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Abstract

Pluggable type systems is a powerful approach to add additional information on types,
which can facilitate the understanding of programs. This thesis presents our work on three
pluggable type systems for helping both programmers and other program analysis tools to
better understand programs.

Pluggable type checking ensures the absence of formalized vulnerabilities. This thesis
presents the EOF Value Checker, which prevents unsafe end-of-file (EOF) value compar-
isons. Unsafe EOF value comparisons can lead infinite loops in programs, and the details
are described by the SEI CERT Oracle Coding standard for Java rule FIO-08J. EOF Value
Checker examines additional safety-related properties on integer types, and statically en-
sures no FIO-08J rule violations appear in a given program.

Traditionally, pluggable type inference alleviates manual annotation efforts for type
checking. This thesis presents work on extending the purpose of type inference to also pro-
duce high-level abstractions for programs. We present a novel type system called Ontology,
which reasons about a coarse abstraction for a given program based on ontic concepts. An
ontic concept is a high-level semantic conclusion of concrete types or fields in programs.
The goal of Ontology is to produce reasonable semantic abstractions for a given program,
so that the produced abstraction may facilitate other program analysis tools on their tasks.

To effectively solve type constraints for Ontology, as foundational work, we extend the
solver framework in the Checker Framework Inference from only supporting satisfiability
problem (SAT) solvers to also supporting Satisfiability Modulo Theories (SMT) solvers.
Then, a new SMT encoding approach based on this extension is proposed for Ontology
type system. We also apply this new encoding on Dataflow type system, which is previous
work on reasoning about concrete run-time types for the components in programs. Our
new encoding makes it be possible to support partially annotated programs.

We evaluate EOF Value Checker on 35 real world projects, and it finds 3 defects, 8
bad coding practices, and no false positives are generated. Ontology and Dataflow type
systems are evaluated on 15 scientific libraries (range from 393 to 86k LoC). For Ontology
type system, it summarizes 4937 built-in ontic concepts, and propagates 274 domain-
specific concepts in two pre-annotated physical libraries. For Dataflow type system, the new
approach propagates 1.56 times more interesting Dataflow types. In addition, we manually
examine the inference results, and verify the two type systems produce meaningful program
abstractions of projects in the benchmark. These results suggest that pluggable type
systems can provide confidence on preventing formalized vulnerabilities, and be able to
infer high-level abstractions for programs.
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Chapter 1

Introduction

Program understanding is an important aspect in terms of developing and maintaining
software. However, as current software becomes increasingly complex, it is impossible
for programmers to thoroughly understand every detail of source code by themselves.
Therefore, programmers apply uniform code styles, write code documentations, and design
test cases in order to make softwares easier to be understood and less-likely to contain bugs.
However, code styles neither help to understand program logic nor on ensuring program
to be bug-free. Documentations are easily to be out-of-date. Test cases always ensure
programs behave as expected within a specific subset of inputs, and becomes helpless
when unexpected inputs occurs.

Type systems can help to enhance program understanding in a formalized way. With
assigning types on program constructs, type systems examine the flow of values with types
to ensure no type errors happen. Hence, as long as a program passing the type checking
by a type system, then it is guarantees this program holds the properties defined by the
type rules. The built-in type system in Java is able to prevent many kinds of errors. For
example, given below code:

1 int x = "Hello World!";

Java compiler will issue a type incompatible error, as variable x has type int, but
the assignment expression try to assign a String type value to x. However, the built-
in type system in Java has its limitation and cannot prevent every kind of errors. For
illustration, Null Pointer Exception is a very common bug and is called ”the billion dollar
mistake” [9], as it is so hard to detect even if programmers think they code carefully and
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testing thoroughly. Unfortunately, Java built-in type system cannot prevent Null Pointer
Exception. Fig. 1.1 shows a code example that contains a Null Pointer bug, but the Java
built-in type system still let it compile.

1 void m(Object o) {

2 o.toString();

3 }

4
5 static void main() {

6 m(null);

7 }

Figure 1.1: A Code Example for Illustrating Null Pointer Exception

To break out the limitation of Java built-in type system, the Checker Framework [13]
has been proposed and implemented. Checker Framework is a tool that using Java An-
notation processor to support adding pluggable type systems [7] to the Java language.
A type system designer can use the Checker Framework to enforcing additional proper-
ties by defining type qualifiers and their semantics. A programmer can then annotate
programs with type qualifiers to prevent related bugs. The Checker Framework does not
only providing an infrastructure for building additional type systems for Java, but also
come with a collection of pluggable type systems that prevent several common kinds of
bugs in practice. For example, Nullness Checker in the Checker Framework can be used
to prevent the potential Null Pointer Exception in Fig. 1.1. By default, Nullness Checker
assume every type use is non-null, and will issue an error on line 6 about passing null to
a non-null method. Programmers can annotate the method parameter o on line 1 with
annotation Nullable to override this assumption. Then the Nullness Checker will issue
an error on line 2 about dereferencing the null-possible reference o. Either way, Nullness
Checker prevents this Null Pointer Exception.

By applying type qualifiers on types, Checker Framework enrich type semantics and be
able to enforce more properties than the Java built-in type system could. However, since
programmers have to annotate programs with type qualifiers to be able to use pluggable
checkers, manual annotations becomes a heavy burden when annotating legacy libraries or
huge and complex programs.

Checker Framework Inference has been presented to alleviate the burden of manual
annotations. Instead of performing type checking, Checker Framework Inference generate
constraints according to type rules between variables in the program. Then a solver will
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solve these constraints to give a solution. As long as a solution is found, then this solution
is guaranteed to provide a set of annotations annotated to variables in the program to make
the program type check. Thus, Checker Framework Inference auto-infer type annotation
by this constraint-based approach.

This thesis presents three pluggable type systems built on top of Checker Framework
and Checker Framework Inference, to help programmers coding with more confidence and
to help other program analysis tools perform better analysis tasks.

