-
fying the interval type hierarchy, the number of constraints decreases significantly.
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Value Range Inference | Interval Type Inference
Project kLOC tserialize tsolve ttotal tsem’alize tsolve Zftotal

CoOmmons-csv 1.6 0.84 2.73 13.66 0.26 0.46 10.68

Table 4.5: Value Range Inference v.s. Interval Type Inference on performance.

2. tsowe also decreases significantly, for multiple reasons including

(a) The reduction in the number of constraints, thereby the size of SMT encoding.

(b) Refinement is disabled for non-linear arithmetic operations.

3. The decrease in ;.4 is approximately equal to the decrease in tseriqrize + tsoiwve- Lhis
means that the time consumed by dataflow analysis, AST traversal and constraint
generation barely changes.
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Chapter 5

Conclusion and Future Work

Interval analysis is useful in providing facts of the target program that help developers de-
tect issues including unsafe narrowing casts, out-of-bound indices, numerical overflows /un-
derflows, divisions-by-zero, dead branches, etc.

In this thesis, we present Interval Type Inference which improves Value Range Infer-
ence. Improvements are made from the aspects of soundness and efficiency. First, we
reduce the size of the SMT encoding by simplifying the interval type hierarchy and the
SMT representation of interval types. Second, we redefine type rules regarding widening/-
narrowing conversions and constraints rules regarding flow-sensitive refinement, especially
in the context of loops. Then we propose the SMT encoding for the constraint variables
and the constraints. Finally, we perform experiments on selected open source projects and
analyze the issues that are discovered by Interval Type Inference.

However the work in the domain is not finished and can be further improved in the
following ways.

This thesis only focuses on using Interval Type Inference to find unsafe narrowing casts
in a program. Issues such as invalid array index, overflow /underflow, division-by-0 remain
to be explored. For each domain, specific type rules need to be defined.

In the encoding phase, all the constraints are encoded together into one SMT file. In the
solving phase, the SMT solver exits immediately once it finds a conflict in the constraints.
Therefore, Interval Type Inference can only find one issue by one run, even when there
exist multiple issues in the source code that cause UNSAT. To improve the efficiency, the
following approaches can be explored.
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e When the solver finds an UNSAT core, remove the UNSAT core from the SMT formulas
and rerun the solver iteratively, until the solver yields SAT.

e Separate constraints to multiple SMT files by certain strategies, so that parallelization
is possible.

Interval Type Inference encodes constraints with the linear integer arithmetic (LIA)
theory. Since computer programs are based on bounded integral data types instead of
unbounded mathematical integers, the bit-vector theory is capable of modeling the program
behaviors more precisely than LIA [31], especially for overflows and underflows. Therefore,
the encoding of constraints to bit-vector formulas can be explored for higher precision.

According to the experiments in Section 4.2, false positives are divided into three
categories based on the causes: under-constrained library methods, unconstrained post-
conditions and insensitivity of relations between variables. For the first two categories,
specific constraint variables and constraints are required to express the method semantics.
To resolve the last category of false positives, one possible solution is to combine deductive
program verification approaches [30].

This thesis only evaluates Interval Type Inference in inference mode (see Section 2.2.1).
While Value Range Inference defines a set of soft constraints to support annotation mode,
Interval Type Inference can incorporate such soft constraints to work in annotation mode
after the satisfiability of hard constraints is proved. Further experiments are needed to
evaluate the effect of the soft constraints on precision and performance.

o4



References

1]

Anders Mgller and Michael I Schwartzbach. Static program analysis. Notes. Nov,
2021.

Axel Simon. Value-Range Analysis of C' Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities. 2008.

Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst. Lightweight
verification of array indexing. Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018.

Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and
John Penix. Using static analysis to find bugs. IEEE Software, 25(5):22-29, 2008.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition,
2002.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins, and Michael D.
Ernst. Practical pluggable types for Java. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ISSTA 08, page 201-212, New York,
NY, USA, 2008. Association for Computing Machinery.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivang Muslu, and Todd Schiller.
Building and using pluggable type-checkers. In ICSE 2011, Proceedings of the 33rd
International Conference on Software Engineering, pages 681-690, Waikiki, Hawaii,
USA, May 2011.

Werner Dietl, Michael D. Ernst, and Peter Miiller. Tunable static inference for Generic
Universe Types. In European Conference on Object-Oriented Programming (ECOOP),
pages 333-357, Lancaster, UK, July 2011.

