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Abstract

Mutability, the ability for an object to change, is frequently cited as one of the sources
of software problems. Ensuring the immutability of objects opens opportunities for opti-
mizations, e.g., removing the need for locks in a concurrent environment for an immutable
object. This thesis explores an approach to analyze immutability of classes and objects
by using static analysis with pluggable type systems. A properly implemented pluggable
type system can statically analyze the mutability property of an object without execution.
This thesis presents (1) the analysis of some previous work, including Javari, Relm, and
Glacier, (2) improvements to a pluggable type system, PICO, to enhance the soundness
of the formalization and to improve the user experience, and (3) experiments with the
enhanced PICO with real projects, and comparisons with the results of the previous work.

PICO is an immutability type system that analyzes and enforces the mutability prop-
erty of an object so that a mutation on an immutable object can be statically detected.
Although many modern programming languages have various means of declaring this prop-
erty, PICO provides an easier, more flexible, and foolproof way to declare the mutability
property of a class by automating the check of immutability.

While PICO is a novel work in improving the flexibility of the immutability type system,
it has certain bad designs for defaulting in parts of the immutability rules. Such bad designs
would lead to the risk of allowing the mutation of an immutable object, known as the false
negative. To solve this problem, this thesis provides more sound formalization to fix the
false negative.

Also, PICO contains counterintuitive logic, such as unsafe defaulting. To solve the
counterintuitive logic, this thesis presents a new defaulting scheme for PICO, and reports
various minor changes made to improve the user-friendliness during the type checking
process.

This thesis conducts experiments on small code snippets and large real-world projects,
and also compares the new PICO with previous works on immutability to find more po-
tential problems and demonstrates the flexibility and usability of PICO compared with
previous projects, e.g., Glacier.
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Chapter 1

Introduction

Ensuring the functionality of programs to be correct is of vital importance in software
development, but immutability is frequently cited as a source of bug and security vulner-
abilities [12] [10] [13]. Since human errors are inevitable, multiple sophisticated safeguard
methods, including static analysis, have been studied [9]. While some modern program-
ming languages have built-in type systems to check some errors, their built-in type systems
often only cover basic language requirements, but they are not expressive enough to detect
more potential bugs in the code [20].

For example, in Java, the built-in type system can capture many errors by performing
static analysis during compilation, such as assigning a string to an integer parameter or
invoking a method that does not exist [17]. In these two examples, the type soundness is
enforced, so the programmer gets the guarantee from the Java compiler that the variable
can never get assigned to a wrong type, or a non-existing method can never get invoked.
However, this guarantee is not expressive enough to cover all the needs of the programmer,
such as enforcing the mutability type of an object or class.

Various solutions have been proposed to enhance type systems. One of the main solu-
tions is the pluggable type system which solves the problem that the built-in type systems
being not expressive enough. Pluggable type systems are lightweight plugins to the con-
ventional type system of the language that focus on one or more aspects of type [20]. For
example, a pluggable nullness type system for Java would only concentrate on the nullness
type. The type system can either be static, dynamic, or gradual where only partial type
information is given before the compilation [3].

By only enforcing a smaller subset of the type properties, the development of a single
checker can be much easier than a monolithic type system, which supports all interesting



type properties. Additionally, a single checker can provide the option for developers of
only enabling or disabling certain type systems if needed.

The Checker Framework is such a framework for developing pluggable type systems for
Java [7] [20], and is used in this thesis. Type system designers can easily implement their
type system with the functionalities that the Checker Framework provides, and also use
the existing built-in type systems in the framework, such as nullness and interning type
system, to build a higher-level type system based on these.

To reduce the qualifier burden of the developers who use a type system, Checker Frame-
work Inference can provide functions to implement an inferrable type system [1]. An in-
ferrable type system means that it can infer a possible type for a type location where the
type is unspecified by the user. The inference tool will traverse all the source code of the
whole program, and try to find a valid solution to the types. By using inference, the source
code can be fully or partially unannotated, effectively reducing the qualifier burden on a
large project [15].

Immutability is often partially supported in programming languages. For example, in
Java, the programmer can set a field to final, and if all the fields are final, the class can
be considered as shallow immutable. If the fields of all fields are also final transitively,
the class is considered deep immutable. However, the immutability issue is still frequently
cited as a source of bugs [12][13][10], which means that the built-in approaches are not
sufficient.

If the immutability rules of objects are not enforced correctly, it would cause various
issues in the software development. For example, a hash map data structure relies on the
immutability of the key [4]. If the fields of the hash key are modified during the execution,
the map will not recognize the key, leading to a bug that the value associated with the
key is unreachable. Moreover, when sharing the object in a concurrent environment, if the
immutability of the object is not guaranteed, the problem of race condition can arise, and
typically the mutual exclusion lock is used to avoid this problem. However, if an object is
guaranteed to be immutable, the need of locking is eliminated for the object.

Naive solutions include making the fields final and ensuring the writable reference is
not leaked after full initialization [10], or documenting the mutability property in any kind
of documentation, such as a JavaDoc. However, both methods have a great limitation: the
first one relies heavily on peer inspection, which has an unacceptable chance of introducing
human error in the process. Also, the solution requires additional efforts to update the
existing code and may become too restrictive. The second method is flexible and easier
to implement compared with the first method, but it does not have any enforcing effort,
introducing more potential for human error compared with the first method. A careless



programmer is very likely to overlook the instructions in the document and mutate the
object. As a result, failures arise in other components which will be hard to trace.

Previous research presented various pluggable type systems for the mutability type,
enforcing the immutable rules in the compiler while ensuring user-friendliness. Such type
systems include Jarari [29], Relm [21], and Glacier [12]. While the immutability rules are
enforced, the flexibility of the code is more or less affected.

To achieve both enforcement and flexibility, a newer immutable type system, PICO
[28], was developed. PICO introduced the receiver-dependent mutability qualifier to make
the type checking process receiver sensitive, so the checker will have more context and
knowledge of the code. Here is an example for how immutability type could benefit the
development:

@Immutable
class ImmutableKey {...}

class Test {
void foo(HashMap<ImmutableKey, Object> map) {
map.add (new ImmutableKey(...), ...);

by

For the invocation of map.add, if the key is not guaranteed to be immutable, it can be
a potential source of bug. However, in this code, the key is guaranteed to be immutable by
PICO, so the mutation of the key can never be a bug for the code, removing a possibility
for debugging to save time.

While the idea of PICO is promising, the formalization neglected certain unsoundness,
and the implementation is not compatible with the latest version of Checker Framework.

The focuses of this thesis are on the improvement of PICO to make it more practical, so
the immutability type system could be both sound and flexible, eliminating the mutability-
related issues while preserving most of the existing structure of the code without major
changes. This thesis makes contributions as the following: the thesis

e clarifies the definition of the class bound, which was defined ambiguously;

e presents a refined ordering of the qualifier substitution process involving type variable
resolution, qualifier polymorphism, and viewpoint adaption;



e introduces the adapted subtyping operation, which is used heavily in PICO to ensure
the flexibility of the receiver-sensitive qualifier;

e revised the mutability definition of class bound, subtyping, casting and enum types;

e presents a solution to a problematic defaulting and qualifier usage rule that would
break the immutability guarantee, ensuring the field transitively read-only in mutable
classes by default;

e presents a way to ensure deep immutability of immutable classes by default, but still
overridable by the user;

e presents a fix to instance methods of the array objects, which cannot be annotated
in the previous mechanism; and

e improves the actions during checking and inference to be more friendly to users.

This thesis is organized as follows:

Chap. 2 discusses the background on the pluggable type system, Checker Framework,
Checker Framework Inference, and introduces the past works on immutability, including
PICO. Chap. 3 introduces the improvements and clarifications made to PICO. Chap. 4
introduces the experiments conducted to the revised PICO and comparisons to the past
projects. Finally, Chap. 5 concludes the whole thesis and discusses future work.



Chapter 2

Background and Related Work

2.1 Pluggable Type Systems

For many programming languages, the built-in type system can prevent basic type prob-
lems, but often they are not powerful enough to capture enough errors. Some constraints
that may be helpful to programmers are often not enforced by the default type systems of
languages [20][23].

Using a pluggable type system is a solution to the problem. By using a pluggable type
system, the programmer can make decisions for the type by applying qualifiers in a more
abstract level where human errors are more unlikely to occur.

For a concrete example, if a programmer assumes a parameter can never be null, they
can plug a nullness type system to the compiler, and apply @NonNull to the parameter
type. During the analysis, the type system will check the invocations of the method, if the
argument got null on any invocation, the type system will warn the user. If no warning or
errors are issued by the type system, the programmer has a guarantee that the parameter
is never null. Compared with manual inspection on all the uses of the method or using
JavaDoc, simply applying a qualifier on the target can minimize the chance of human error.

A pluggable type system should both be pluggable and a type system:

e Pluggable: the type system should be an optional part of the project, which means
that the type system can be disabled or completely removed from the execution
environment. For example, the type analysis is only performed in the development
environment, and after all problems related to the type system is resolved, the type
system is not needed in the production environment.



e Type system: the system itself should be a complete type system with rules, types,
and qualifiers, unlike many lint tools that only perform simple syntactic checks based
on string or regex matching. That means that the type system should “understand”
the elements of the language.

An optional type system can be static or dynamic. For static type systems, the check
occurs before the runtime, during the compilation [16]. A fine-tuned static type system
can capture all errors before the program runs and have no runtime overhead, granting
a guarantee that the program will always behave within the limitations by the qualifiers,
and no runtime errors will happen. But static check cannot capture all problems, such as
downcasting and the boundary of the system where objects come from an unknown source.
When the knowledge is limited, the static type system can only issue partial results, and
making reasonable assumptions based on the type system. For the dynamic type systems,
the system will inject checks to the code in runtime, so there will be additional overheads
to perform the check on the type usage. However, the concrete runtime value is available
to the type system, eliminating the possibility of lacking the knowledge of the type usage.

Static and dynamic type systems are not mutually exclusive. For example, granular
type system is a hybrid of static and dynamic, taking the advantage of both kinds of type
systems. A granular type system can perform a static type check on the analysable parts
of the code, and it can perform dynamic check on the parts of code which require runtime
information to check. A type system can also have a dynamic component, and Javari [29]
is such an example: it performs a static check on most uses of type and dynamic check on
downcasting where the actual type is only determinable during runtime.

One drawback of a pluggable type system is that the developers must explicitly put
qualifiers to convey their assumptions to the type system. If the scale of the project is not
large, or the qualifiers are applied at the beginning of the development, it should not be a
problem. However, applying qualifiers on a large-scale existing project is a real problem:
using the type system will introduce unacceptable entry effort. While the defaulting can
help with this problem, e.g., using @NonNull as the default qualifier can reduce accidental
error, but the defaulting does not always reflect the intention of the developers.

Type inference can solve this problem [15], and reduce the annotating effort to an
acceptable level. During inference, the code will be automatically annotated with the
existing formalization of a type system. Finally, the output will contain a possible solution
of qualifiers applied to the code that is consistent with the type rules. When there is a
contradiction and the inference failed, it means parts of the code do not comply with the
type rules and needs fixing, or the code is too tricky to be covered with the inference tools.



To make the output more meaningful to the programmer when there exist multiple
choices on a type use position, the inference tool can have a preference, often the most
restrictive qualifier. Take the nullness type system for example, since the built-in behavior
of Java language is to allow the type to be null, without preference, the inference result
could be @Nullable on every type location. If the inference tool prefers the @NonNull
qualifier when possible, the result will be more useful to the programmer because it reveals
that the type use can never be null.

There are several approaches to infer a qualifier on a type usage: by removing the wrong
option [21], or by specialized constraints of a type system [22], or by generic constraints
with SAT/SMT solver [15].

2.2 Checker Framework and Inference

2.2.1 Checker Framework

The Checker Framework [20] is a framework for implementing pluggable type systems for
Java. With the aid of the Checker Framework, implementing a new pluggable type system
will be an easy job, with the low-level details abstracted away, for example, traversing the
abstract syntax trees, applying defaults, and generating common constraints.

The Checker Framework also contains a collection of checkers that can be used by an-
other checkers as a sub-checker. For example, any type of system can call the initialization
checker inside the Checker Framework before the check runs, and will be able to get the
initialization status of the types which can be combined with the type rules.

The Checker Framework is implemented as an annotation processor of the Java com-
piler, so the checking process happens during the Java compilation after the source code
is parsed and the Java compiler trees are provided to the annotation processor. Checker
Framework will handle most of the Java compiler API for the checker developer to facilitate
the checker developing process.

During the process of compiling, Checker Framework is firstly invoked by the Java
compiler, then Checker Framework will invoke the checker used by loading the class of the
checker. The checker traverse through the syntax tree and try to find any errors based on
the qualifier and the type rules after applying defaults. If any errors found, the checker
will report them and the build fails. Otherwise, the build succeed.