We first present EOF Value type system, which prevent FIO-08J rule violation stati-
cally. The SEI CERT Oracle Coding Standard for Java rule FIO08-J “Distinguish between
characters or bytes read from a stream and -1” describes a rule of how to correctly use Java
read APIs. Since the read methods in InputStream and Reader in Java both return an
int value to represent the read byte/char value, it can leading ambiguous reading result
if the read int value has been converted to byte/char before comparing to the end-of-file
(EOF) value. This may cause a read-until-EOF-loop either exit prematurely or be stuck
in an infinite loop. EOF Value type system ensure every read int value compare with
EOF value before the narrow-down conversion. Therefore, it effectively prevent this kind
of bug. In an evaluation of 35 projects (9 million LOC) EOF Value type system detected
3 defects in production software, 8 bad coding practices, and no false positives.

Then we present the improvement on Dataflow type system [11]. Dataflow type system
is an inference type system that concludes the concrete runtime types of each methods
may return. In this thesis, a new approach is proposed to encoding and solving constraints
for Dataflow type system, which will infer more complete result and makes Dataflow type
system possible to support partially annotated programs. We evaluate Dataflow type
system in 4 scientific projects. In this case study, our new approach is able to to infer 1.56
times more interesting Dataflow types than the previous approach.

Finally, we present the Ontology type system, which infer and propagate ontic con-
cepts in programs. An ontic concept is a high-level semantic conclusion of concrete types
or fields in programs. One straightforward example for illustrating ontic concept is the
SEQUENCE concept. SEQUENCE represents a collection of elements organized in some
orders. Ontology groups Java Array type, List and List subtypes to SEQUENCE con-
cept. The goal of Ontology is to produce reasonable semantic abstractions for a given
program, so that the produced abstraction may facilitate other program analysis tools on
their tasks. We evaluate Ontology type system on 15 scientific libraries. The experimental
result shows Ontology is able to summarizes 4937 built-in ontic concepts, and propagates
274 domain-specific concepts in two pre-annotated physical libraries. We manually exam-
ine some infer results on several random selected projects, and found Ontology is able to
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infer meaningful results.

1.1 Motivation

The motivation of this thesis is to develop several pluggable type systems that are helpful
for programmers and other program analysis tools to better understanding a given program.
EOF Value type system is proposed in this thesis, as currently there are no freely available
tool for preventing the violation of FIO-08 J rule, and reading is one of the most basic
operations in many applications and is required in many different domains. Therefore we
want to researching and developing a practical type system that is be able to formally
guarantee the absence of this kind of errors from programs.

Code similarity tools often perform code matching based on their control flow graphs
and other informations. Categorize types in the graph into higher-level concepts may be
helpful for these tools to perform a better similarity task, as now they are performing
searching on a higher-level abstraction. Therefore, we propose Dataflow and Ontology
type systems in this thesis, to see if they are helpful for these code similarity searching
tasks.

1.2 Approach

For EOF Value type system, we designed type qualifiers and type rules, and implement
it on top of the Checker Framework. For Dataflow and Ontology type system, we first
refactoring and extending the solver framework in Checker Framework Inference from only
support SAT back-ends to also support SMT back-end. Then we implement a SMT solver
backend based on Z3 for Checker Framework Inference. Next we propose a new encoding
based on Set Theory for Dataflow and Ontology type system, and solving the constraints
using the SMT solver back-end based on Z3.

For case studies, we evaluate EOF Value Checker on 35 wide-used Apache projects. We
evaluate Dataflow and Ontology type systems on a collection of 15 scientific libraries. For
the evaluation on each type systems, we collect different aspect of statistics to illustrate
how well the type system works.
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1.3 Thesis Contributions

This thesis made below contributions:

For type checking, this thesis proposed a new type system for preventing the violation
of FIO-08 J rule. To the best of our knowledge, this is the first open source tool that
formally prevent this rule violation.

For type inference, we refactoring the Solver Framework in Checker Framework Infer-
ence, to let it also support SMT solver back-end. Then we propose a new encoding based
on Bit Vector Theory for type systems that theoretically has infinite type qualifiers struc-
tured in a power-set-like way, and applying this encoding for Dataflow type system and
Ontology type system.

We also propose Ontology type system, which is a novel type system that reasons about
high-level abstractions for programs that may facilitate other program analysis tools on
their tasks.

In addition, several utility tools are developed during my Master period, that are useful
for facilitating research work on projects based on the Checker Framework and the Checker
Framework Inference. These tools are not discussed in this thesis in detail, as they are just
utility tools. However, it is still worth to mention them for future uses:

• Test Minimizer 1: A tool that helps minimize a test case from a real project, which
exposes a bug in Checker Framework or Checker Framework Inference. The mini-
mized test case will expose the same bug as the real project, but will only contain
the minimal code necessary to reproduce the bug.

• corpus-utils2: A Collection of utility scripts for auto-executing tasks for the Checker
Framework and Checker Framework Inference on a set of projects (corpus). The
tasks include: 1) running CF/CFI on the corpus. 2) check execution log in each
project, and delegate to TestMinimizer to produce a minimized test case if exceptions
happened. 3) collect statistic data and produce latex tables.

• Checker Framework Live Demo3: A live demo website4 for the Checker Framework.

1See https://github.com/opprop/do-like-javac/blob/master/README_testminimizer.md.
2See https://github.com/opprop/corpus-utils/blob/master/README.md.
3See https://github.com/eisop/webserver/blob/master/README.md.
4See http://eisop.uwaterloo.ca/live.

5

https://github.com/opprop/do-like-javac/blob/master/README_testminimizer.md
https://github.com/opprop/corpus-utils/blob/master/README.md
https://github.com/eisop/webserver/blob/master/README.md
http://eisop.uwaterloo.ca/live


1.4 Thesis Organization

The rest of this thesis is organized as follows: Chap. 2 introduces the general background
of the Checker Framework, and the Checker Framework Inference. These are the common
background for all works in this thesis. Chap. 3 introduces the EOF Value type system in
detail. Chap. 4 discusses the improvement work on TypeConstraintSolver of extending it
to also support SMT solvers, and introduces a new constraint encoding based on Bit Vector
theory. Chap. 5 discusses the improvement work on Dataflow type system of applying the
new Bit Vector encoding to this system. Chap. 6 introduces the Ontology type system in
detail. Finally, Chap. 7 concludes.

6



Chapter 2

Background and Related Work

This Chapter explains the common background knowledge that readers need to know for
reading this thesis. Sec. 2.1 introduces the Checker Framework, and Sec. 2.2 introduces
the Checker Framework Inference.