95



[9]

[10]

[11]

[12]

Tongtong Xiang, Jeff Y. Luo, and Werner Dietl. Precise inference of expressive units
of measurement types. Proc. ACM Program. Lang., 4(OOPSLA), November 2020.

Ana Milanova and Wei Huang. Inference and checking of context-sensitive pluggable
types. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE 12, New York, NY, USA, 2012. Association
for Computing Machinery.

Zhuo Chen. Pluggable properties for program understanding: Ontic type checking
and inference. Master’s thesis, University of Waterloo, 2018. http://hdl .handle.
net/10012/13181.

Jianchu Li. A general pluggable type inference framework and its use for data-flow
analysis. Master’s thesis, University of Waterloo, 2017. http://hdl.handle.net/
10012/11771.

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Relm & RelmlInfer:
Checking and inference of reference immutability and method purity. In OOPSLA

2012, Object-Oriented Programming Systems, Languages, and Applications, pages
879-896, Tucson, AZ, USA, October 2012.

Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and check-
ing of object ownership. In European Conference on Object-Oriented Programming

(ECOOP), June 2012.
David Erni and Adrian Kuhn. The hacker’s guide to javac. 2008.

Tongtong Xiang. Type checking and whole-program inference for value range analy-
sis. Master’s thesis, University of Waterloo, 2020. http://hdl .handle.net/10012/
16445.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,
and Dan Grossman. EnerJ: Approximate data types for safe and general low-power

computation. In Programming Language Design and Implementation (PLDI), June
2011.

Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Ef-
fects for controlling Ul object access. In Furopean Conference on Object-Oriented
Programming (ECOOP), July 2013.

o6


http://hdl.handle.net/10012/13181
http://hdl.handle.net/10012/13181
http://hdl.handle.net/10012/11771
http://hdl.handle.net/10012/11771
http://hdl.handle.net/10012/16445
http://hdl.handle.net/10012/16445

[19]

[21]

[22]

23]

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop
Han, Paul Vines, and Edward X. Wu. Collaborative verification of information flow
for a high-assurance app store. In Computer and Communications Security (CCS),
November 2014.

Paulo Barros, Rene Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D. Ernst. Static analysis of implicit control flow: Resolving
Java reflection and Android intents. In 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 669-679, 2015.

Daniel Scott Brotherston, Werner Dietl, and Ondrej Lhotak. Granullar: Gradual
nullable types for Java. Proceedings of the 26th International Conference on Compiler
Construction, 2017.

Weitian Xing, Yuanhui Cheng, and Werner Dietl. Ensuring correct cryptographic
algorithm and provider usage at compile time. In Proceedings of the 23rd ACM Inter-
national Workshop on Formal Techniques for Java-like Programs, FT{JP 2021, pages
43—50, New York, NY, USA, 2021. Association for Computing Machinery.

Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular ex-
pressions. In Proceedings of the 14th Workshop on Formal Techniques for Java-like
Programs, FT{JP '12, page 2026, New York, NY, USA, 2012. Association for Com-
puting Machinery.

Charles Zhuo Chen and Werner Dietl. Don’t miss the end: Preventing unsafe end-
of-file comparisons. In NASA Formal Methods, pages 87-94, Cham, 2018. Springer
International Publishing.

Checker Framework Organization. A dataflow framework for Java. https://
checkerframework.org/manual/checker-framework-dataflow-manual.pdf, 2021.

Nikolaj Bjgrner and Anh-Dung Phan. vZ - maximal satisfaction with Z3. In Interna-
tional Symposium on Symbolic Computation in Software Science(SCSS), 2014.

Leonardo de Moura and Nikolaj Bjgrner. 7Z3: An efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction

and Analysis of Systems, pages 337-340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

57


https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf

[28] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014.

[29] Checker Framework Organization. The checker framework manual: Custom pluggable
types for Java. https://checkerframework.org/manual/, 2021.

[30] Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl. Scalability
and precision by combining expressive type systems and deductive verification. Proc.
ACM Program. Lang., 5(O0OPSLA), October 2021.

[31] Sanu Subramanian, Murphy Berzish, Yunhui Zheng, Omer Tripp, and Vijay Ganesh.
A solver for a theory of strings and bit-vectors, 2016.

o8


https://checkerframework.org/manual/

APPENDICES

29



Appendix A

Unsafe Narrowing Conversions in
Selected Projects

commons-bcel!