The Checker Framework has built-in support for several functionalities. For example,



the data-flow framework for flow-sensitive refinement [2], and qualifier polymorphism. Here
is an anatomy of a Checker Framework type system:

e Checker class: the “entry point” of the checker, because the framework will load this
class of a checker after some pre-procedures. Contains meta configurations of the
checker, such as all of the components, supported qualifiers, and supported options,
etc. With the automated loading of the classes of components in Checker Framework,
all the qualifiers in the qual package will be automatically loaded as the supported
qualifiers, and the framework can automatically import the components following the
naming convention of Checker Framework. Thus, a checker does not need to override
most of the configurations in many cases.

e Qualifiers: Checker Framework uses Java 8 annotations as qualifier, so the qualifiers
have to be declared as annotations. Also, the designer can specify the hierarchy
of the qualifiers here by using meta qualifiers provided by Checker Framework, and
the framework will build the hierarchy for later use. The defaulting rules are also
implemented here by using the meta qualifiers indicating which type should the
qualifier be the default.

e AnnotatedTypeFactory class: defines how a language construct maps to a type, the
defaulting rules, and types for literals. For example, converting a MethodInvocationTree
to a AnnotatedExecutableType. The designer can alter the way a checker determines
the type of a syntax tree.

e Visitor class: the visitor traverses the syntax trees. The designer will implement
the type rules here, and just override the corresponding methods for the language
construct. For example, the designer will implement the rules for method invocation
by overriding the method visitMethodInvocation. The framework has already
implemented generic type rules, such as the subtyping rules in assignments, so the
designer does not need to take care of them.

e Validator class: the validator of the types. Different from the Visitor class that
traverse the syntax trees, this class is called to validate the types. So the type rules
that is applied globally on all uses of the types is implemented here. For example, if a
qualifier is only intended for internal use on a certain type, a rule can be implemented
here, checking the explicit qualifiers on the type.

e Transfer, Value and Analysis class: since Checker Framework supports dataflow
framework to perform flow-sensitive refinement, such as refining the type of a local



variable to a more concrete type from the assignment context. If the default rules
are undesirable, the designer can override them in this class.

e ViewpointAdapter class: contains the rules for viewpoint adaptation. Viewpoint
adaptation is a function that maps from the type itself and the receiver type to
another type. It allows the qualifier to express the relative type to the receiver, for
example, for a ownership type system, a qualifier on the type can be used to express
that the reference has the same ownership status with the receiver, or is owned by
the receiver [20].

The type system designer can also overrides other components if they are unsatisfied
with the built-in rules of Checker Framework.

2.2.2 Checker Framework Inference

Checker Framework Inference is a framework for the type inference of unannotated or
partially-annotated code. As a inference tool, it can infer a possible assignment of qualifiers
for the code that complies with the defined type rules, or reach a inference failed state if
no possible solution can be inferred, often caused by the code contains conflict to the type
rules.

Checker Framework Inference is a generic inference tool for all type systems. In order
to achieve that, it supports several high-level constraints for the designer to define the type
rules:

e Subtype (¢ <: ¢2): qualifier ¢; should be a subtype of ¢s.

e Equality (¢1 = ¢2): qualifier ¢; and g, should be the same.

e Inequality (¢ # ¢2): qualifier ¢; and gy should be different.

e Comparable (¢ <:> ¢2): qualifier ¢; and g, should have a subtyping relation, i.e.,
1 <:@q2 Or g2 <: Q1.

e Combine (g3 = ¢1 > g2): qualifier ¢z should equals to the viewpoint adaptation result
of ¢; and ¢s.

e Preference (¢ ~= ¢): qualifier ¢ should equals to ¢ whenever possible. ¢ is a constant.



e Implication (¢ycs...c,_1 = ¢,): if constraint ¢; A ca A ... A ¢,—1 hold, ¢, should also
hold. This is a composite constraint.

If the provided operations are not enough, the designer can always introduce new
operations to the system.

Checker Framework Inference uses the SAT or SMT solver to solve the constraints, so
all the type constraints the designer added to the system will result into CNF or SMT
formulas, translated by encoders. The constraint can be both enforced, or breakable but
preferred [30)].

In order to associate the variables in the formulas with the type use location, the
Annotator classes are used to put a special qualifier into the code: @VarAnnot, which
contains the ID of the variable in the solver. So, after the solver resolves a model, the
values in the solution can be inserted back. For example:

@VarAnnot (4)
class MyClass extends @VarAnnot(5) Object {
@VarAnnot (6) Object foo(@VarAnnot(7) MyClass this, @VarAnnot(8)
~ 0Object obj) {
return QVarAnnot(9) null;

The annotators will put the variable qualifiers in the code, so when applying the type
rules in the visitors, in fact a constraint is generated between the operand variable qualifiers
instead of the real ones. Note that the IDs in the example will be different among checkers,
so the values are just for demonstration.

There are also special variables that do not correspond to a type location, so they are
not insert-able to the code after the solver get a model. For example, the constant variables
for each qualifier in the type system, or the variables for the viewpoint adaptation result.

After the solver gets a model, Checker Framework Inference will inject the value of
every insert-able variables back to the code, so the developer could examine whether the
inferred result is desirable.

To support different solvers, Checker Framework Inference provide a way to implement
new encoder and runner to the solver. If a developer needs to use a new solver, they only
need to create a new encoder to call the solver’s API without changing the rest of the
framework.

10



2.3 Mutability Type Systems

The goal of a successful mutability type system is to reduce the programmer’s effort in
making a type immutable. Ideally, the syntax of the type system should be simple enough
to minimize the possibility of human error, and the system should automatically enforce
the mutability rules on the uses of the type without doing major changes on the type,
such as making all fields final. Also it should detect possible errors that is not directly
supported by the language, unlike the final in Java, such as leaking the reference of the
type in constructor when the reference is still mutable.

Designing a mutability type system requires multiple design choices among several
dimensions. Earlier research on the syntax of immutability identified multiple different
dimensions of immutability [13][10], and the key dimensions include:

e Assignability vs writability: assignability refers to the assignment to variables, and
the writability refers to the re-assignment of the field of the variables. Whether
the immutability should prevent both in all circumstances is an important design
decision.

e Object or class granularity: if the checker supports a granularity of object, the muta-
bility restriction could be applied differently on each object of the same class, while
a granularity of class will enforce the same mutability restriction on all objects of the
same class.

e Transitivity: without transitivity, the mutability restriction applies only on the direct
field of the variable, known as shallow immutability, while with transitivity, the
mutability restriction applies on all fields reachable from the variable, also known
as deep immutability, which is a stronger restriction and provide a safer guarantee.
This involves the concept of abstract state. Javari’s definition of abstract state is: a
(part of ) the transitively reachable state, that is, the state of the object and all state
reachable from it by following references [29]. By default it is the whole reachable
state, but removing parts is possible.

e Qualifier polymorphism: similar to the object polymorphism where the invoked
method will be dispatched based on the arguments, if the type system supports
qualifier polymorphism, it means that one function can accept arguments of different
mutability types. While in non-polymorphic type systems the mutability type could
have only one choice.

11



e Static or dynamic enforcement: static enforcement only occurs during compilation,
and finds all possible errors without actually executing the program. Thus, this kind
of type system will not introduce overhead at run-time, only introducing overhead to
compilation, but will not respond to errors caused by certain language features, such
as downcasting and covariant array subtypes. While dynamic enforcement will per-
form the check during run-time, so it will introduce run-time overhead, but sensitive
to the dynamic language features that static systems cannot support. An interme-
diate option could be gradual enforcement, where the enforcement happens not only
in compilation, but also in the runtime for the unknown types [%].

2.3.1 Javari

Javari [29] is one of the pioneer projects on the immutability of Java. Javari is a type system
based on immutability constraints and supports both static and dynamic enforcement.

Since Javari is constraint-based and supports both static and dynamic enforcement,
the dynamic part is not enabled for all constraints. To reduce runtime overhead, dynamic
enforcement is only enabled for cases that cannot be handled by static checks, such as
downcasting.

Javari provides a transitive mutability guarantee, so it enforces deep immutability.
However, the user can still exclude a field from the abstract state explicitly if the mutability
type of the field is not cared for by the developers.

Javari works in both class and reference level. The qualifiers for mutability types are:

1. readonly: the reference cannot be used to mutate the object it refers to. When
applied to class, all its objects are of this type.

2. mutable: the reference can always be used to mutate the object.

3. this-mutable: the reference is polymorphic, and the mutability type inherits from
the receiver. This qualifier is not class-level, and only applicable to references, because
there is no receiver in a outer or static inner class definition. For example, if the
receiver reference is readonly, the mutability type of the current reference (e.g. a
field) will also be readonly.

Javari explicitly separated the mutability and assignability of a reference. So, a set of
assignability qualifier is also available in Javari:
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1. assignable: the reference is always re-assignable even if its receiver is readonly. By
using this qualifier, the reference is explicitly removed from the receiver’s abstract
state. For example, if a field is assignable, even if the receiver reference is readonly,
the field itself is re-assignable.

2. final the reference is not re-assignable after the first assignment. Supported by
Java.

3. this-assignable: the assignability of the reference is polymorphic, and the assignabil-
ity is decided by the actual receiver.

Note that even if a field is assignable, it could also be readonly, which means that
the field can be re-assigned, but the internal state of the referred object cannot be mutated.

Since customized Java annotation was not available at that time, Javari extends new
type modifiers into Featherweight Generic Java for formalization.

2.3.2 Relm and RelmlInfer

Relm [21] is a static immutability type system with similiar qualifiers to Javari: mutable,
polyread, and readonly.

1. mutable: the reference can always be mutated, just like a regular Java reference.

2. readonly: the referred object cannot be mutated via this reference, and since Relm
enforces transitive immutable, its fields within the abstract state cannot be mutated.

3. polyread: the polymorphic qualifier of Relm hierarchy that enables context sensitiv-
ity. Its final value is decided by the actual use of the type, based on the arguments,
and resolved by wviewpoint adaptation.

The hierarchy of Relm qualifiers is: mutable <: polyread <: readonly.

Relm also supports receiver sensitivity by performing viewpoint adaptation on field
accesses and method invocations. Its viewpoint adaptation rules are shown in Figure 2.1.

From the viewpoint adaptation rules we can learn that the transitive immutable also
applies on mutable fields. Even if the mutability type of the field is mutable, if the receiver
is readonly, the field access will still become readonly. So the user has no way to exclude
the field from the abstract state.
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_>mutable = mutable

_>readonly = readonly

q>polyread = ¢q
Figure 2.1: Viewpoint adaptation rules of Relm

Relm does not support the assignability qualifiers, so the assignability of the fields is
fixed by the mutability qualifiers.

The polymorphic qualifier of Relm also has a problem: the notation is different from
field access and method invocation, which violated the Uniform Access Principle [24].
While the viewpoint adaptation rules remain the same, the target of the viewpoint adap-
tation is different between field access and method invocation: for field access, the target is
the receiver, for method invocation, the target is the calling context. This makes it harder
to understand the type system.

Relm also offered an inference system, RelmlInfer, to automatically infer the possible
qualifier of a partially or fully unannotated code. The RelmInfer will start from a default
set and keep refining the set by removing the qualifier that violates the type rules of Relm,
so no SAT or SMT solver is involved. If multiple solution exists on a location, RelmInfer
gives a preference on readonly, then polyread, finally mutable. The time complexity is
claimed to be O(n) but O(n?) in the worst case.

One interesting point of RelmlInfer is that it also provided a tool to inference the purity
of a method. By combining method purity and immutability check, the type system can
be more complete and easier to use for the user.

2.3.3 Glacier

Glacier [12] is a class-level static immutability type system, designed by an evidence-based
approach, implemented with the Checker Framework.

One main consideration of Glacier is the easiness to use. For simplifying the syntax,
this type system only supports class-level immutability for most classes, which means there
could be no qualifiers on the use of a class. This design will not only help the user learning
faster but also simplifies error messages. However, the write-protection qualifier @ReadOnly
is still applicable on the reference to write-protect an object of the mutable class. The only
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exception of class-level immutability is for objects in which the class declarations are not
available in any Java code, including the Java runtime classes, e.g. arrays in Java!, object-
level qualifiers are still available. Otherwise, there is no way to express what the mutability
type could an array object be.

The Glacier supports these qualifiers:

1. @MaybeMutable: the direct objects of the classes are mutable, and the subclasses of
the class can be @Immutable. This design will solve the fragile base class problem
[25]. Since the superclass can make no assumption on the mutability of itself because
of a possible immutable subclass, the qualifier means that the object of the class
maybe mutable, so no guarantee of mutability can be made.