2.1 Background on Checker Framework

This section gives a basic introduction on Checker Framework.

Checker Framework is a framework that supports adding pluggable type systems to
the Java language. Pluggable type systems permit more expressive compile-time checking
than the built-in type system of a programming language, so that it can guarantee the
absence of additional errors. Checker Framework provides a backward-compatible way of
expressing type qualifiers , by extending the Java 8 annotation system. Checker Framework
serves for both programmers and type system designers. Programmers can easily verifies
their programs with additional checkers by simply annotating their programs. Type system
designers can easily deploy and evaluate their type systems with the flexible declarative
and/or procedural mechanisms provided by Checker Framework for defining type qualifiers,
qualifier lattice, parametric polymorphism, type rules, and flow-sensitive refinement rules.

Checker Framework is not only an infrastructure for easily developing pluggable type
systems, but also has a collections of practical pluggable type checkers built-in within
the framework. Nullness Checker is the most representative and practical checker in the
framework. Nullness Checker statically prevents null pointer errors from the program, and
it has two main qualifiers:
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• @NonNull qualifies types that does not includes the null value. For example, a
variable of type @NonNull Boolean is never null, and always has one of the values:
Boolean.TRUE or Boolean.FALSE.

• @Nullable qualifies types that includes null value. For example, a variable of type
@Nullable Boolean might be null, and always has one of the values: Boolean.TRUE,
Boolean.FALSE, or null.

For minimizing the programmers’ annotation efforts, Checker Framework also provide
default mechanism to allow type checkers set default qualifiers for each type use loca-
tion. The @NonNull qualifier is the default qualifier in Nullness Checker for most type use
locations. Therefore, with merely very few annotation efforts, programmers can benefit
from the Nullness Checker to prevent null pointer errors from their program. Below code
example illustrates the programming errors that Nullness Checker checks:

1 @Nullable Object obj; // might be null

2 @NonNull Object nnobj; // never null

3 ...

4 obj.toString() // checker warning: dereference might

5 // cause null pointer exception

6 nnobj = obj; // checker warning: nnobj may become null

7 if (nnobj == null) // checker warning: redundant test

For designing and developing a pluggable type system, the Checker Framework supports
defining the four main components of an implementation of a pluggable type system:

1. Type qualifier and hierarchy. Type qualifier is attached to every occurrence of
a type in the program, and further restricts the values that the attached type can
represents. The hierarchy describes subtyping relationships among qualified types
in the type system. In Checker Framework, type qualifier are defined as Java anno-
tations, and the extended annotation syntax in Checker Framework [13] has been
merged into Java 8 as a standrad annotation feature. The hierarchy can be defined
declaratively via meta-annotation @Subtypeof on the type qualifiers, or be defined
procedurally by overriding methods in QualifierHierarchy class.

2. Type introduction rules. To alleviate manual annotation efforts, type introduc-
tion rules specifies default and implicit type qualifiers that should be treated as
present on some types and expressions that do not have explicit written qualifiers
by programmers. For example, in Nullness Checker , every unannotated reference
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types are treated as annotated with @NonNull in default. In addition, type quali-
fiers on some types and expressions can be implicitly determined. For example, in
Nullness Checker , every literal other than null should be implicitly annotated with
@NonNull. Checker Framework provides a declarative mechanism of defining these
type introduction rules. The default qualifiers can be defined via meta-annotation
@DefaultQualifier and @DefaultQualifierInHierarchy. The implicit qualifiers
can be defined via meta-annotation ImplicitFor.

3. Type rules. Type rules defines the type system’s semantics and yields a type error
if a violation happens. These rules defines what the program properties that the type
system would check on. For example, in Nullness Checker , only @NonNull reference
types may be dereferenced. Checker Framework has visitor classes that traverse the
program’s AST to perform type rules checking. The BaseTypeVisitor implements
the default subtype checking on qualified types. Type system designers can extend
the BaseTypeVisitor and override methods in the visitor to enforce their specific
type rules in the type system.

4. Interface to the Compiler. To integrate a pluggable type system into the Java
programming language, a Java compiler interface is needed to indicates which an-
notations are part of the type system, and also to propagate type system specific
compiler command-line options. The Checker Framework provides a base checker
class called BaseTypeChecker that is a Java annotation processor, so that it servers
as the compiler interface for type system as a compiler plug-in.

Above just give a brief overview on how the Checker Framework supports on developing
type systems, for detail instructions on how to create a new type system on top of the
Checker Framework, please see the Checker Framework manual1. As another illustration,
Chap. 3 also introduces a simple type system built on top of the Checker Framework.

In addition to support the four main components of a type system, the Checker Frame-
work also provides a default flow-sensitive intra-procedural qualifier refinement. The flow-
sensitive refinement may refine a qualified type to a more specific type than its declaration
type. For example, the Nullness Checker will pass below code:

1 void m(@Nullable Object obj) {

2 if (obj != null) {

3 obj.toString(); // OK, flow-sensitive refinement

4 // refines obj to @NonNull type

1See https://checkerframework.org/manual/
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5 }

6 }

The Checker Framework use the Dataflow Framework to implements the default flow-
sensitive refinement analysis. Type system designers may optionally overrides the default
implementation to perform type system specific flow-sensitive refinement. The Dataflow
Framework manual2 is a good reference material of learning how to extend the default
flow-sensitive refinement in the Checker Framework.

2.2 Background on Checker Framework Inference

Checker Framework Inference is proposed to alleviate the manual annotation efforts for
the type checkers in the Checker Framework. Although the Checker Framework provides
flow-sensitive refinement for reducing the manual annotation efforts, the flow-sensitive
refinement is intra-procedure and therefore cannot compute qualified types for global flow
analysis. Therefore, Checker Framework Inference is presented to achieve a global whole
program type inference.

The approach Checker Framework Inference uses for whole program type inference
is a constraint-based strategy. For each program location, Checker Framework Inference
generates a constraint variable for this location. A constraint variable is a placeholder that
represents a type qualifier in the type hierarchy for a given program location, and it can be
either variable that needs to be solved, or a constant that introduced by type introduction
rules in the type system. Then Checker Framework Inference generating type constraints
among those constraint variable based on type rules in the type system. [11] gives a detail
description on the available kinds of type constraints in the Checker Framework Inference.
Finally, Checker Framework Inference will pass these type constraints to a generic solver
framework introduced by [11], which will encode these type constraints to low-level (e.g.
MAXSAT) constraints and let a concrete solver solve to produce a solution. Since the
type constraints are generated by type rules in the type system, the solution is guaranteed
to produce a type-checked annotated program. In contrast,no solution can be found would
suggests type rule violations exist in the program.