1. In src/main/java/org/apache/bcel/classfile/LineNumber.java

1 public LineNumber (final int start_pc, final int line_number
) o

2 this.start_pc = (short) start_pc;

3 this.line_number = (short)line_number;

4 b

This constructor is called by another constructor

LineNumber (final Datalnput file) throws IOException {
this(file.readUnsignedShort (), file.readUnsignedShort ()

)
}

file.readUnsignedShort () is unsigned short, therefore the input is in [0, 65535]

The first constructor is also called in src/main/java/org/apache/bcel/generic/Li-
neNumberGen.java
public LineNumber getLineNumber () {

return new LineNumber (ih.getPosition(), src_line);

}

thttps://github.com/opprop-benchmarks/commons-bcel
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ih.getPosition() is possible to be -1. Therefore, the input start_pc has a possible
interval of [-1, 65535], and it is unsafe to directly convert start_pc to short.

2. In src/main/java/org/apache/bcel /classfile/Signature.java :

1 private static void matchIdent( final MyByteArrayInputStream in
, final StringBuilder buf ) {

2 RN

3 final StringBuilder buf2 = new StringBuilder ();

4 ch = in.read();

5 do {

6 buf2.append ((char) ch);

7 ch = in.read () ;

8 } while ((ch !'= -1) && (Character.isJavaldentifierPart ((
char) ch) || (ch == 2/°)));

9 buf . append (buf2.toString () .replace(’/’, ’.7));

10 if (ch !'= -1) {

11 in.unread () ;

12 }

13 2

In the first iteration of the do-while loop, at line 6, ch (refined by the result of
in.read () is directly converted to char, which is unsafe.

3. In src/main/java/org/apache/bcel/classfile/Signature.java :

1 private static void matchGJIdent( final MyByteArrayInputStream
in, final StringBuilder buf ) {

2 -

3 ch = in.read () ;

4 if (identStart(ch)) {

5 in.unread () ;

6 matchGJIdent (in, buf);

7 } else if (ch == ?)7’) {

8 in.unread () ;

9 return;

10 } else if (ch !'= ;) {

11 throw new RuntimeException("Illegal signature: " + in.
getData() + " read " + (char) ch);

12 }

13

14 '}

In the throw-statement at line 11, ch is converted to char without EOF test.
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4. In src/main/java/org/apache/bcel/classfile/Utility.java :

1 @Override
2 public int read( final char[] cbuf, final int off, final int
len ) throws IOException {
for (int i = 0; i < len; i++) {
cbuf [off + i] = (char) read();
}

return 1len;

~N O U W

}

The return of read() is directly converted to char, while read() is possibly equal
to -1, as its definition is

1 @O0verride

2 public int read() throws IOException {

3 final int b = in.read();

4 if (b !'= ESCAPE_CHAR) {

5 return b;

6 }

7 final int i = in.read();

8 if (1 < 0) {

9 return -1;

10 }

11 if (i >= 707) && (i <= 29’)) || (i >= ’a’) && (i <= ’f’))
) { // Normal escape

12 final int j = in.read();

13 if (j < 0) {

14 return -1;

15 }

16 final char[] tmp = {

17 (char) i, (char) j

18 };

19 final int s = Integer.parselnt(new String(tmp), 16);

20 return s;

21 }

22 return MAP_CHARI[i];

23 %

Line 9 and line 14 return -1.

5. In src/main/java/org/apache/bcel /generic/ LOOKUPSWITCH.java :

1 public LOOKUPSWITCH(final int[] match, final
InstructionHandle [] targets, final InstructionHandle
defaultTarget) {
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}

super (org.apache.bcel.Const.LOOKUPSWITCH, match,
targets, defaultTarget) ;

/% alignment remainder assumed O here, until dump time.

*/

final short _length = (short) (9 + getMatch_length() =*
8);

super.setlength(_length) ;

setFixed_length(_length) ;

At line 4, getMatch length() is the length of the input array match. (short) (9
+ getMatch_length() * 8) is not safe.

In another method

1
2

S s W

oo

9
10
11
12
13
14
15
16
17

@0verride
protected void initFromFile( final ByteSequence bytes,

}

final boolean wide ) throws IOException {

super.initFromFile (bytes, wide); // reads padding

final int _match_length = bytes.readInt();

setMatch_length(_match_length);

final short _fixed_length = (short) (9 + _match_length
* 8);

setFixed_length(_fixed_length);

final short _length = (short) (_match_length + super.
getPadding ());

super.setLength(_length);

super.setMatches (new int[_match_length]);

super.setIndices (new int[_match_lengthl);

super .setTargets (new InstructionHandle[_match_length]);

for (int 1 = 0; i < _match_length; i++) {
super.setMatch (i, bytes.readInt());
super.setIndices (i, bytes.readInt());

At line 4, bytes.readInt() may return arbitrary integer, which is assigned to
-match_length. Therefore, (short) (9 + _match_length * 8) at line 6 and (short)
(_match_length + super.getPadding()) at line 8 are not safe.