2. @Immutable: the objects of the class and its subclasses are guaranteed to be im-
mutable. The subclass of a @Immutable class can only be @Immutable, ensuring the
reference must be immutable.

3. @ReadOnly: same to other systems. Reference bearing this qualifier will not be used
to mutate the object it referred. Only usable on reference-level.

4. @GlacierBottom: only used on array objects to declare that the array is assignable
to any reference.

To reach the maximum simplicity, Glacier does not support the assignability dimension.
That means all the fields of an immutable class can only be final. Even the final modifier
is not on the field, the field is not re-assignable after constructor invocation. And since the
mutability qualifiers are class-level, the transitivity is enforced, and a user has no way to
exclude a field from the abstract state, unlike Javari. This ensures deep immutability and
makes the code safer, but sacrificed the flexibility.

Glacier has no runtime components, so it cannot check downcasting, but still provides
warnings if the operation is possibly dangerous.

Glacier does not support qualifier polymorphism, so every qualifier on the method
signature has its own type definition, the user has to declare multiple methods if the
operation will be performed on both @Immutable and @MaybeMutable objects.

To ensure the easiness to use, Glacier conducted extensive user studies to ensure the
user can use the type system smoothly, and the result shows that compared with vanilla
Java, Glacier makes it very easy to make a class immutable.

1Java arrays are implemented in JVM. A pseudo class type is provided for the compiler without any
classes file associated.
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2.4 PICO: Practical Immutability for Class and Ob-
jects

PICO allows developers to easily define the mutability type for a class with type qualifiers
[28]. Each qualifier on the class declaration represents a mutability type for the class:
@Mutable, @Immutable, and @ReceiverDependentMutable (abbr. @RDM). Additionally,
PICO also supports @Readonly on a reference, and @Bottom on special uses of null types
and the lower bound of the type variable. For the lattice of PICO qualifiers, since every
object can be read-only, @Readonly is the top qualifier that can apply to any reference
to a type. And as the name indicates, @Bottom is for the bottom qualifier, based on the
assignability of null. A special qualifier @PolyMutable is also used in PICO to support
qualifier polymorphism. Figure 2.2 gives a clear picture of the hierarchy of PICO qualifiers.

@Readonly

N

@Mutable ORDM Q@PM| | @Immutable

N

@Bottom

Figure 2.2: Hierarchy of mutability qualifiers

Similar to the other mutability type systems, PICO uses the @Immutable qualifier
to indicate that all the objects of the class are immutable as a class qualifier, or this
object is immutable as an object qualifier. The meaning of @Mutable qualifier is also
straightforward: the objects of the class must be mutable. The user of the object should
be aware that even the object is not mutated within the scope, it could be modified via
alias by other code outside of the scope. Since their uses are not compatible with each
other, they are not subtypes of each other.

One major difference of PICO from other mutability type systems is the context-
sensitivity. PICO supports receiver-context sensitivity which is implemented by @RDM,
and assignment-context sensitivity which is implemented by @PolyMutable.
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Receiver-context sensitivity For @RDM, the qualifier means the type is receiver-context
sensitive, i.e. the type will be affected by the receiver, so the class is neither @Mutable or
@Immutable, but capable of having objects of both kind, depending on the receiver. The
meaning of @RDM differs by qualifier locations:

e As a class instantiation bound: means the qualifier on the use of the type can
be any type as a result of being receiver-context sensitive, so it is similar to the
@MaybeMutable in Glacier for this usage. This is different from @Immutable and
@Mutable which limits the uses to be only their own types or @Readonly. Since the
usage may be an @Immutable type, PICO will enforce some of the rules for immutable
type on RDM class declarations, e.g., all fields should be explicitly initialized.

e On a field declaration and method declaration: the qualifier means that when in the
actual use, i.e. the field access or member method invocation of a concrete object,
this qualifier will be resolved to the receiver’s type.

e On a constructor declaration: the qualifier means that the invocation of the construc-
tor can be one of the bound qualifier: @Immutable, @Mutable, and @RDM. By doing so
in the invocation, the mutability of the @RDM object is decided by the qualifier pro-
vided. If @Immutable or @Mutable is provided, it means that the receiver-sensitive
feature is explicitly disabled on the object created, so its type no more depends on
the receiver.

Receiver-context sensitivity helps with improving the flexibility of the type system.
Since @Mutable and @Immutable in PICO is strictly mutable or immutable, @RDM means
that the class could be either type, which is useful when a common class is needed, and
both kinds of instantiation are required. For example, a utility class ByteArray. In our
code examples, qualifiers in inline comments are the default qualifiers without the need to
be explicitly written.

OReceiverDependentMutable
class ByteArray {
private char[] data;
public void mutate(@Mutable ByteArray this) {...}
/.
3
@Mutable
class MutableUser {
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/*@ReceiverDependentMutable*/ ByteArray bytes;
/.

}

@Immutable

class ImmutableUser {
/*Q@ReceiverDependentMutable*/ ByteArray bytes;
/.

class Main {
void foo(/*@Mutable*/ MutableUser mu, /*@Immutable*/ ImmutableUser
o iu) {
mu.bytes.mutate() ;
iu.bytes.mutate();

Although the same type @RDM ByteArray bytes presents in the two class MutableUser
and ImmutableUser, the meaning of the type is completely different because of receiver-
context sensitivity. For the use of the field of MutableUser in mu.bytes, after taking
account of the recevier, the type is @Mutable ByteArray, while in the use of iu.bytes,
because the receiver is @Immutable, the type becomes @Immutable ByteArray.

Assignment-context sensitivity Similar to the receiver-context sensitivity, sometimes
the type also needs to depend on the assignment context, i.e. both of the types on the left
and right-hand side of the assignment are required to determine the final type.

This code example demonstrates a use of assignment-context sensitivity.

OReceiverDependentMutable

class ByteArray {
// creates instances of any type needed by the assignment context
static @PolyMutable ByteArray createAny() {...}

OMutable ByteArray mutableBytes = ByteArray.createAny();

18



In the code above, the left-hand side of the assignment is also used to decide the final
type of the method invocation ByteArray.createAny (). The @PolyMutable qualifier on
the method declaration is a polymorphic qualifier, and it will be resolved to the most suit-
able type based on the actual invocation. When used on the returning type, it means that
the assignment context is also used to define the final type. In this case, the @PolyMutable
is only resolved based on the assignment context, which requires the type to be @Mutable.
In PICO, without additional code, the type of ByteArray.createAny() will be resolved
to @Mutable ByteArray.

Not only the real assignments, pseudo assignments is also taken into account. For
example, if the createAny () method is invoked on a parameter of another method which
requires a @Immutable ByteArray, when resolving the method invocation, the pseudo
assignment of @Immutable ByteArray is also used, causing the invocation to createAny ()
results a @Immutable ByteArray return type.

Class and Object Level Mutability PICO supports both class and object-level mu-
tability. That means that the mutability of an object can be different from the class
declaration. One example of this is the @RDM classes, which can have objects created as
@Mutable or @Immutable by invoking the corresponding constructor.

For @Mutable and @Immutable classes, although the constructor type can only be the
same with the class-bound, the references to the objects can still be @Readonly, which
means the object level mutability still applies.

Separation of Assignability and Mutability Assignability is different from muta-
bility. For example, consider a field that is mutable by non-pure methods, but not re-
assignable. Or a field that is immutable, preventing any change, but allowing the field to be
re-assigned to another immutable object. To support such type rules, PICO also supports
a assignability qualifier @Assignable. Together with the Java’s final, the assignability
dimensions are:

e OAssignable: the field is always re-assignable.

e final: the field is not re-assignable.
If no assignability qualifier presents, the assignability of the field is defined by its

receiver. If the receiver type is @Mutable, the field is considered as @Assignable, and if
the receiver type is @Immutable, the field is considered as final.
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Circular Initialization of Immutable Objects While stricter checkers will not allow
the reference to this leaked outside of the constructor, such as Error Prone [3], PICO
allows an immutable object to be constructed circularly. PICO relies on an initialization
sub-checker provided by the Checker Framework [27] to determine the initialization status
of an object.

This code example is inspired by Freedom before Commitment: A Lightweight Type
System for Object Initialisation [27], demonstrates a circular initialization process.

@Immutable
class SingleNodeList {
O@Immutable ListNode head;
@Immutable SingleNodeList() {
head = new ListNode(this);

}
@Immutable
class ListNode {
@Immutable SingleNodelList list;
@Immutable ListNode(@UnderInitialization SingleNodeList list) {
this.list = list;

During the initialization process in List (), the receiver type this has the qualifier
of @UnderInitialization added by the initialization type system, so passing this to
ListNode is valid. After the List constructor finishes, both instance of List and ListNode
turn into fully @Immutable objects, preventing any further mutations.

Method Purity Impure methods can mutate the receiver object or arguments by side-
effects [19]. By ensuring the immutability of @Immutable objects and @Readonly references,
PICO allows adding a qualifier to the receiver and parameters. For example, if the receiver
is @Immutable, the method cannot be invoked on a @Mutable object. This is helpful
with @RDM classes, for example, making the setter methods only invocable by its @Mutable
instances. By applying @Readonly to the receivers and parameters, it means that the
method is side-effect-free, and can be safely invoked by any objects with any arguments.
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Exclude Field from Abstract State For immutable classes and objects in PICO, the
fields are by default protected by the immutability guarantee: the fields cannot be re-
assigned or mutated by a non-pure method that has a side effect. However, if the user
needed, they can override the behavior by using @Assignable, @Mutable or @Readonly
on the field, and exclude these fields from the abstract state, as shown in Table 2.1. “X”
means that the field is not a part of the abstract state, and “O” means that the field is a
part of the abstract state.

@Mutable | @Readonly | @Immutable | @RDM
@Assignable | X X X X
final X X O O
©@RDA X X O O

Table 2.1: Field declarations and abstract state

By using @Assignable, the field is always allowed to be re-assigned. By using @Mutable
and @Readonly, the field may have an alias outside the immutable class which can be used
to mutate the field, and this is out of the control of the immutable class. Note that for
@Readonly, although the field is not mutable via the field within the class, the underlying
mutability type is unknown, so there is a possibility that the field being a @Mutable type
and be mutated outside the class.
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Chapter 3

Improvements to the PICO Type
System

Although PICO is a mutability type system more flexible than many of the existing so-
lutions, when we updating the checker, certain design issues of the checker are revealed.
In this chapter, we will introduce the improvements we made for PICO to make it more
flexible, or to fix the bad designs.

3.1 Class Bound Use

3.1.1 Definitions of Different Bounds

There are two kinds of bound in PICO:

e Upper bound: refers to the top qualifier of the hierarchy, the @Readonly. In a lattice,
this is called the top.

e (lass instantiation bound: refers the qualifier on the class declaration, and only
have three options: @Mutable, @Immutable and @Readonly, which will be referred as
“bound qualifier” later in this thesis.

The meaning of a class instantiation bound is that every concrete object created should
be with the same qualifier as the class instantiation bound, with the exception that class
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with @RDM instantiation bound can have all three kinds of objects of @Mutable, @Immutable
or QRDM.

Note that a reference is not equivalent to an object. So one non-bound qualifier is
allowed on the reference, the @Readonly. Since @Bottom have special meanings in PICO,
it is not allowed on most type usages. The validity rules of PICO rely heavily on the
instantiation bound.

Later in this thesis, we will use “@q class” to refer to a class with the instantiation
bound of @q.

3.1.2 Class Bound Handling

For Checker Framework Inference, during the generation of slots on class bounds, the class
for annotating the code, VariableAnnotator will generate a ExistentialVariableSlot
on the slot of declaration annotation. This existential slot will act differently whether a
qualifier is present on the position or not: if presents, adding a set of constraints to the
solver, if not, adding another set of constraints to the solver.

This design is to ensure the slot generation works with all kinds of checkers, and the
checker which acts differently when an explicit annotation on the class declaration will
benefit most from this approach of slot generation.

But for PICO, every class have a declaration annotation, known as the instantiation
bound. If an explicit annotation is missing in the code, during modular type check, a
default one, @RDM, is applied. So, in PICO, if a class does not have a declared annotation
after defaulting, it is considered as a kind of internal error.

Moreover, the solver PICO uses, MaxSAT, is newly ported to checker framework, and
does not support all kinds of constraints. Since the existential slot is not used in other
parts of PICO, we did not implement the encoder for this kind of slot to reduce the
implementation burden.

Finally, if we already know that one existential slot in PICO must exist, replacing that
with a regular variable slot will reduce the overhead of low-level constraint encoding.