As Checker Framework Inference depends on underlying solvers to solve constraints,
the higher-level solvers would support more complex type constraints . Chap. 4 describes
how we extend the original solver framework in [11] from supporting SAT-solver only to
also supporting SMT-solvers.

2See https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
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Checker Framework Inference reused the main architecture in the Checker Framework,
and build a type inference system on top of the Checker Framework Inference is very similar
to build a type system on top of the Checker Framework as described in Sec. 2.1. The
ultimate goal of Checker Framework Inference is to substitute the Checker Framework, so
that every type system build on top of the Checker Framework Inference can have both
type-checking mode for enforcing type rules, and type-inference mode for inferring type
qualifiers. Also, Checker Framework Inference also extend the purpose of type system from
providing formalized guarantees by type checking to also building higher-level semantic
abstractions of a program by type inference. Chap. 5 and Chap. 6 introduce two type
inference systems build on top of the Checker Framework Inference, which are aiming for
building abstractions of a given program for enhancing program understanding for both
programmers and other program analysis tools.
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Chapter 3

EOF Value Type System

3.1 Introduction

Reading from an input stream is one of the most basic operations for an application and
required in many different domains. Java provides methods InputStream.read() and
Reader.read() for reading bytes or characters from an input stream. InputStream.read()1

returns an int in the range of 0 to 255, or -1 if the end-of-file (EOF) was reached. Sim-
ilarly, Reader.read()2 returns an int in the range of 0 to 65535, or -1 for EOF. These
read methods return an int in order to distinguish the additional -1 from the maximum
byte/char value. As the CERT FIO08-J [8] rule describes, one common usage mistake
of these read methods is the premature conversion of the read int to byte/char, before
comparing with -1. In Java, byte is defined as an 8 bit signed number, char is a 16 bit
unsigned Unicode character, and int is a 32 bit signed number. The narrowing conver-
sion from the returned int to byte/char makes it impossible to distinguish the maximum
byte/char value from the EOF value -1. Fig. 3.1 shows a simple example of this kind of
mistake. If the int returned by Reader.read() is prematurely converted to a char, the
EOF value -1 is converted to 65535, resulting in an infinite loop. Similarly, if the int re-
turned by InputStream.read() is prematurely converted to a byte, the maximum stream
value 255 is converted to -1, resulting in the loop to exit prematurely.

This Chapter describes the EOF Value Checker, a tool that allows a conversion from
the read int to byte/char only after comparing with -1, to guarantee the absence of
ambiguously converted results. The tool is designed as a pluggable type system for Java

1See https://docs.oracle.com/javase/9/docs/api/java/io/InputStream.html#read--.
2See https://docs.oracle.com/javase/9/docs/api/java/io/Reader.html#read--.
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1 StringBuffer stringBuffer = new StringBuffer();

2 char c;

3 while ((c = (char) reader.read()) != -1) {

4 stringBuffer.append(c);

5 }

Figure 3.1: An example of a FIO08-J rule violation, resulting in an infinite loop.

and built using the Checker Framework [7]. With the rich type rules and a standard
data-flow framework provided by the Checker Framework, this tool is implemented easily
through 312 lines of Java code. This tool guarantees that the FIO08-J rule is never violated.
In an evaluation of the tool on 35 real world projects (9 million LOC), it found 3 defects
and 8 bad coding styles that violate the FIO08-J rule, and there were zero false positives.
Only 47 manual annotations were required in this evaluation. To the best of our knowledge,
the EOF Value Checker is the first open source tool that prevents this vulnerability. It is
available freely on GitHub3.

The rest of this chapter is organized as follows. Sec. 3.2 presents the EOF Value Checker
type system, Sec. 3.3 presents the implementation of this type system, Sec. 3.4 presents
the case study of applying the EOF Value Checker to 35 open source projects, and Sec. 3.5
reviews related work. Finally, Sec. 3.7 concludes.

3.2 Type System

This section presents a qualifier-based refinement type system that guarantees that pre-
mature conversions from read int to byte/char never happen at run time. Sec. 3.2.1
introduces the qualifiers and the qualifier hierarchy; Sec. 3.2.2 explains the type rules;
Sec. 3.2.3 explains default qualifiers; and Sec. 3.2.4 explains data-flow-sensitive qualifier
refinement.

3.2.1 Type Qualifiers and Qualifier Hierarchy

The EOF Value Checker type system provides three qualifiers: @UnsafeRead, @UnknownSafety,
and @SafeRead:

3See https://github.com/opprop/ReadChecker
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@SafeRead

@UnknownSafety

@UnsafeRead

Figure 3.2: Qualifier hierarchy of the EOF Value Checker.

• @UnsafeRead qualifies int types that represent a byte/char or the EOF value -1
before being checked against -1.

• @SafeRead qualifies int types that represent a byte/char after being checked against
-1.

• @UnknownSafety qualifies int types without any compile time information about
their representations.

All three qualifiers are only meaningful for int types. All other types can essentially
ignore qualifiers.

The type qualifiers form a simple subtype hierarchy. Fig. 3.2 illustrates the subtying
among type qualifiers.

It is counter intuitive that @UnknownSafety is not the top qualifier, but is a sub-qualifier
of @SafeRead. The reason of designing hierarchy in this way will be explained in Sec. 3.2.3.

3.2.2 Type Casting Rules

The EOF Value Checker restricts the standard type rules for narrowing casts, as shown in
Fig. 3.3. Casts from @UnsafeRead to byte/char are forbidden and only @UnknownSafety

int and @SafeRead int can be cast to byte/char. With the return type of the read

methods annotated with @UnsafeRead, the type cast rules ensure that the read int is
compared against -1 before being cast to byte/char.