6. In src/main/java/org/apache/bcel/generic/Select.java :

1
2

@0verride

protected int updatePosition( final int offset, final int

max_offset ) {
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3 setPosition(getPosition() + offset); // Additional
offset caused by preceding SWITCHs, GOTOs, etc.

4 final short old_length = (short) super.getLength();

5 /% Alignment on 4-byte-boundary, + 1, because of tag
byte. */

6 padding = (4 - ((getPosition() + 1) % 4)) % 4;

7 super .setLength ((short) (fixed_length + padding)); //
Update length

8 return super.getlength() - old_length;

9 }

At line 7, fixed_length may be arbitrary integer. (short) (fixed_length+padding)
is not safe.

7. In src/main/java/org/apache/bcel /generic/ TABLESWITCH.java :

1 public TABLESWITCH(final int[] match, final
InstructionHandle [] targets, final InstructionHandle
defaultTarget) {

2 super (org.apache.bcel.Const.TABLESWITCH, match, targets
, defaultTarget) ;

3 /% Alignment remainder assumed O here, until dump time
x/

4 final short _length = (short) (13 + getMatch_length() =*
4);

5 super .setLength(_length);

6 setFixed_length(_length);

7 X

At line 4, getMatch length() is the length of the input array match. (short) (13
+ getMatch length() * 4) is not safe.

In another method

1 @O0verride
2 protected void initFromFile( final ByteSequence bytes,
final boolean wide ) throws IOException {
super.initFromFile (bytes, wide);
final int low = bytes.readInt();
final int high = bytes.readInt();
final int _match_length = high - low + 1;
setMatch_length(_match_length);
final short _fixed_length = (short) (13 + _match_length
* 4);
9 setFixed_length(_fixed_length);

00 J O U W
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10 super .setLength ((short) (_fixed_length + super.
getPadding (0));

11 super.setMatches (new int[_match_lengthl]);

12 super.setIndices (new int[_match_lengthl]);

13 super .setTargets (new InstructionHandle[_match_length]);
14 for (int i = 0; i < _match_length; i++) {

15 super.setMatch (i, low + 1i);

16 super.setIndices (i, bytes.readInt());

17 }

18 }

At line 6, match length may be assigned an arbitrary integer. Therefore, (short)
(13+_match_length*4) at line 8 and (short) (_fixed length+super.getPadding())
at line 10 are not safe.

commons-crypto?

1. In src/main/java/org/apache/commons/crypto/stream/CtrCryptolnputStream.java:
1 public void seek(long position) throws IOException {

2 Utils.checkArgument (position >= 0, "Cannot seek to negative
offset.");

3 checkStream () ;

4 if (position >= getStreamPosition() && position <=
getStreamOffset ()) {

5 int forward = (int) (position - getStreamPosition());

6 if (forward > 0) {

7 outBuffer.position(outBuffer.position() + forward);

8 }

9 } else {

10 input.seek(position);

11 resetStreamOffset (position);

12 }

13 2

The input position can be arbitrary long integer. Therefore, at line 5, (int)
(position - getStreamPosition()) is not safe.

commons-io®

1. In src/main/java/org/apache/commons/io/input/SwappedDatalnputStream.java :

2https://github.com/opprop-benchmarks/commons-crypto
3https://github.com/opprop-benchmarks/commons-io
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@0verride
public byte readByte ()

throws IOException, EOFException
{

return (byte)in.read();

S T W N

3

in.read() returns a value in [-1, 255]. It is unsafe to cast it to byte without EOF
test.

commons-text?

1. In src/main/java/org/apache/commons/text/translate/UnicodeUnescaper.java :

1 @O0verride
2 public int translate(final CharSequence input, final int index,
final Writer out) throws IOException {

3 if (input.charAt(index) == ’\\’ && index + 1 < input.length
() && input.charAt(index + 1) == ’u’) {
4 // consume optional additional ’u’ chars
5 int i = 2;
6 while (index + i < input.length() && input.charAt(index
+ 1) == ’u’) {
7 i++;
8 }
9
10 if (index + i < input.length() && input.charAt(index + i
) == ’+2) A
11 i++;
12 }
13
14 if (index + i + 4 <= input.length()) {
15 // Get 4 hez digits
16 final CharSequence unicode = input.subSequence (index
+ i, index + i + 4);
17
18 try {
19 final int value = Integer.parselnt(unicode.
toString (), 16);
20 out.write((char) value);
21 } catch (final NumberFormatException nfe) {