Based on the discussion above, we overridden VariableAnnotator in Checker Frame-
work Inference to replace the ExistentialVariableSlot with VariableSlot during the
slot generation on a class declaration annotation.
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3.1.3 Anonymous Class Bound in Inference

For an anonymous class without the keyword and the name, the user cannot assign one
annotation like a regular class which annotation is located before the name. But since the
new operator is the only use of the anonymous class, there is no need to make a distinction
between the instantiation bound and the only use:

e For @Mutable and @Immutable class, the only valid invocation of constructor is their
instantiation bound, so they are the same.

e For the trickier @RDM class, although the constructor can have different types and
the invocation can be all kind of the bound qualifiers, an anonymous class cannot
have a named constructor, preventing the creation of a constructor of different type.
And PICO permits a class other than @RDM extending a @RDM class, given the type is
specified on the extends clause. For the clause, it cannot have any option other than
the qualifier on the new operator.

This code examples demonstrates the equivalent regular class for an anonymous class:

@Immutable RDMInterface rdm = new /*@Immutable*/ RDMInterface() {...};

@Immutable
class anonymous implements /#@Immutable*/ RDMInterface {
/*@Immutablex/ anonymous() {...} // generated implicit constructor

by

As we can see from the code example above, all the locations: class declaration bound,
implements clause and return type of the constructor, is the only option that makes sense’.
So, it cannot make a distinction between the instantiation bound and the only use.

However, VariableAnnotator will generate two slots on the two locations: the new
clause, and the anonymous class, and both slots are insertable, meaning that they result in
an annotation on the location. The problem is that the anonymous class does not accept
an annotation, and if the slot on the anonymous class is inserted into the inferred code,
resulting in something like this:

!The PICO syntax also permits when the class declaration bound and implements clause are both GRDM.
But an @RDM class does not make sense when all the constructors only return @Immutable type.
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O@Immutable RDMInterface rdm = new /*@Immutable*/ RDMInterface()
— @Immutable {...7};

Undoubtedly, this is a bug in the VariableAnnotator. To fix this, two potential
solutions are discussed:

e Keep the two slots, and make the anonymous class slot not insertable (hidden from
code). However, the slot still get inferred. For the checkers that the types on the
new clause and the anonymous class bound are guaranteed to be the same, add an
equality constraint between the two slots.

e Only generating one slot for the anonymous class, and use that for both the type of
new clause and the anonymous class bound. Insert the slot to the new clause only.

After extensive discussion, we reached the conclusion that no other checker will ever
requires the qualifiers on new clause and the anonymous class bound to be different, since
a qualifier cannot be put on a anonymous class after all.

For the implementation, since the enclosing tree is always visited before the inner tree
(otherwise, there is no way for the visitor to know there is a inner tree), a slot should be
generated on the enclosing new class tree before visiting the anonymous class declaration
tree. Based on this assumption, when generating the slot for the anonymous class, the
VariableAnnotator gets the slot on the enclosing tree. For the anonymous class, the
enclosing tree is guaranteed to be a new class tree. After getting the slot, the annotator
will register this slot as the class bound of the anonymous class, instead of generating a
new slot.

3.2 Polymorphic Substitution and Type Variable Res-
olution

3.2.1 Introduction to Polymorphic Qualifiers

Java supports polymorphic methods by overloading, but the polymorphism does not apply

to the qualifiers. That means that the object of the same class but different qualifiers are
regarded as the same type. That means that such code cannot compile:
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class PolyClass {
void foo(@Mutable Object obj) {...}
void foo(@Immutable Object obj) {...}

The signatures of the two methods are the same, and the mutability qualifier is ignored,
so the method signature is duplicated and causing an compilation error.

To address this problem, Checker Framework supports qualifier polymorphism by ad-
hoc polymorphism: the checker designer can assign a qualifier as the “polymorphic qual-
ifier”, and use the qualifier on the method signature. When the method invoked, the
qualifier will be resolved to the most fit variant of the method, as if there are different ver-
sions of the method. For example, when using the polymorphic qualifier, @PolyMutable
in PICO, the PolyClass above can be changed into:

class PolyClass {
void foo(@PolyMutable Object obj) {...}

by

When the method is invoked with a @Mutable Object, the signature will be resolved
to void foo(@Mutable Object), satisfying the requirement.

Even if unlike the “real” method polymorphism, the qualifier polymorphism cannot
have different method bodies for each version of the method, it still very useful in many
conditions to make the checker more flexible.

3.2.2 Polymorphic Substitution and Type Argument Resolution

Qualifier polymorphism in Checker Framework is implemented by qualifier substitution:
before checking the method invocation with the declaration signature, the polymorphic
qualifier is compared with the invocation qualifier, computing the most fit qualifier 2 based
on the invocation, and finally the polymorphic qualifier is replaced with the computed
most-fit qualifier.

2The least upper bound (LUB) of all polymorphic qualifier positions. The details is out of the
scope of the thesis, but can refer to the manual if interested https://checkerframework.org/manual/
#qualifier-polymorphism

26


https://checkerframework.org/manual/#qualifier-polymorphism
https://checkerframework.org/manual/#qualifier-polymorphism

But polymorphic qualifier substitution is not the only substitution process of computing
a method declaration type, the other one is type argument resolution. Whenever Checker
Framework checks a function invocation with type arguments, it will replace the type
parameter in the method declaration with the actual type arguments before checking.

When combined with generics, in which step should the polymorphic qualifier be substi-
tuted becomes a problem. The Checker Framework once perform the polymorphic qualifier
substitution before resolution of type arguments, but this ordering caused a concerning is-

3
sue °:

class PolyNullTest {
void foo(List<@PolyNull Object> 1) {
1l.add(null); // error not reported

+

void test(List<@Nullable Object> n, List<@NonNull Object> nn) {
foo(n);
foo(nn); // may lead to NPE: see the discussion

}

1.add impose a danger that adding a null reference to a list that only accepts @NonNull
Object, for example, passing nn as the parameter of method foo. Since nn is a list of
@NonNull object, the null inserted by foo may cause a NullPointerException.

The reason for this false negative is that when performing the type argument substi-
tution, the polymorphism qualifier on the type argument is introduced to the declaration
type of the method which is later substituted to @Nullable.

1. The declaration signature: boolean add(E e)

2. After type argument resolution (E — @PolyNull Object):
boolean add(@PolyNull Object e)

3. After polymorphic qualifier substitution (6PolyNull — @Nullable null):
boolean add(@Nullable Object e)

3https://github.com/typetools/checker-framework/issues/2432
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The @PolyNull is not solvable because the origin of the qualifier is not from the context
of the method, but from the parameter of the method. Since the parameter of the method
is indeterminable until the actual invocation, inside the method the checker still should
make a safe assumption about the qualifier, and keep it in its place.

Based on the discussion above, the key to the fix is to only substitute the polymorphism
qualifier from the context of the method. So, the fix to the substitution problem should
be switching the order of the process:

1. First perform the polymorphic substitution, avoiding the substitution of qualifier
from parameters when the type argument remains unresolved.

2. Then perform the type argument resolving.
For the PolyNullTest example, the process of substituting becomes:

1. The declaration signature: boolean add(E e)
2. After polymorphic qualifier substitution (no qualifier): boolean add(E e)

3. After type argument resolution (E — @PolyNull Object):
boolean add(@PolyNull Object e)

As shown in the result, the polymorphic qualifier that is from the parameter get pre-
served. And from our experiments, the fix is compatible with the rest of the rules in
Checker Framework.

3.2.3 Polymorphic Substitution and Viewpoint adaptation

Very similar to type parameter resolution, viewpoint adaptation may also introduce a
polymorphic qualifier which is not substitutable. For example in PICO:

class Clazz {
@PolyMutable Object echo(@ReceiverDependantMutable Clazz this,
< @PolyMutable Object o) {
return o;
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void test(@Immutable Object o, @PolyMutable Clazz clazz) {
@Immutable Object e = clazz.echo(o); // should be fine
}

Previously, the viewpoint adaptation is performed before the polymorphic substitution,
so the method invocation went though these steps:

1. The declaration signature:
@PolyMutable Object echo(@RDM this, Q@PolyMutable Object o)

2. Viewpoint adaptation (@RDM — @PolyMutable):
QPolyMutable Object echo(@PolyMutable this, @PolyMutable Object o)

3. Polymorphic substitution (@PolyMutable — LUB(@PolyMutable, @Immutable) =
@Readonly): @Readonly Object echo(@Readonly this, @Readonly Object o)

4. No type parameters declared, type argument resolution skipped.
So the @PolyMutable introduced by viewpoint adaptation should not be a part of the
polymorphic substitution. In order to solve the issue, we adopted the same approach of

re-ordering: switch the ordering of viewpoint adaptation and polymorphic substitution.
After the change, the processing steps become:

1. The declaration signature:
Q@PolyMutable Object echo(@RDM this, Q@PolyMutable Object o)

2. Polymorphic substitution (6PolyMutable — @Immutable):
@Immutable Object echo( @PolyMutable this, @Immutable Object o)

3. Viewpoint adaptation (@RDM — @PolyMutable):
@Immutable Object echo(@PolyMutable this, @Immutable Object o)

4. No type parameters declared, type argument resolution have no effect.

After the process, the comparison between the declaration signature and the invocation
type should be fine, thus the check is passed.
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It is worth noting that an alternative method previously applied in PICO is that first
replacing all @PolyMutable with a new qualifier, @SubstitutableMutable, which is a
direct subtype of @Readonly. So during the viewpoint adaptation the newly introduced
polymorphic qualifiers remains @PolyMutable. Then during the polymorphic substitution,
only @SubstitutableMutable qualifiers are regarded as the polymorphic qualifier and get
substituted.

This approach requires a new qualifier, making the system more complex. Since we
now have a better solution, we are removing the @SubstitutableMutable qualifier and
the replacement process in PICO.

3.3 Viewpoint Adapted Subtype

3.3.1 The Issue of Formalization

@RDM is a very special qualifier in PICO. In many cases, when a checker validates of a use
of type itself, it should compare the use qualifier with the qualifier upper bound of the
type. If the use is below the upper bound, then the qualifier on the type is valid, and
the rest of the type is typically handled by Java compiler. For PICO, the upper bound is
@Readonly, but one difference is that it also requires a lower bound of the use qualifier,
the instantiation bound of the class: @Mutable, @Immutable, or @RDM.

But for @RDM, since the use could become any type after viewpoint adaptation and
constructor invocation, the upper bound check is not enough. So for @RDM, we cannot
apply the subtype constraint on the use of the type, otherwise PICO cannot typecheck a
@Mutable or @Immutable use of a @RDM class.

Previously, when dealing with the validity of the use of a type, PICO uses such a
constraint to satisfy @RDM:

Qbound = @Mutable = (qyse 7 @Immutable A ¢ys. 7 ORDM)

Qbound = @Immutable = (quse 7# @Mutable A ¢y 7 ORDM)
The meaning is quite straight forward: if the qualifier is @Mutable or @Immutable, the
valid use is itself or @Readonly, otherwise any use is fine on this location. The only case in

“otherwise” is @RDM, and the “any use” does not includes @Bottom, which is only allowed
on certain uses such as type parameter lower bound or null.
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While it is logically correct, thus being used in the previous PICQO’s formalization, this
constraint introduces some problems that hinder the development:

e Since the inference is based on Checker Framework Inference, one goal is to just
rely on the higher level APIs of inference, including the 5 basic operations of GUT
inference: Subtype, adaptation, Equality, Inequality, and Comparable [15]. Such op-
erations are well-developed and tested for inference, with solid encoding basis. Using
only these high-level operations will greatly leverage the burden of development and
debugging. Without using them which provided an unified entry for both typecheck
and inference, such as using a low-level implication operator, we have do define the
actions of PICO in typecheck and inference separately.

e The rule takes two constraints in encoding, which means extending this rule requires
making changes on both constraint. For example, if we decide to add a precondition
to the validity rule, e.g. “only when the use is not a field”, this condition should be
added on both of the constraints, which is tedious for the developer to maintain and
debug.

3.3.2 Definition of Viewpoint Adapted Subtype

Viewpoint Adapted Subtype (VAS) To avoid using low-level constraints as much
as possible, we developed new constraints that are equal to the older ones without using
implication, which is called viewpoint adapted subtype. As the name indicates, it is a
simple but useful operation that combines viewpoint adaptation and subtype:

vas(q, ¢) € q > g <: q

VAS is not commutative, so switching ¢; and ¢, yields different results. In the validity
rule of PICO, ¢ is the use type qualifier, and ¢, is the declaration type qualifier, the
instantiation bound. For example, the multiple constraints above could be simplified as:

Quse > Qbound < Quse

To validate that VAS is correct within the syntax of PICO, a truth table is provided as
Table 3.1. Note that @Bottom is not a typically use, so it is handled by other rules, thus
not listed in the table.
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Use (L) Declaration (R) | LeR (LeR)<:L
@Mutable @Mutable T
OMutable @Immutable @Immutable | L
©RDM @Mutable T
@Mutable @Mutable 1
@Immutable | @Immutable @Immutable | T
©RDM @Immutable | L
@Mutable @Mutable 1
©@RDM @Immutable @Immutable | L
©@RDM ©RDM T
@Mutable @Mutable T
OReadonly | @Immutable @Immutable | T
ORDM O@Readonly | T

Table 3.1: Truth table of Viewpoint Adapted Subtype

Viewpoint Adapted Equality (VAE) Viewpoint adapted equality is a derivative of
VAS, and its definition is:

vae(q, ) © q > ¢ = q
Different from VAS, VAE yields false when the use is @Readonly. To demonstrate this,
a truth table is also provided as Table 3.2.