These type cast rules will effectively prevent the read mistake by preventing premature
type casts. Fig. 3.4 shows the type cast error issued by the EOF Value Checker for the
example shown in Fig. 3.1.
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Γ ` e : Q int Q 6= @UnsafeRead

Γ ` (byte) e : byte

Γ ` e : Q int Q 6= @UnsafeRead

Γ ` (char) e : char

Figure 3.3: Type rules for narrowing casts. Only casts from @UnknownSafety and
@SafeRead are allowed. Casts from @UnsafeRead are forbidden. All other type rules
are standard for a pluggable type system and enforce subtype consistency between types.

1 error: @UnsafeRead int should not be casted to char.

2 line 3: while ((c = (char) reader.read()) != -1) {

3 ^

Figure 3.4: The type cast error issued for the example from Fig. 3.1.

This type error can be fixed by comparing the read int with the EOF value before
casting it to char. Fig. 3.5 shows the corrected source code.

Note that the cast to char is allowed after the comparison against -1. The data-
flow refinement, explained in Sec. 3.2.4, refines the type of data from @UnsafeRead to
@SafeRead after the -1 comparison, allowing the cast in the loop body. This fixes the
premature conversion without requiring any explicit annotations in the source code.

3.2.3 Default Qualifiers

The type system uses default qualifiers for all type uses, minimizing the manual annotation
effort. Defaulting follows the CLIMB-to-top approach from the Checker Framework4. Local
variables are defaulted with the top qualifier, @UnsafeRead, because their effective type
will be determined with data-flow-sensitive type refinement.

4https://checkerframework.org/manual/#climb-to-top

1 StringBuffer stringBuffer = new StringBuffer();

2 int data;

3 while ((data = reader.read()) != -1) {

4 stringBuffer.append((char) data);

5 }

Figure 3.5: A fix of the type cast error shown in Fig. 3.1.
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@UnknownSafety is the default qualifier for all other type use locations. Since @UnknownSafety
is a subtype of @UnsafeRead, this means an @UnsafeRead int cannot be assigned to a field
or passed to a method without explicit @UnsafeRead annotation on the field/method pa-
rameter. This ensures that an @UnsafeRead int isn’t lost through a non-local data flow.
This is also the reason of designing @UnknownSafety as a sub-qualifier of @SafeRead,
instead of being the top qualifier in the hierarchy. With this design, in default, an
@UnsafeRead int cannot be assigned to a field or a method parameter according to the
qualifier hierarchy.

Our case study finds that most read int are used locally. In very few cases programs
assign a read int to a field or pass them as a method parameter. In the evaluation of
35 projects, only 1 project requires annotating 2 fields and 1 method parameter with
@UnsafeRead.

3.2.4 Data-flow-sensitive Type Refinement

The EOF Value Checker performs data-flow-sensitive type refinement to minimize the
annotation effort. An @UnsafeRead int can be refined to @SafeRead if the possible run-
time values of this int are guaranteed to not include -1. Correct programs use range
checks or comparisons against -1 to ensure a conversion to byte/char is safe. These value
comparisons provide static information which the EOF Value Checker can use to ensure
casts are safe. The EOF Value Checker applies additional transfer functions on binary
comparison nodes in the control-flow graph to refine types.

For a binary comparison node, if one of the operands is @UnsafeRead int and the other
operand is a constant value, the corresponding transfer function refines the @UnsafeRead

int to @SafeRead in the branch that ensures -1 is not a possible run-time value of the
@UnsafeRead int. Fig. 3.6 gives several examples of the data-flow-sensitive refinement of
binary comparison nodes in the EOF Value Checker.

The EOF Value Checker does not perform any constant propagation and only compar-
isons between @UnsafeRead int and literals are refined. This can cause a false positive if
an @UnsafeRead int is compared with a variable, for which a constant propagation could
determine a value. Fig. 3.7 gives an example of this kind of false positive. This could
easily be improved by also applying a constant propagation. However, in the evaluation
on 35 projects, no false positives are generated, and therefore there are no cases where a
constant propagation would help.
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1 @UnsafeRead int data = in.read();

2
3 // Explicitly compare read result with EOF value -1.

4 if (data != -1) { /* refines to @SafeRead */ }

5
6 // Only non-EOF values can flow into the block.

7 if (data == ’<’ || data == ’>’) { /* refines to @SafeRead */ }

8
9 // A range check which excludes the EOF value.

10 if (data >= 0) { /* refines to @SafeRead */ }

Figure 3.6: Some examples of data-flow-sensitive refinement.

1 @UnsafeRead int data = in.read();

2 final int MINUS1 = -1;

3
4 // Transfer functions would not refine data to @SafeRead,

5 // as MINUS1 is not a literal.

6 if (data != MINUS1) {

7 char c = (char) data; // A false positive warning.

8 }

Figure 3.7: A possible false positive warning due to the absence of constant propagation.
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3.3 Implementation

The EOF Value Checker type system described in Sec. 3.2 is implemented as a pluggable
type system using the Checker Framework [7].

The type system is independent of the specific stream API. It can be instantiated
by annotating methods that need protection against premature conversion as returning
@UnsafeRead. The EOF Value Checker provides 32 @UnsafeRead annotations for the
read methods in the InputStream and Reader classes and their subclasses in java.io,
java.net, javax.swing, javax.sound.sampled, javax.imageio, java.util.zip, and
java.security packages. It is easy to provide additional annotations for other APIs.

Overall the implementation effort is very low, totaling 312 lines of Java code. The
EOF Value Checker uses the standard type rules and data-flow-sensitive type refinement
from the Checker Framework. Only the type rule for casts has been extended as shown in
Fig. 3.3. Only three transfer functions on binary comparison nodes are extended to achieve
the data-flow-sensitive type refinement described in Sec. 3.2.4.

3.4 Experiments

We evaluate the EOF Value Checker on 35 open source projects. The largest project
is Apache TomEE, a lightweight JavaEE Application server framework. The other 34
projects are from Apache Commons, a collection of reusable components in wide use. For
each project, the EOF Value Checker is ran on the Java source files with a configuration
extracted from the project build file. Fig. 3.8 presents the experimental results.

For every resulting warning, we manually identify whether it is a real defect, a bad
coding practice, or a false positive. A real defect is to use the prematurely converted result
in a comparison to the EOF value, which might lead the reading loop to exit prematurely
or to be stuck in an infinite loop. We categorized a warning as a bad coding practice if the
prematurely converted int is used before the int is compared to the EOF value, which
can lead to invalid output.