4https://github.com/opprop-benchmarks/commons-text
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22

23
24
25
26

27
28
29
30
31

3

throw new IllegalArgumentException("Unable to
parse unicode value: " + unicode, nfe);
X
return i + 4;
b
throw new IllegalArgumentException("Less than 4 hex
digits in unicode value: ’"
+ input.subSequence (index, input.length())
+ "’ due to end of CharSequence");
I

return O;

In the try block, at line 19 a string of 4 characters are parsed to an integer value,
and then value is converted to char. When the input is parsed to a negative integer
(e.g. input is \\u-FFF), this is unsafe.

. In src/main/java/org/apache/commons/text/AlphabetConverter.java :

1
2
3
4
5
6

private static String codePointToString(final int i) {

3

if (Character.charCount (i) == 1) {
return String.valueOf ((char) i);

3

return new String(Character.toChars(i));

The JDK method Character.charCount does not validate the specified character to
be a valid Unicode code point, and it returns 1 when i < 0. So when the method
codePointToString is passed an negative integer, the if-condition is true. Then i
is converted to char and passed to String.valueOf. This method is called in the
following method.

1

T W N

—_
_ O © 00~

—_

public static AlphabetConverter createConverterFromMap (

final Map<Integer, String> originalToEncoded) A
final Map<Integer, String> unmodifiableOriginalToEncoded
Collections.unmodifiableMap (originalToEncoded) ;
final Map<String, String> encodedToOriginal = new
LinkedHashMap<>() ;

int encodedLetterLength = 1;
for (final Entry<Integer, String> e
unmodifiableOriginalToEncoded.entrySet ()) {

final String originalAsString = codePointToString(e.
getKey ());
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12 encodedToOriginal.put(e.getValue(), originalAsString);
13

14 if (e.getValue().length() > encodedLetterLength) {

15 encodedLetterLength = e.getValue().length();

16 }

17 ¥

18

19 return new AlphabetConverter (unmodifiableOriginalToEncoded,
20 encodedToOriginal,

21 encodedLetterLength) ;

22}

An input that may cause unexpected behaviors is a HashMap that contains a K-V
pair (-1, “xyz”).
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Appendix B

Uses of Invalid Input in Selected
Projects

commons-bcel

1. In src/main/java/org/apache/bcel/classfile/Utility.java :

1 public static byte[] decode(final String s, final boolean
uncompress) throws IOException {

2 byte[] bytes;

3 try (JavaReader jr = new JavaReader (new CharArrayReader(s.
toCharArray ()));

4 ByteArrayOutputStream bos = new

ByteArrayOutputStream()) {

5 int ch;

6 while ((ch = jr.read()) >= 0) {

7 bos.write (ch) ;

8 }

9 bytes = bos.toByteArray();

10 }

11

12}

jr.read() returns a value in [-1, 65535]. After the comparison (ch = jr.read())
>= 0, in the then-branch, ch is refined to [0, 65535]. bos.write() takes an argument
in [0, 255]. Passing ch as the argument violates the specification and may cause data
loss.
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commons-io

1. In src/main/java/org/apache/commons/io/input/NulllnputStream.java :

1 public int read(final byte[] bytes, final int offset, final int
length) throws IOException {

2 if (eof) {

3 throw new IOException("Read after end of file");
4 ¥

5 if (position == size) {

6 return doEndO0fFile () ;

7 }

8 position += length;

9 int returnLength = length;

10 if (position > size) {

11 returnlength = length - (int) (position - size);
12 position = size;

13 }

14 processBytes (bytes, offset, returnlLength);

15 return returnlength;

16 7

Input length can be a negative integer. At line 8, length is added to position
without validating.

2. In src/main/java/org/apache/commons/io/output/ProxyOutputStream.java :

1 @Override
2 public void write(final byte[] bts, final int st, final int end
) throws IOException {

3 try {

4 beforeWrite (end) ;

5 out.write(bts, st, end);

6 afterWrite (end);

7 } catch (final IOException e) {
8 handleIOException(e);

9 }

10 %}

The argument end of method invocation beforeWrite(end) can be a negative in-
teger, while beforeWrite(end) is defined in the subclass CountingOutputStream
as

1 @Override
2 protected synchronized void beforeWrite(final int n) {
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3 count += n;

4 ¥

count represents the number of bytes that are being written and should not add a
negative integer.
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