From the truth table we can see that the only difference compared to VAS is that when
¢ = OReadonly, the result is always false, while in VAS the result is always true.

VAE is useful when @Readonly is not allowed on the use, for example, a constructor
invocation inside the new clause, and @Readonly is forbidden on the constructor invocation.

3.3.3 Updated Formalization

All updated formalization where implication constraints are replaced with VAS is shown
below. Note that for WF-TYPEUSE;, this is not the final version, as we further revise the
logic in Section 3.6 to support transitive mutable on fields.

A grey highlight box is applied to the added constraints, and the removed constraints
are colored with grey.
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Use (L) Declaration (R) | LeR (L>R)=L
@Mutable @Mutable T
@Mutable @Immutable @Immutable | L
ORDM @Mutable T
@Mutable @Mutable 1
@Immutable | @Immutable @Immutable | T
©RDM @Immutable | L
@Mutable @Mutable 1
©@RDM @Immutable @Immutable | L
ORDM @RDM T
@Mutable @Mutable 1
OReadonly | @Immutable @Immutable | L
ORDM OReadonly | T

Table 3.2: Truth table of Viewpoint Adapted Equality

kdin C C <: D typeof(constructor(D))

= Rp—D Qp—D — Qret—D

typeof(C’, kd) = — — 7 Qret-C
Gret—p = mutable = qroi—c = mutable Gt p = immutable = qoi—c = tmmutable
F<z) = k'z q: kz < kpr q, <: QTetfc’qu_D
T-SUPER ¢ - super(z) in kd
qc = bound(C')
Gret = mutable V g = tmmutable V q,.o; = receverdependentmutable
gc = mutable = g, = mutable gc = immutable = q,..; = immutable
Qret »> qC = Qret _
= (this : underinitialization ret,g : k, q4, f : k¢ q5)
Fc super(q) in g C (t C g,t f){super(g); this.f = f Fthis.f=f
WF-CONS Fo ¢eaC(t C g,t C f){super(g); this.f = f}is OK



1

2

F= (this : kthis, D : kp @05 U * Kiocal Qocr F35  F1(2) < trer qc = bound(C)
qc = mutable = (qunis # tmmutable N qipis 7 RDM)
qgo = immutable = (qnis 7 mutable N qpis # RDM)

Qthis > 4o <: Qthis

typ60f<msuper) = kthis—super chis—supera kp—super Qp—super — kret—super C_Zret—super

kthis—super <: kthis kp—super p—super kret <: kret—super
qc > Gthis—super <! Qthis qc > Qp—super <: Gp  Qret <:qcP Qret—super

WF-METH Fo tret Cm (tis C this, t, C'p) {t C'y s;return z;}is OK

qp = mutable = g = mutable qp = immutable = qc = immutable
gc = bound(C) qp = bound(D) qc>qp = qc
WEF-EXTEND FC <:Dis OK

gc = mutable = (quse # tmmutable N\ quse # RDM)
qgo = tmmutable = (quse # mutable N\ quse # RDM )
FCis OK  qo =bound(C)  Quse™ o <: Guse

WF-TYPEUSE F quseC 1s OK

3.4 Mutability of Enums

3.4.1 The Enum Type of Java

The Enum type is a special kind of class in Java. Different from a regular class, enums
consists a set of predefined constants, and optionally, fields and methods. Each enum
constant is like an instance of the enum type with a name, so each constant has its own
field values which can also be mutated by assignments and invocations of its instance
method, through in many cases the fields should not be mutated.

The code example is a shortened version taken from the Java tutorial [5], which demon-
strates an enum type with constants, fields, a constructor, a static field, and an instance
method.

public enum Planet {
MERCURY (3.303e+23, 2.4397e6),
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NEPTUNE (1.024e+26, 2.4746e7);

private final double mass; // in kilograms
private final double radius; // in meters
Planet (double mass, double radius) {
this.mass = mass;
this.radius = radius;

public static final double G = 6.67300E-11;
double surfaceGravity() {
return G * mass / (radius * radius);

}

3.4.2 Revised Mutability Constraints for Enums

Previously PICO applied implicit @Immutable to all enum types. Different from the de-
faulted @Immutable, the implicit @Immutable is not overridable by the users, just like
the primitives. So, for all enums with fields, their instantiation bounds are locked to
@Immutable. As a result, all of the use of enum constants are also limited to @Immutable
and @Readonly.

Since there is a possibility that the user requires the field of an enum constant to mutate,
it is unreasonable to lock the type of enum to @Immutable. So we removed enum from the
list of implicit immutable types, but we still default the enum type as @Immutable, making
it possible for the users to declare a @Mutable enum.

After the change, the implicit @Immutable object types in PICO are:

e All literals: primitive, string, and class literals. Primitive literals include: int, short,
long, float, double, byte and char.

e Reference types: String, Double, Boolean, Byte, Character, Float, Integer, Long,
Short, Number, BigDecimal, Biglnteger
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3.5 Class Extends and Implements

The extends and implements clause are special use of a type. As the same validity rules
apply on the use itself, except from @Readonly is not usable on a extends or implements
clause.

In the changes to PICO, we changed the way PICO interpret the extends and imple-
ments clause to make the errors more clear. The process is shown below:

1. If no explicit qualifier presents on the extends and implements clause, apply the
default as the instantiation bound of the extending or implementing class.

2. Check if the the qualifier on the clause is a valid use of the the clause’s type. Addi-
tionally, @Readonly is not allowed on the use.

3. Compare if the instantiation bound of the extending or implementing class is a valid
use of the type of the clause.

In a nutshell, a class can extend a class of the same instantiation bound, or an @RDM
class. But we further divided the error types to make it more clear to user.

This code example shows the different uses:

@Immutable

class Extenderl extends MutableExtendee {} // invalid use

@Immutable

class Extender2 extends @Immutable MutableExtendee {} // invalid use
@Immutable

class Extender3 extends @Mutable MutableExtendee {} // invalid extends
@Immutable

class Extender4 extends RDMExtendee {} // walid

@Immutable

class Extender5 extends @Mutable RDMExtendee {} // invalid extends

All of the Extenders are @Immutable class. For Extenderl, the extends operation
is valid, because the extends clause is equivalent to @Immutable MutableExtendee, and
obviously, a @Immutable class can extend a @Immutable class. However, the use of the
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type, @Immutable MutableExtendee, is invalid, because @Immutable is not a valid use of
class MutableExtendee with a @Mutable instantiation bound.

Extender? is the same with Extender1, only with the @Immutable qualifier explicit.

The extend operation on Extender3 is invalid for the reason that @Mutable is not a
valid use of @Immutable, but the use of class MutableExtendee is valid.

For Extender4, because the defaulted extends clause @Immutable RDMExtendee is a
valid use of RDMExtendee, and the extend operation itself is also valid, the class is valid.

For Extenderb5, it is also a valid type use if the RDMExtendee is used as a @Mutable
type, but the extend operation is invalid, for a @Immutable class cannot extends @Mutable.

3.6 Transitive Mutable Field

3.6.1 The Transitive Problem of Mutable Field

For the previous PICO, the fields with @Mutable qualifier will always be excluded from
the abstract state, which will cause problems for declaring a field:

@Mutable
class A {
/*@Mutable*x/ B b;

@Mutable
class B {
int field = O;

class Main {
void foo(@Readonly A a) {
a.b.field = 1; // error?
+

In the code example, the field B b will be defaulted to @Mutable in the previous PICO, and
when accessing the field from object @Readonly A a, a.b surprisingly yields a @utable B
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type. As we stated, @Mutable means that the target is removed explicitly from the abstract
state, so the usage is not wrong. To make the field not writable, the user can also choose
to apply @Readonly on the field b, but the field cannot be mutated in all instantiations
even not referenced by @Readonly.

Since the type with qualifier @Mutable is always excluded from the abstract state, such
use cannot be forbidden, which may leak the field via @Readonly references. To solve this,
there should be a way for the field with @Mutable instantiation bound optionally a part of
the abstract state.

Based on the discussion, PICO needs a mechanism to make the field writable via a
@Mutable receiver, or not writable via a @Readonly receiver to ensure flexibility and ease
to use. And this should be the default action for such a field.

3.6.2 Expanding the Use of RDM on Field

From the problem, we can see that the field with the instantiation bound of @Mutable
should have a third option to work differently from @Mutable or @Readonly. Recall the
requirement: the @Mutable field should depend on its receiver to determine the type of
field access. It seems like it is exactly the job for @RDM, as it can be resolved to the receiver’s
type after viewpoint adaptation of a field access type.

The well-formedness rule prevents PICO to apply @RDM to a type with an instantiation
bound of @Mutable, as the usage qualifier must be a super-type of the instantiation bound
or the instantiation bound is @RDM (recall that @RDM classes can have any kind of use except
@Bottom). To allow usage of @RDM on the field if the instantiation bound of it is @Mutable,
preconditions have to be added to the well-formedness rule before the viewpoint-adapted
subtyping check, to make an exception for field uses. Note here the WF-FLD is not related
to the problem. WF-FLD is a set of extra restrictions for fields, thus cannot be used to
make exceptions.

The code example below demonstrates such use:

@Mutable
class A {
/*@ReceiverDependentMutable*/ B b;

@Mutable
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class B {
int field = O;

class Main {
void foo(@Readonly A a) {
a.b.field = 1; // error!
}

By allowing to use @RDM on the field A: : b, the viewpoint adaptation result for the field
access on line 13, a.b, resolves to @Readonly A, preventing the assignment to the field.

Only including whether the use is a field is not enough for the precondition, and the
first problem is the enclosing class. Not all enclosing classes should be allowed to have such
use of the field, and the problem arises when @RDM and @Immutable become the enclosing
class of the field. For example:

@Mutable
class MutableBox {
int field;
+
@Immutable
class IClass {
OReceiverDependentMutable MutableBox box = new MutableBox () ;
+
class Test {
void foo(@Readonly IClass ri, /*@Immutablex*/ IClass ii) {
ri.box.field = 1; // error
ii.box.field = 2; // bad type

The first field access is fine: ri.box resolves to @Readonly MutableBox, so the assignment
to field is invalid, getting prevented by PICO. But the second field access has a problem:
ii.box resolves to @Immutable MutableBox, and the type itself is invalid, as @Immutable
is not a valid use of a @Mutable class. Since the receiver of field is invalid, the check on the
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assignment operation is skipped. To prevent the potentially bad behavior from happening,
the use of @RDM on the field with @Mutable bound within a @Immutable enclosing class
should be forbidden.

Here is a similar scenario for @RDM class:

@Mutable
class MutableBox {
int field;
+
OReceiverDependentMutable
class RDMClass {
/*0@RecetverDependentMutable*/ MutableBox box = new MutableBox();
+
class Test {
void foo(@Immutable RDMClass ii) {
ii.box.field = 2; // bad type

For the same reason with the @Immutable class example, ii.box resolves to a invalid
use for MutableBox, so the use should be also forbidden on @RDM enclosing classes.

The second problem is the instantiation bound of the field itself. For @RDM, undoubtedly
the usage qualifier on the field could be @RDM. And for @Mutable, we need that to follow
the receiver’s qualifier if the receiver is @Readonly. But whether allow such use on the
field with an instantiation bound of @Immutable is a problem. For succinctness of the
rules, we are making a safe option that not allowing @RDM to be used on a field with the
bound of @Immutable. The reason is that an object of @Immutable class is not mutable
after all, regardless of being a field. Depend on the receiver to resolve to @Readonly is not
particularly useful in this scenario.

Definition Based on the discussion, @RDM should also be usable on types in addition to
the original well-formedness rules when:

e the type is of a field.

e the instantiation bound of the type is @Immutable
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e the instantiation bound of the enclosing class is @Immutable

To combine this with the well-formedness rule for type use, we have WF-TYPEUSE
rule further updated to Fig 3.1.