Overall, the EOF Value Checker finds 3 defects in Apache TomEE and Apache Com-
mons IO and 8 bad coding practices in 3 projects. No false positives are generated for all
35 projects. The 3 defects have been reported to the respective project maintainers. The
two issues in Apache TomEE have since been fixed.
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Project Java LOC
Manual

Annotations
Bad
Style

Defects
Time

Overhead

Apache TomEE 1178k 2 2 2 2.9
Apache Commons IO 42k 12 0 1 4.4
Apache Commons BCEL 366k 1 4 0 2.5
Apache Commons Imaging 49k 6 2 0 3.9
Apache Commons Compress 57k 15 0 0 2.9
Apache Commons CSV 9k 2 0 0 1.9
Apache Commons Fileupload 8k 1 0 0 0.9
Apache Commons Net 34k 4 0 0 1.9
Apache Commons VFS 39k 4 0 0 3.6

Figure 3.8: Case study results. Only projects that have defects, bad coding practices, or
explicit annotations are listed. The time overhead is relative to the original compile time.

The overall annotation effort is very low. Overrides for the read methods need to be an-
notated, requiring a total of 44 annotations. Only 1 project needs additional @UnsafeRead
annotations on 2 fields and 1 method parameter.

Running the EOF Value Checker adds compile time overhead. For the largest project,
the EOF Value Checker adds 2.9 times the original compile time as overhead. On average
2.75 times overhead is added. This overhead is expected for a Checker Framework based
type system. Future performance improvements to the Checker Framework will also benefit
the EOF Value Checker.

3.5 Related Work

The Parasoft Jtest PB.LOGIC.CRRV checker is the only existing tool listed on the CERT
website for the FIO08-J rule [8]. However, this commercial product was not available to
us for evaluation.

FindBugs/SpotBugs[5] has a bug rule “RR: Method ignores results of InputStream.read()”
that ensures that methods check the return value of variants of InputStream.read() that
return the number of bytes read. The case for FIO08-J is not covered. SpotBugs also has a
bug rule ”INT: Bad comparison of non-negative value with negative constant or zero” that
prevents the comparison of prematurely converted chars to the EOF value -1, as unsigned
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chars should not be compared to a negative value. However, neither of these rules prevents
the premature conversions and the resulting defects and bad coding practices.

None of the rules in PMD, CheckStyle, and Coverity prevent the premature conversions.

3.6 Future Work

One interesting future work is to generalize the EOF Value Checker so that our type system
is not specific to Read APIs, and can prevent all unsafe type cast from a wider numeric
type to a narrower numeric type. CERT also has a more general rule NUM12-J5 which
gives a instruction on how to ensure data is not lost or be misinterpreted when converting
from numeric types to narrower types.

One possible idea for generalizing EOF Value Checker would be tracking the possible
runtime value range of variables of numeric types, and only allow their conversion to
narrower types when the possible runtime value range is within the range that narrower
types can express. For example, an int can only be cast to a char when its possible
runtime value range is within 0 to 65535. Further more, APIs that return numeric types
that is wider than the concrete types of returned data (e.g. Read APIs return int to
represent byte or char) should be annotated by the possible value range they may return.
For example, read APIs in Java would be annotated with int range from -1 to 255 or 65535
respectively. This range annotation on APIs would allow common coding patterns that
programmers use for making sure the conversions of the returned results from these APIs
are still allowed in the new generalized type system.

3.7 Conclusions

This chapter presents a qualifier-based type system that guarantees that a premature
conversion from a read int to byte/char never happens at run time. We instantiated
this type system for Java’s read API: InputStream.read(), Reader.read(), and their
overrides in the JDK. We built an implementation on top of the Checker Framework,
which only required extending one type rule and three transfer functions in the framework.
This implementation is available at https://github.com/opprop/ReadChecker. With
only a very low annotation burden, this tool found 3 defects, 8 bad coding practices, and
generated no false positives in 35 large, well-maintained, open source projects.

5See https://wiki.sei.cmu.edu/confluence/display/java/NUM12-J.+Ensure+conversions+of+numeric+types+to+

narrower+types+do+not+result+in+lost+or+misinterpreted+data.
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Chapter 4

Type Constraint SMT Solver

Type Constraint Solver is a solver framework introduced by previous master thesis [11].
The purpose of Type Constraint Solver is to solve the type constraints generated by infer-
ence type systems built on top of the Checker Framework Inference. This Chapter discusses
the improvement on the Type Constraint Solver from supporting Max-SAT-solvers only to
also supporting Max-SMT-solvers. This extension is a necessary infrastructure for applying
Bit Vector theory on encoding the type constraints and solving them in Max-SMT-solvers
for Dataflow and Ontology type systems. Details of encoding in Bit Vector theory will be
discussed in Sec. 4.3.

The rest of this Chapter is organized as follows. Sec. 4.1 gives a brief introduction
on SAT (propositional satisfiability problems) and SMT (Satisfiability Modulo theories).
Sec. 4.2 motivates the reason of extending Type Constraint Solver from supporting Max-
SAT-solvers to also supporting Max-SMT-solvers, and introduces the engineering work on
extending Type Constraint Solver from SAT to SMT. Sec. 4.3 introduces the first SMT
solver back end for Type Constraint Solver by integrating the Z3 solver, and discuss the
general encoding with Bit Vector theory. Finally, Sec. 4.4 concludes.

4.1 Theory Background

4.1.1 Background on SAT and Max-SAT

SAT problem [1], also called Boolean Satisfiability problem, is the problem of determining
if a given boolean formula exists a satisfiable solution. A boolean formula can be defined
by the following inductive process:
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1. an atomic formula is consisted of a single boolean variable.

2. all atomic formulas are boolean formula.

3. For every boolean formula F , the negation ¬F is a boolean formula.

4. For all boolean formula F and G, (F ∨G) and (F ∧G) are also boolean formula.

A satisfiable solution of a boolean formula is a map that assigns each boolean variable
in the boolean formula to a boolean value, so that the boolean formula would be evaluated
to true. If no such a solution can be found for a boolean formula, we say this boolean
formula is unsatisfiable. For example, given below boolean formula:

(x ∨ y) ∨ (x ∧ y) (4.1)

A satisfiable solution for this formula could be assigning boolean variables x and y
all to true. As an example for unsatisfiable boolean formula, contradictions are always
unsatisfiable.