FCis OK
qc = bound(C)
qr = enclosing Bound(C')
isField(C) A go = @Mutable A gg = @Mutable = ¢, 7# @Immutable
—isField(C) = Guse ™ ¢c <: Quse
isField(C) N qp # OMutable = quse > G0 < Guse
isField(C) N\ qg = @Mutable A gc # @Mutable = Guse > g0 <: Guse

WF-TYPEUSE F quseC is OK

Figure 3.1: WF-TYPEUSE’s second update, adding the extended-RDM rule

Note that isField is a helper function added to PICO that returns whether a type
is used as a field type. In Java compiler AST, the information is stored in the element.
enclosingBound is another helper function added to PICO that returns the instantiation
bound of the enclosing class, which can be done easily by traversing the father nodes of
the field without resulting into another constraint in implementation.

For all possible outcomes for uses of the field in different conditions, please refer to
Appendix A for a table of results.

3.6.3 Notable Examples

Inline Initialization This code example demonstrates how @RDM field works with inline
initialization.

OReceiverDependentMutable
class RDMBox {...}

@Mutable

class MutableClass {
/* @RecetverDependentMutable */ MutableBox tmbox = new MutableBox () ;
/* @RecetverDependentMutable */ RDMBox tmrbox = new @Mutable
< RDMBox () ;
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@Mutable RDMBox nmrbox = new GMutable RDMBox(); // mon-transitive

ImmutableBox ibox = new ImmutableBox();
@Immutable RDMBox irbox = new @Immutable RDMBox(); // meed ezplictit
< annotation

At first glance, assigning a @Mutable type to @RDM type is an invalid assignment. Be-
cause the two qualifiers are at the same level of the hierarchy, such assignment is neither
upcasting nor downcasting. But note that the assignment happens on a field, so it is con-
sidered a part of the initialization process, as in a constructor. Checker Framework will
assume such assignment happens in the default constructor, so the assignment equals to
this.tmbox = new MutableBox(); inside a constructor where the receiver this’s type
is @Mutable MutableClass. After viewpoint adaptation, the type of field resolves to
@Mutable MutableBox, such assignment is valid.

RDM Defaulting in RDM Class ©ORDM is not allowed in fields with instantiation bound
of @Mutable in @RDM class, but PICO will still default the field to @RDM even it is illegal.
This will raise an error if no annotation is provided, forcing the programmer to provide an
explicit annotation for the field to avoid careless errors:

OReceiverDependentMutable
class RDMClass {
/* @RecetverDependentMutable */ MutableBox mboxl; // error will
<~ Traise
OMutable MutableBox mbox2;
OReadonly MutableBox mbox3;

In inference, since such use is forbidden by the formalization, the qualifier on the field with
instantiation bound of @Mutable in a @RDM class will never be inferred to @RDM.

3.6.4 Alternative Solutions

Besides the solution we finally used, we also explored several alternatives that actually
could solve the issue we presented in this section, but not a valid or ideal solution. Here
we present the alternatives to show how our final solution is developed.
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Make RDM Default on Class Declaration At first glance, the transitive field prob-
lem can be easily resolved just by changing the defaulting rule of class instantiation bound
to @RDM. So the code example becomes:

@Mutable
class A {
/* @RecetverDependentMutable */ B b;

/* @ReceiverDependentMutable */
class B {
int field = O;

class Main {
void foo(@Readonly A a) {
a.b.field = 1; // error!
}

By using @RDM as the default, the field b can use @RDM as the declaration qualifier, thus
gain the transitive mutability by a receiver-sensitive qualifier. In the example, the field
access a.b yields a type of @Readonly B, effectively preventing the mutation on the field
by assigning to the b.field.

The updated rule will work for the example provided and will work for unannotated code
as well. But the solution still has a problem: if class B is explicitly declared as @Mutable,
just like class A, the field immediately loses the ability to be transitively mutable. So, this
solution does not meet all requirements of the problem.

Making RDM the Supertype Similar to the solution we discussed in 3.6.2, if we
want to allow receiver-transitive on a field, providing a way to use @RDM on the @Mutable
type is an easy way. Another possible solution is changing the hierarchy of the mutability
qualifiers, making @RDM the supertype of @Mutable, thus allowing objects with instantiation
bound of @Mutable to be assigned to a @RDM reference, known as upcasting. The qualifier
hierarchy after adaptation is showed in Figure 3.2.

Note that @Immutable remained its position in the hierarchy, not also being the subtype
of @RDM. One reason is that the @Immutable qualifier does not need a similar feature as
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OReadonly

AN

ORDM @Immutable
@Mutable
@Bottom

Figure 3.2: Hierarchy of qualifiers of RDM being supertype

@Mutable, because their objects cannot be modified in any way after initialization, regard-
less of having @Readonly on the use. So, being receiver-sensitive does not have benefits
in this case. But a more serious reason is that allowing such hierarchy will potentially
break the immutable guarantee of @Immutable. Because a @RDM field may be viewpoint
adapted to @Mutable, if the underlying object is @Immutable, it can be mutated via the
viewpoint-adapted @Mutable reference. To demonstrate the problem, a code example is

provided below:

@Immutable
ImmutableBox {
int immutableField = O;

OReceiverDependentMutable
class RDMBox {
// the assignment is allowed by the hierarchy

class Test {
void foo(@Mutable RDMBox box) {
box.boxField.immutableField = 1; // error

OReceiverDependentMutable ImmutableBox boxField = new ImmutableBox();
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As shown in the code example, if @Immutable is assigned as the subtype of @RDM in the
hierarchy, the @RDM will be permitted on the field of boxField, and the assignment of
@Immutable object is also permitted as upcasting. But in the use of the class @Mutable
RDMBox box which is allowed as a @Mutable variation of RDMBox, box.boxField is resolved
to @Mutable, exposing a @Mutable reference to an object with @Immutable instantiation
bound, breaking the guarantee that an object of @Immutable class can never be mutated
after initialization. As a result, this hierarchy is not safe for PICO.

But with the change to the hierarchy alone is not enough. Similar to the example
ahead, the hierarchy of this approach may still cause dangerous operations. For example:

@Mutable
MutableBox {
int mutableField;

OReceiverDependentMutable

class RDMBox {
// the assignment is allowed by the hierarchy
OReceiverDependentMutable MutableBox boxField = new MutableBox() ;

class Test {
void setSomeImmutable(@Immutable Object o) {...}

void foo(@Immutable RDMBox box) {
setSomeImmutable (box.boxField); // error?

The code example is a slightly altered version. The difference is that now the field of RDMBox
is a reference of @Mutable class. In this case, the type of box.boxField is @Immutable
MutableBox, having a contradiction in the type. Later on, if this type is needed to pass
into some methods that require an @Immutable parameter, like setSomeImmutable, this
dangerous operation is not uncovered by PICO. The reason for such operation being dan-
gerous is that there may be @Mutable alias of the underlying object box.boxField, which is
absolutely legal because the class instantiation bound of MutableBox is @Mutable. When
setSomeImmutable is expecting a @Immutable object and assumed that its content can
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never change, the object may be mutated via outer alias, breaking the assumption of
setSomeImmutable.

To ensure the assignments do not violate the immutable guarantee, some limits have
to be added to this solution. For example, only the field can upcast @Mutable to @RDM.
Since the limit should be made on the only use, it is confusing to the user why PICO has
such a hierarchy of qualifiers. So, this solution is unfriendly to the users, and because of
the number of limits it has to add, it is hard to implement.

Introducing Qualifier for Transitive Mutable Making @RDM directly the supertype
of @Mutable will introduce a problem on non-field uses or having strange viewpoint adap-
tation results. To address the problem by preserving the current typing rules, a new
qualifier @TransitiveMutable can be introduced to PICO to add new logic on fields with
a @Mutable instantiation bound. The new qualifier @TransitiveMutable is added as the
supertype of @Mutable, and the hierarchy is shown in Figure 3.3.

OReadonly
Q@TransitiveMutable
i
@Mutable ORDM @Immutable
V\\\\\\‘ ? //////V
@Bottom

Figure 3.3: Hierarchy of qualifiers including @TransitiveMutable

The newly added qualifier, @TransitiveMutable acts like a @RDM with less view-
point adaptation rules to ensure it will not be resolved to invalid types like @Immutable
MutableBox. To ensure this not happen, the following viewpoint adaptation rules are
added to PICO:

@Mutable > @TransitiveMutable = @Mutable

OReadonly > @TransitiveMutable — GReadonly

@Immutable > Q@TransitiveMutable = @Mutable

46



10

11

13

14

15

16

18

ORDM > Q@TransitiveMutable = @Mutable
@TransitiveMutable > Q@TransitiveMutable = @TransitiveMutable

The difference of the viewpoint adaptation rules compared to the normal @RDM is that the
@TransitiveMutable preserves the @Mutable if the receiver is a type other than @Mutable.
But the qualifier also works just like @Mutable when checking the mutability of a type,
allowing the mutation to the type. The following code example demonstrates this feature:

@Mutable
MutableBox {
int mutableField;

OReceiverDependentMutable
class RDMBox {
@TransitiveMutable MutableBox boxField = new MutableBox();

class Test {
void setSomeImmutable(@Immutable Object o) {...}

void foo(@Immutable RDMBox box) {
box.boxField.mutableField = 1;
setSomeImmutable (box.boxField); // error

From the code, we can see that although the receiver of the field access box.boxField is
@Immutable, the type after viewpoint adaptation remains @Mutable. Recall that by using
the @Mutable on the class, we mean that the instances of the class are always mutable,
so the assignment on line 15 is not an expected error. Adding a qualifier is not enough,
to ensure the mutations are checked correctly, we have to update the T-FLDASS rule in

PICO to ensure the newly added qualifier is treated as @Mutable in assignments, as shown
in Fig 3.4.

Another limit is that @TransitiveMutable cannot be used as the instantiation bound,
because using that as instantiation bound is not meaningful, as it acts the same with
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['(x) =ky q. C
I'(y) = ky gy
fType(C, f) = as gy
qr = O@Mutable
Vq, = @TransitiveMutable
V(k, = @UnderInitialization A ¢, = @Immutable)
\/(k:m = @UnderInitialization A q, = @RDM)
V(a; = @Assignable A (g, 7# OReadonly A gy # GRDM))
Qy <:qz>qy
k; = @UnderInitialization A k, = @Initialized

T-FLDASS Thaf=y

Figure 3.4: The formalization for field access with @TransitiveMutable

@Mutable. Since WF-CLASS only allow 3 qualifiers, @Mutable, @Immutable and @RDM on
the class declaration, there is no need to update the rules.

Also, since the static field cannot have a receiver, the receiver sensitive qualifier is
not meaningful. So, @TransitiveMutable should not be used on a static field, thus the
WEF-STATIC-FIELD rule should be updated:

fType(sfd) = aq
q # @TransitiveMutable
q # ORDM
q # @PolyMutable
a # @RDA

WF-STATIC-FIELD Fosfdis OK

Figure 3.5: The formalization for static field with @TransitiveMutable

Finally, to ensure is this the default behavior for a field with @Mutable instantiation
bound, the defaulting rule needs to be updated. For field, if the instantiation bound of the
field is @Mutable, the defaulted qualifier should be @TransitiveMutable. Otherwise, the
defaulted qualifier should be its instantiation bound.

This is a working solution that passes all the test cases in PICO. And compared to
the other alternative working solution, making @RDM the supertype, the introduced rules
are easier to implement. The reason that we did not choose this one is introducing a new
qualifier will make the system too complicated. To reduce the rules that the user needs
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to learn, we finally used the solution presented in 3.6.2, expanding the use of @RDM on the
fields.

3.7 Configurable Deep Immutability

3.7.1 Problem of Strict Deep Immutability

Deep immutability is enforced by many immutable checkers and it guarantees that all of
the fields are recursively immutable, so the whole object remains the same.

A basic requirement for deep immutable is that all the fields are final (not re-assignable)
and immutable. If a field is mutable, the deep immutability guarantee is broken and parts
of the object may be mutated.

However, in some cases, when the mutability type of a certain field needs to be inten-
tionally excluded from the deep immutability while other fields not, the user is often not
provided a way to exclude that field, and have to declare the whole class as mutable or
suppressing warnings.

For example, a class with two key fields is used as the key of a HashMap, and the key
fields are properly @Immutable, but the class has a field of lastAccessed for statistic
purposes. While the hashCode and equals is implemented only with the two key fields, it
should be safe to use as key even the lastAccessed field is mutable. Declaring the class
to be @Mutable is feasible when the checker reports any @Mutable object is used as the
key of HashMap. So, a mechanism should be provided to the power users to disable deep
immutable checks on certain fields when they are confident that they are not cared for by
the system.

@Immutable

class NeedShallowImmutable {
ImmutableBox keyl;
ImmutableBox key2;

@0verride

int hashCode() {
// only keyl and keyl requires transitive immutable
return Objects.hash(keyl, key2);

49



11

12

14

15

17

@0verride

boolean equals(Object other){
return other instanceof NeedShallowImmutable &&
- ((NeedShallowImmutable) other).keyl.equals(keyl) &&
< ((NeedShallowImmutable) other).key2.equals(key2);

OMutable Date lastAccessed; // not cared

Some checking tools support extra qualifier to allow immutable container having con-
tents of mutable types, such as the @Immutable(container0f = ...) method in Google’s
Error Prone [3], where user can specify a type variable on the class to exclude the field
of the type from the deep immutability scope. This proved useful when a container only
needs deep immutability on its non-content fields, such as the head or size fields in a list.

Although this approach is much more flexible than the tools that enforce deep im-
mutability, one limit still prevents it to be further flexible: the target of containerOf
must be a type variable. That means a container without a type parameter cannot exclude
a content field from deep immutability. For example:

@Immutable
class ShallowContainerWithoutGeneric {
OMutable MutableClass content;

// Below ts the container internal fields which needs transitive
— immutable

Object head;

Object tail;

/)

One real-world example of such use is the container of the API response. Often such
responses only have certain kinds of the header, and these headers are cached in a pool.
When using them, only the payload is replaced with the data, and the header remains the
same. In this case, only the header fields require deep immutability. Since the payload is
often just a char array, no type parameter is needed on the wrapper class.
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3.7.2 Enjoy Flexibility with Configurable Deep Immutability

Different from many tools that enforce deep immutability without an option to disable
or limit to type variables, PICO enforces deep immutability by default but provides an
option to explicitly exclude a field from deep immutability, allowing shallow immutability
on certain fields inside a @Immutable class without warnings.

PICO uses a syntax that does not requires additional qualifiers or parameters, reducing
the learning cost of the users.

1. When a field has an explicit @Mutable qualifier, it means that the user explicitly
exclude the field from the deep immutability guarantee, leaving the responsibility of
the field to the user.

2. When a field does not have an explicit @Mutable qualifier, it means that PICO should
enforce deep immutability on this field, and issue a warning when the instantiation
bound of the field is @Mutable.

It worth note that for a @Mutable use of a @RDM class inside a @Immutable class, since
an explicit qualifier is required, it is regarded as an explicit use of @Mutable, so PICO does
not issue warnings on this.

The code example below demonstrates the configurable deep immutable rules in PICO.

@Mutable

class MutableBox {...}

@Immutable

class ImmutableClass {
// this implicit use of mutable will issue a warning
MutableBox implicit = new MutableBox(); // warning
// this explicit use of mutable will pass the check
@Mutable MutableBox explicit = new MutableBox();

From the discussion and the examples, we can conclude that compared to Glacier,
PICO further supports selective shallow immutable to enhance flexibility. And compared
with Error Prone, PICO can apply the exemption to any field instead of limiting the use
to type variables. Besides, deep immutability is still enforced by default to prevent human
errors in the code.
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3.8 Instance Methods for Array

During the experiments, we found that PICO has issues with arrays’ instance methods:
all the method invocation of arrays, such as array’s method clone and inherited method
hashCode, are defaulted like a fully unannotated code with the receiver type of @Mutable,
preventing the method be invoked on @Immutable arrays.

void foo(@Immutable Object @Immutable [] arr) {
@Immutable Object @Immutable [] cpy = arr.clone(); // false
— positive

In the code above, when checking the invocation of arr.clone(), the receiver type will
be defaulted to @Immutable Object @Mutable [], preventing arr invoking the method.
However, since the return type will be fixed by Checker Framework, no error is issued on
the assignment.

This issue is related to the Checker Framework’s procedure for code without source
files. When a source code is unavailable for the checker, for example, Java built-in and
library classes, Checker Framework will first try to find that in the stub files where the
developer can provide an annotated signature. If a signature is found, Checker Framework
will use that as if it is from the class declaration.

Although arrays are treated like objects, there is no class declarations of them in Java
runtime, and its creation is not a typical new operation, but implemented by special JVM in-
structions: newarray for primitive arrays, anewarray for object arrays and multinewarray
for multi-dimensional arrays [0]. The implementation details of the array are decided by
the JVM, but not included in the Java runtime [17]. Since array objects are not associated
with any classes, stub files do not affect the instance methods of arrays, and the declaration
types for the instance methods have defaulted like unannotated code.

To solve the problem, PICO uses an annotator during the generation of method decla-
ration signatures before the defaults are applied. Because the programmer cannot override
or extend the array type, it is guaranteed that the instance methods are fixed: clone and
all methods inherited from java.lang.0Object. So the annotator firstly checks whether
the receiver of the method is an array, then applies qualifiers to the receiver type. Since
all methods of an array are invocable on any mutability type of receiver, PICO will assign
@Readonly to the receiver.
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PICO does not need to deal with the return type of clone, because the Checker Frame-
work will replace the return type with the receiver’s type on array’s clone method invo-
cation, ensuring the cloned type is the same with the receiver. So it is safe to leave the
return type of clone untouched in the annotator.

3.9 Casting

PICO was designed to issue warnings on the casts that are possibly unsafe. For example,
PICO would issue a warning on the casting in the code below, which is removed in our
improvements.

int compare(Object ol, Object 02) {
Integer il = (@Immutable Integer) ol; // no warning
/.

If the Java compiler is convinced that the type in the casting operator is correct, then
casting the qualifier to the bound has no problem. For example, for reference @Readonly
Object casting to Integer, if the compiler issues no warnings on that, then casting to
Integer should have no problem, and casting to the bound, i.e. @Immutable Integer,
should also have no problem.

However, if the cast itself is invalid, e.g. no subtyping relations between the two classes,
the Java compiler will stop compiling and the code cannot reach the annotation processor,
PICO, which is out of the scope of PICO’s check.

3.10 Polymorphic Qualifier in Inference

It is hard to infer that a location can potentially use a polymorphic qualifier, so PICO is
not implementing this. However, the existing @PolyMutable can be correctly substituted
during both the inference or the typecheck mode of the inference checker.

Previously PICO does not support @PolyMutable in the inference checker, so during
the typecheck phase of the code inference, the inference checker will stop working when
encounters the @PolyMutable qualifier, complaining about an unsupported qualifier in the
code.
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To fix this issue, we added @PolyMutable to the supported qualifiers to the inference
checker. To ensure this qualifier does not appears in the inference result, we added inequal-
ity constraints on all type use locations during inference only, forcing all use locations not
to infer to @PolyMutable, ensuring no new polymorphic qualifiers get inferred, but only
reusing the existing @PolyMutable as constant variables. By doing this, the polymorphic
qualifiers are supported during the two typecheck phases of the round-trip inference.

3.11 Static Inner Classes

PICO does not allow the use of @RDM in static context. This makes sense because a static
block, method or field cannot have receiver, so the qualifier cannot resolve to anything.

However an exception are the static inner classes. Being no different than a regular
class in the sense of using @RDM, the use of @RDM is still be allowed on the declaration of a
static inner class.

@Immutable

class Outer {
@ReceiverDependantMutable // allowed
static class Inner {...}

3.12 Action after Error

Previously PICO will stop processing a part of the code if an error is raised. Undoubtedly
this will improve the performance, but may also frustrate a user if more error appeared
after each edit.

Another issue is that the inference checker and the typecheck checker have a little
inconsistency in dealing with the error. For some errors, typecheck checker would stop
processing the code, while the inference checker still moves on. Also, during automated
testing, it is better to have all expected errors of a test case instead of consuming a part
of it.

To unify the action between the checkers and enhance the testing experience, we re-
moved the logic that prematurely stops the checking if an error happens, forcing the checker
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to complete the check of compound code, such as inline initialization. The code example
below shows the difference.

class MyClass {
// Field type error, constructor invocation OK.
@Immutable MutableClass fieldl = new @Mutable MutableClass();
// Field type OK, constructor invocation error.
@Mutable MutableClass field2 = new @Immutable MutableClass();
// Both of the use is error. Raise two errors for the problem.
O@Immutable MutableClass field3 = new @Immutable MutableClass();

Previously, PICO stops checking field3 after issuing the error that the type use is wrong.
After the change, PICO will raise two errors for the type use and constructor invocation
respectively.

To summarize, this chapter introduced the updates to PICO to enhance flexibility and
improved some bad designs.

e The class bound is clarified firstly, with the refined syntax for bound of anonymous
classes. The logic is also updated for Enum classes and the class extends and imple-
ments clauses to ensure the class bound is enforced correctly.

e The ordering of polymorphic substitution, viewpoint adaption, and type variable
resolving is updated to avoid introducing un-substitutable qualifiers to polymorphic
substitution.

e To fix the deep immutability /read-only problem, different fixes are proposed for mu-
table and immutable classes.

e Viewpoint adapted subtype is introduced to provide syntactic sugar for the formal-
ization of @RDM classes.

e Minor bug fixes, including the arrays’ instance methods, casting logic, using poly-
morphic qualifier during inference, updating the static scope, and unified the action
after encountering an error.
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Chapter 4

Experiments

This chapter introduces the experiments with PICO. To reproduce the experiments, a
docker image of PICO is provided: https://hub.docker.com/repository/docker/lnsun/
pico.

4.1 Continuous Integration Tests

Automated unit testing is included in the continuous integration to detect some kind of
errors in implementation. Based on the existing test cases of PICO, we added more test
cases to further enhance the correctness of the result. The added test cases includes type-
checking the inference test cases, and a subset of Glacier test cases [11].

Sharing Test Cases between Typecheck and Inference In the previous version of
PICO, the typecheck and inference checker use a different set of test cases for automated
testing. Since the type rules of typecheck part and the inference part are the same, the
test cases should be shareable between the two checkers.

It is quite simple to use the test case of inference for type check, but it does not
applies vice versa. The inference tool does not supports initialization sub-checker for some
technical reason of the inference framework. Besides, the inference tool cannot infer new
@Assignable and @PolyMutable, although the existing qualifiers can be used. Based on
the reason above, the test cases of the type check cannot be reused to inference directly and
requires adaptation. Since there is no support for ignoring certain errors on the checker
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level, we are not reusing the type check’s test cases for inference, but only reusing the
inference’s test cases for type check.

The test cases added to the type check revealed some inconsistency of the two imple-
mentation of PICO:

e Actions on error (see 3.12): the inference tool will continue checking when the clause
of the code have raised error, but typecheck will skip the tree when an error arises.
We unified the behavior to expose more error to the users and not try to be too
“clever”.

e Inconsistent error keys: Inference and typecheck have different error keys on the same
error, e.g. an invalid extends clause. This issue is not hard to solve, just unify the
error key strings in configuration.

e Extra checks: Inference checker will also checks each super class up to Object when
checking each class tree, while typecheck checker does not have such behavior. After
carefully inspection of the formalization, we decided that the check is not necessary
in inference, so this check and corresponding error key is removed from the inference
checker.

4.2 Comparison with Glacier

Glacier is a similar checker for immutability [12], and its qualifier is partly compatible with
PICO, so we are reusing a compatible subset of the test cases of Glacier to test scenarios
that we did not cover.

Although some test cases can be just imported to PICO and use, many of them still
require changes to work with PICO. One reason is the qualifiers: Although Checker Frame-
work supports aliasing for the qualifiers, if the used qualifier is not included in the path, the
Java compiler will raise an error and cannot proceed to the annotation processor. We are
not including Glacier in our build since it relies on an older version of Checker Framework,
and it does not comply to the Checker Framework version we are using in PICO. As a
result, we have to manually replace the import clause with our qualifier.

Another reason are the error keys. Glacier uses a different set of error keys compared
with PICO and it is not purely a mapping from A to B. The difference in processing
the code result into different errors. For example, for an invalid case of implementation
where annotation is absent on the implements clause, PICO first defaults the clause to the
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same qualifier of the class bound, so the implementation is valid. But since the defaulted
qualifier is invalid on the implemented type, there will be an error of invalid annotation
on the use. But for Glacier, since it only supports class-level, there is no “use annotation”
on the type. So when that is invalid, Glacier will just inform the user that the implement
clause is invalid.

Different defaulting scheme also contributes to some of the incompatible tests. For
example, the Object in PICO have a bound of @RDM, so the default use type of it in return
type will be @Mutable to be compatible with most uses. In the Glacier test cases where
@Immutable Object are returned, the return type of the method can be unannotated. This
design difference requires such test case to be annotated explicitly.

4.2.1 Improvements to PICO

The PICO adopted many useful changes from Glacier:

Stub File Glacier contains more built-in types in Java that should be @Immutable. PICO
added such entries to the stub file to better typecheck Java built-in types.

Class Name Change
java.util. AbstractCollection | add @Readonly to the receiver of size
java.util. Arrays add @Readonly to the receiver of copyOf

Table 4.1: Entries added to stub file

Array Instance Method Some test cases of Glacier unrevealed a serious issue in PICO
that the array’s invocation methods are not handled correctly. We fixed this problem as
discussed in Section 3.8.