Sometimes for an unsatisfiable boolean formula, determine a solution that can ”maxi-
mum” satisfies the formula can be very useful. Maximum satisfiability problem (Max-SAT)
[3] is proposed to fulfill this desire. Max-SAT is a generalization of SAT problem, and its
goal is to determine the maximum number of clauses of a given boolean formula in conjunc-
tive normal form (CNF) [2] that can be made true by a solution of the boolean variables
in the formula. For example, given below boolean formula in CNF form:

(x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y) (4.2)

This formula is unsatisfiable, as it is always false regardless the boolean value assign-
ments to its boolean variables x and y. However, it is possible to make at most three
clauses of the formula to be true. Therefore, A Max-SAT solution of this formula would
be a solution that be able to make three clauses of the formula to be true. More advanced
Max-SAT problem categories clauses to hard clause and soft clause. For a given boolean
formula, its goal is to find a solution that satisfies all hard clauses, and also maximize the
number of soft clauses to be true.

4.1.2 Background on SMT and Max-SMT

Satisfiability modulo theories (SMT) problem [4] is a further generalization on SAT prob-
lem. SMT is the problem of determining a satisfiable solution for a logical formula with
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respect to combinations of background theories expressed in first-order logic. A logical
formula in SMT problem can be defined similarly by the inductive definition in Sec. 4.1.1,
with only one difference:

An atomic logical formula in SMT problem is consisted of a single boolean predicate.

A boolean predicate is a binary-valued function of non-binary values, and the values of
a boolean predicate is classified according to a corresponding background theory. Common
background theories are the theory of integers, the theory of real numbers, the theory of
bit vectors, etc. For example, given below logical formula with theory of integers:

(x < 0) ∧ (x ≤ y) (4.3)

The background theory of integer would classify the predicate (x < 0) and (x ≤ y) in
the formula to boolean values based on the values in the integer theory assigned to the
symbol x and y. A satisfiable solution of this logical formula would be any solutions that
assign proper values to x and y, so that the boolean formula consisted of the predicates
can be evaluated to true. For example, Satisfiable solutions for this logical formula would
be those that assigns a negative integer value to x, and assign a value to y that is bigger
or equal to the value assigned to x.

Similarly, Max-SMT problem is a generalization of SMT, with the goal of determin-
ing a solution that can maximize the numbers of clauses of predicates to be true in the
given logical formula in CNF form. Max-SMT problem also can categorized clauses into
hard clause and soft clause, and to find a solution satisfies all hard clauses while try to
maximizes the number of soft clauses to be true.

4.2 Extend Type Constraint Solver to SMT

Type Constraint Solver is a solver framework introduced by a previous Master thesis [11].
The purpose of this solver framework is to solve type constraints generated by the Checker
Framework Inference. As a general solver framework, Type Constraint Solver is designed
to be both type systems agnostic and concrete solvers agnostic. In other words, it is
independent to specific type systems, and also can be easily extended by adding more
concrete solvers (e.g. sat4j, LogiQL) as back ends.

This section introduces the work on extending the Type Constraint Solver from only
support SAT solvers to also support SMT solvers. Sec. 4.2.1 motivates why we are inter-
ested in extending the solver framework to support SMT solvers. Sec. 4.2.2 gives a brief
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overview on previous solver framework architecture, and illustrate why this architecture
only support SAT solvers. Sec. 4.2.3 introduces the new architecture that support both
SAT and SMT solvers.

4.2.1 Motivation

For solving type constraints generated by the Checker Framework Inference, the very first
step is to encode these type constraints as low-level constraints that concrete solvers be able
to understand. For example, for Max-SAT solvers, the solver framework need to encode
the type constraints to a Max-SAT problem, so that the concrete Max-SAT solvers (e.g.
sat4j, lingeling) can solve it.

The approach of encoding type constraints to a Max-SAT problem was first proposed by
the Generic Universe Type paper [20], and was implemented in the Type Constraint Solver
[11]. The basic idea of this Max-SAT encoding is an enumeration-based approach. Given a
type hierarchy that has n qualifiers, each constraint variable needs n boolean variables to
enumerate all qualifiers in the type hierarchy as possible solutions to this constraint vari-
able. For example, given a type hierarchy consisted of two qualifiers TOP and BOTTOM ,
each constraint variable v needs two boolean variables βTOP

v and βBOTTOM
v with below well-

form encoding:

(¬βTOP
v ∨ ¬βBOTTOM

v ) ∧ (βTOP
v ∨ βBOTTOM

v ) (4.4)

In above well-form encoding, each boolean variable βqi
v represents the truth assignment

of assigning type qualifier qi to constraint variable v. This well-form encoding ensures the
solution will only assign each constraint variable with exactly one qualifier in the type
hierarchy.

As the example shows, given a type hierarchy with n qualifiers, for each constraint
variable, Max-SAT encoding would encode n boolean variables to enumerate all possible
qualifier assignments on this constraint variable. Since Max-SAT is a NP-hard problem,
the solving time grows exponentially with the increasing number of boolean variables in
the given boolean formula. For some type systems, e.g. Dataflow type system [11], the
number of qualifiers in the hierarchy depends on the concrete program that the type system
running on, and may have a huge amount (>100) of qualifiers. For these type systems, it is
impossible to encoding all type constraints once and let a single SAT-solver instance solve
it in a reasonable time. To reduce the solving time, The previous master thesis [11] for
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Dataflow proposes a divide-and-conquer approach that separates the constraints set and
dispatches subsets of constraints to multiple SAT-solver instances to solving constraints in
parallel. However, this divide-and-conquer approach only work for Dataflow type system
on unannotated programs, and cannot give a sound inference result for Ontology type
system. The details of the limitation of divide-and-conquer approach will be discussed in
Chap. 5.