Handling of Null For PICO, null cannot be other type than @Bottom. During infer-
ence, a slot is still generated on uses of null with the mandatory constraints to ensure it
is correctly inferred to @Bottom. In order to reduce the amount of the variable slots and
constraints, a constant slot of @Bottom is applied on the null locations, and no constraint
is generated if there is no other uses of the slot. This is inspired by how the Glacier handles
null, although Glacier does not support inference.
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4.2.2 Comparison with Glacier

While we learnt much from Glacier and made updates to PICO, we also noticed some
design issues of Glacier, and PICO gives a better solution.

Class Extending Rule There is no @Mutable in Glacier. Instead, Glacier have the
qualifier @MaybeMutable as the super type of @Immutable. So, Glacier allows @Immutable
classes inherit from @MaybeMutable classes. In order to prevent aliasing, upcasting between
these two types are prohibited.

PICO assign @Mutable and @Immutable the same level in the hierarchy, so the @Immutable
class cannot extend the @Mutable class. In PICO, @Mutable means that the object of the
class is always mutable. If a common part is going to be shared between @Mutable and
@Immutable class, PICO’s solution to this is the @RDM class, which will enforce a safe as-
sumption on use, allowing the class can be used both as @Mutable or @Immutable without
unsoundness.

Deep Immutability Glacier enforces deep immutable and this behavior is not overrid-
able, unless the error is suppressed. That means any @MaybeMutable fields are not allowed
inside an @Immutable class. This grunts more safety at the cost of flexibility. If the muta-
bility of a field is not interested in a immutable class, for example, a “last accessed” field of
date which is never used in the hashCode method, the user cannot override the behaviour.

In PICO, deep immutable is by default but not enforced. As discussed in 3.7, shallow
immutability is possible with an explicit @Mutable on the field. Otherwise, if no qualifier
is provided on the field, deep immutability rule is applied, and issues a warning if the field
is a reference to a @Mutable class.

Due to this difference, the test cases that tests deep immutability are generally not
applicable to PICO if the qualifiers are explicit. PICO is only importing the tests without
qualifiers on the field.

Qualifier Position Some Glacier test cases put the qualifier before the modifiers, which
will result into a warning. When importing such tests, we changed the order of the modifier
before the qualifiers to eliminate the warnings.

Initialization Check In order to reduce human error, PICO used the initialization
checker as an sub-checker to get the initialization status of the use of type. In @Immutable
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class, if one field is not explicitly initialized, both inline initializing or in constructor, PICO
will issue an error that the field is not initialized. Because after the constructor, the object
can never mutated as guaranteed by PICO, an implicit null field seems meaningless in
most cases. However, if the user need the field to be null on purpose, an explicit assignment
to null will disable the error.

While Glacier seems not to have this feature, all uninitialized fields are not expecting an
error in the tests. Since this feature is useful, we decided not to disable it, but suppressing
the initialization errors in all Glacier test cases.

Type Refinement with Null The PICO enabled the type refinement on local variables.
For example:

class PlainObjects {
public void takeImmutableObject(@Immutable Object o) {};

void foo() {
Object ol = null;
takeImmutableObject(ol); // error?

In PICO, the local variable o1 inside foo() is affected by type refinement. After the
assignment to null, the type will be refined to @Bottom, the type for null in PICO. So, in
the later invocation takeImmutableObject (ol), no errors will be raised, because @Bottom
types are assignable to any parameter.

However, Glacier seems to not have this feature enabled, thus expecting an error on
the method invocation. Since type refinement is useful to reduce the annotation burden,
we are removing this expected error from the test when imported to PICO.

The full list of tests imported from Glacier is listed in Table 4.2.
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4.3 Comparison with RelmlInfer

Relm and RelmlInfer is another checker for immutability [21], and we will conduct the
comparison by running their inference test cases with PICO. Since all inference test cases
in RelmlInfer are fully unannotated, there will be no replacing of qualifiers to reuse these
test cases.

While PICO inference checker can infer a valid result for most test cases, some of the
test cases also revealed a bug in the toolchain of PICO, the Annotation-tools: it cannot
insert inferred annotation for array initializer when the enclosing class is not the first class
in the file. Since this problem is not within the scope of this thesis, we not not discuss the
problem in detail *.

4.4 Whole Program Inference

For the typecheck checker, dealing with unannotated code will give many false positives,
because the typecheck relies on explicit qualifiers to work correctly in many cases. Since
the default qualifier applied on the unannotated types are only for the most likely type on
a position, there will still be some cases that not possible to be covered by the default.

The whole program inference will go through all uses of a type in the whole project,
and based on the existing formalization, the inference checker will infer a possible qualifier
for the type and all its use.

Due to technical issues, currently we can only infer one qualifier hierarchy during infer-
ence, so assignability and initialization qualifiers cannot be inferred, but the user can still
provide explicit qualifiers for the assignability and initialization.

The inference will not infer libraries that are not a part of the project, including Java
runtime libraries and other third-party libraries in the dependencies. For the qualifiers of
classes and methods from these code, PICO inference will first try to look up the stub
file, if their qualifiers are not specified in the stub files, PICO will apply defaults based
on the configuration. There are three strategies of assumption: pessimistic, realistic, and
optimistic assumptions for libraries:

e Pessimistic assumptions: every library method returns @Readonly objects and ac-
cepts @Bottom arguments. It is supported by the Checker Framework.

'For details, please refer: https://github.com/opprop/immutability/issues/22
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e Realistic assumptions: every library method returns @Mutable objects and accepts
@Mutable arguments if the type of arguments and returns is not implicit immutable.
Implicit immutable will still apply and replaces the @Mutable default to @Immutable.
This this the same defaulting scheme with typecheck and will be used by default.

e Optimistic assumptions: every library method returns @Bottom objects and accepts
OReadonly arguments. Additionally, it is currently a PICO-specific configuration.

Note that the pessimistic assumptions are almost unusable in PICO like for other type
systems, because the only @Bottom type allowed in user code is null reference and type
variable lower bound. Applying pessimistic assumption will make all library method not
invocable unless all the arguments are null. Experiments are conducted with both realistic
and optimistic configuration.

We experimented the whole program inference on some real-world projects, and an-
alyzed the inferred results, such as the slots and constraints created and the qualifier
inferred. The number of the qualifier inferred is shown in Table 4.3. Together with the
processing time, the number of variables and slots can be used to estimate the solver’s over-
head during the checking. The percentage of each kind of qualifier can give us an overview
of inferred result. Generally, the inference checker of PICO is usable on real-world projects
with acceptable inference results.

@Mutable @Immutable | GRDM OReadonly @Bottom
imgscalr 539 (52.9%) | 298 (29.2%) | 4 (0.4%) 114 (11.1%) | 64 (6.2%)
jama 726(25.2%) 1327(46.2%) | 15(0.5%) | 386(13.4%) | 421(14.6%)
react 7160(44.2%) | 3120(19.2%) | 847(5.2%) | 4579(28.2%) | 503(3.1%)
exp4j 379 (19.9%) | 969 (51.0%) | 66 (3.5%) | 382 (20.1%) | 105 (5.5%)
ECC-RSA-Backdoor | 1484 (52.9%) | 372 (13.2%) | 29 (1.0%) | 739 (26.3%) | 181 (6.5%)

Table 4.3: Number and percentage of qualifiers inferred by project

A full list of the projects with their repository URL is available in Appendix B.
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Chapter 5

Conclusion and Future Work

In this thesis, we presented work that improves the soundness and friendliness of PICO,
including updates to the formalization and the defaulting scheme, and experiments on
real-world projects and smaller code snippets from other immutability type systems.

We examined and fixed the defaulting scheme and certain bad designs of the original
PICO, including the transitive field problem, the ordering of the qualifier and type variable
substitution, and the enum classes. For the transitive field problem, we also provided all
the approaches we have experimented, with an alternative solution.

We also improved the friendliness of the original PICO, including updating the default-
ing scheme to avoid the unsafe defaults, and updated the class and extends clause default
to relieve the annotating burden. We also updated the casting behavior and the mechanism
of static classes to avoid a false negative warning.

Finally, we conducted the experiments of the improved PICO. We improved the au-
tomated testing process of the PICO by adding the cross-check of inference’s test cases
and adding the Glacier’s test case. We also conducted a comparison between PICO and
Glacier. We made improvements to PICO based on the Glacier’s advantages on library
methods and array methods, and we also analyzed the disadvantages of the Glacier where
PICO outperforms.

The work in this domain is not yet finished.

Currently PICO lacks the knowledge of third-party libraries by default, and it relies on
the user to specify which class should be immutable or mutable. We plan to investigate
more open-source projects to add more pre-defined immutable types to the stub file.

65



The inference result is hard to interpret, especially in whole-program inference when
a contradiction in constraints occurs. This can either mean that the project itself has a
contradiction with user-defined or pre-defined mutability rules, or it means a bug in PICO.
While the result only indicates the slot number and a position in the code, it cannot have
more information. Providing a specific reason for the failed inference may benefit the user.

During the inference, when encountered third party libraries, PICO will not infer the
qualifiers of their classes and methods, but use the stub file, or configurable assumptions
for the default if the stub file does not contain their qualifiers. One possible solution to
this problem is to also infer the used method signature to a stub file, and use that to check
with the library.
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Appendix A

Result Table of Possible Use of Fields

This table shows all possible outcome of using different qualifier on field with different
instantiation bound and enclosing class.

Legend Columns of the table:
e C.B. = Class bound annotation
e F.D.A. = Field declaration annotation
e F.C.B. = Field’s class bound annotation

e [.C.C. = Field’s constructor call during initialization

The order of columns follows the order they "appear” in code:

@CB
class Clazz {
@FDA ClassWithBoundFCB field = new OFCC ClassWithBoundFCB() ;
static void foo(@ClassUse Clazz c) {
c.field; // field access result
}

Note that the class declarations of ”invalid” rows are invalid, so no use of the class will
make sense, thus the corresponding rows are "N/A”.
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CB. [F.D.A. |[F.CB. |F.CC.| Class Use | Field Access Result
M M M
RO RO (transitive)
N M M
RDM RO RO (transitive)
RDM I N/A Invalid init - Incompatible with field decl
RDM | N/A Invalid init - Incompatible with field decl
(none)
I N/A Invalid init - Incompatible with field decl
M M
M RO M
M M M
M M RO M (non-transitive)
RDM I N/A Invalid init - Incompatible with field decl
RDM | N/A Invalid init - Incompatible with field decl
(none)
| N/A Invalid init - Incompatible with field decl
M N/A Invalid init - Incompatible with field decl
M N/A Invalid init - Incompatible with field decl
I M I
I RDM RO I
RDM | N/A Invalid init - Incompatible with field decl
(none)
I M I
RO I
M N/A Invalid init - Incompatible with field decl
M N/A Invalid init - Incompatible with field decl
I I I
RDM | RDM FO FO
RDM RO RO
(none) | (any) Bottom (null)
I N/A Invalid init - Incompatible with field decl
M I M
RO M (non-transitive)
M I M
M RO M (non-transitive)
I RDM I N/A Invalid init - Incompatible with field decl
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RDM | N/A Invalid init - Incompatible with field decl
(none) | N/A Invalid class decl - all fields must initialized
N/A Invalid init - Incompatible with field decl
N/A Invalid init - Incompatible with field decl
M N/A Invalid init - Incompatible with field decl
I I I
e L OO
RDM RO I
(none) | N/A Invalid class decl - all fields must initialized
I I
RO I
N/A Invalid class decl - invalid anno
M N/A Invalid init - Incompatible with field decl
I N/A Invalid init - Incompatible with field decl
M M
RDM | RDM I I
RDM RDM RDM
RO RO
(none)
N/A Invalid init - Incompatible with field decl
M M
I M
RDM M (non-transitive)
RO M (non-transitive)
M M
I M
M M RDM M (non-transitive)
RDM RDM RO M (non-transitive)
I N/A Invalid init - Incompatible with field decl
RDM | N/A Invalid init - Incompatible with field decl
(none) | N/A Invalid class decl - all fields must initialized
N/A Invalid init - Incompatible with field decl
N/A Invalid init - Incompatible with field decl
M N/A Invalid init - Incompatible with field decl
M I
I I I

RDM
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RDM

|

RO

I

RDM | N/A

bottom (null)

(none)

M

|

RDM

I
I
I

RO

I

Table A.1: Possible uses of fields under all condition
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Appendix B

Repository of Experimented Projects

The repository URLSs of the projects we experimented with PICO is listed below.

Project Name Repository URL

imgscalr https://github.com/rkalla/imgscalr.git

jama https://github.com/topnessman/jama.git

react https://github.com/topnessman /react.git

expdj https://github.com /fasseg/exp4j.git

ECC-RSA-Backdoor | https://github.com/topnessman/ECC-RSA-Backdoor.git

Table B.1: URLs of the repository exprimented with PICO
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