Another possible solution to reduce solving time is to encode type constraints as a SMT
problem and then use a SMT solver to solve it. The main benefit of SMT encoding is for
some cases, type constraints can be encoded with a significantly fewer number of boolean
bits as boolean predicates in a SMT problem than the number of boolean variables needed
to encode as a SAT problem. Consequently, the boolean search space for the underlying
SMT solver is significantly reduced, so that the encoded SMT problem can be solved in
a reasonable time. During this research, we found that for type systems with a power-
set-like type qualifier hierarchy (will be discussed in Sec. 4.3.1) that has 2n qualifiers,
each constraint variable in their type constraints can be encoded with n bits as a boolean
predicate classified by Bit Vector theory in a SMT problem, instead of 2n boolean variables
in a SAT problem. Consequently, for these type systems, a reasonable solving time can be
achieved by encoding their type constraints as a SMT problem with Bit Vector theory.

4.2.2 Previous Architecture and its Limitations

Previously, Type Constraint Solver mainly composed by three components. Front End
takes the type constraints generated by Checker Framework Inference, and performs some
necessary initialization steps of initializing corresponding Back End and Serializer. Back End
is the adapter that coordinating the solving process with the concrete solver. Back End
will first delegate the encoding job to Serializer , which would encode type constraints into
a Max-SAT formula. Then Back End will pass the encoded formula to the concrete solver,
get the solution back, and then decode it to a map from slot’s id to the qualifier (the solu-
tion of the corresponding slot). Fig. 4.1 shows the previous architecture of type constraint
solver.

Notice that the encoding responsibility is taken by Serailizer , but the decoding re-
sponsibility is taken by Back End . Based on this architectural design, both Serializer
and Back End have to know the details of encoded types of Slot (the type of constraint
variable) and Constraint to perform the encoding and decoding tasks. Fig. 4.2 shows the
corresponding class diagram of previous Type Constraint Solver.

As both Back End and Serializer aware of the detail encoded types of slot and constraint,
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Figure 4.1: Previous architecture of type constraint solver. Notice that the decoder is
encapsulated in the solver back end.

GeneralSolver
BackEnd

S,T

Serializer

S,T

MaxSatBackEnd

VecInt,VecInt

MaxSatSerializer

VecInt,VecInt

Figure 4.2: The class diagram of previous type constraint solver. The dashed label on
classes represent the class type parameters. The type parameter S represents the encoded
type of slot, and T represents the encoded type of constraint. Notice that BackEnd
requires S and T .
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Figure 4.3: The new architecture of type constraint solver. Notice that now format trans-
lator takes the responsibility of decoding.

this actually limits one Back End have to coupling with exactly one kind of encoding. For
Max-SAT Back Ends, this coupling does not have side-effects as Max-SAT Back Ends
always require only SAT encoding. However, when it comes to SMT Back Ends, as the
encoding is actually depends on the background theory, the previous architecture design of
type constraint solver limits the possibility of having one SMT Back End with the flexibility
of choosing the background theory for encoding.

4.2.3 The New Architecture

To resolve the limitations in previous architecture, the new design decoupled encoding
with Back End. Specifically, the new design let Serializer takes the responsibility of both
encoding and decoding, and Back End only indicates the compatible Serializer type, instead
of indicates the detailed encoded type of Slot and Constraint. Fig. 4.3 shows the new
architecture.

Noticed in the new architecture, Back End does not takes the responsibility of decoding
solution get from concrete solver anymore. Instead, when concrete solver returns solution
to Back End, Back End will ask the Format Translator to decode the solution as type
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GeneralSolver
BackEnd

FT

FormatTranslator

S,T

SmtBackEnd

SmtFormatTranslator

SmtFormatTranslator

? extends Expr,? extends Expr

SmtBvFormatTranslator

BVExpr,BVExpr

Figure 4.4: The class diagram of the new type constraint solver. Notice that now back
end only requires a type parameter FT , that represents the type of format translator
for this back end. SMT back ends can require a general type of abstract SMT format
translator. Then all sub-classes of this abstract SMT format translator can be inserted
into the corresponding SMT back end.

qualifiers. Fig. 4.4 shows the class diagram according to the improved design.

Noticed in the new design, Back End only indicate a concrete type of Format Translator
that will perform both decoding/encoding tasks for this Back End. Back End only focus
on adapting the concrete solver for launching the solving process, and Format Translator
will responsible for the details of how to encode type constraints and decode solution from
solver. With this improvement, Solver Framework designers can develop multiple SMT
Format Translators for different background theories, and plug them into the same SMT
Back End that handles the common logic of adapting a concrete SMT solver.

4.3 Z3 Back End with Bit Vector Theory Encoding

Z3 is a state-of-the-art SMT solver developed by Microsoft Research. Z3 integrates a
collections of theory solvers, and support many common background theories such as:
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Arithmetic Theory (both integer and real numbers), Bit Vector theory, Modeling with
Quantifiers, etc. This section introduces the Z3 Back End that integrated Z3 solver into
the Type Constraint Solver. Specifically, this section will focus on introducing the imple-
mentation on SMT encoding with Bit Vector theory.

The rest of this section is organized as follows: Sec. 4.3.1 gives a brief introduction
on power-set-like type qualifier hierarchy, which is the target qualifier hierarchy aimed to
solved by Bit Vector theory. Sec. 4.3.2 shows the specification on how to translate between
a type qualifier in power-set-like hierarchy and a bit vector. Finally, Sec. 4.3.3 shows the
detail encoding on each kind of type constraint for a type system with a power-set-like
type qualifier hierarchy.

4.3.1 Power-set-like type qualifier hierarchy

In mathematics, the power set of any set S, is the set of all subsets of S, including the
empty set and S itself. A power-set-like type qualifier hierarchy can be defined similarly
as follows:

• It has a universe set S that defines all basic atomic elements.

• Each qualifier q in the hierarchy represents a subset of S.

• If q1 is comparable with q2 (i.e. they have subtype relationships), then the represented
subset s1 and s2 is comparable in the context of set operations (i.e. they have subset
relationships).

The basic atomic element in the universe set S represents a concept that this type
system aims to formalize (e.g. type names in Dataflow type system, and ontic concepts
in Ontology type system). As each qualifier represents a set of basic atomic elements, the
complete type hierarchy is looked like a power set of the universe set S. Theoretically,
the universe set S may have infinite number of basic atomic elements. When running on
a program instance, the type system would always just utilize a sub qualifier hierarchy of
the theocratic qualifier hierarchy.

4.3.2 Translation between Qualifiers and Bit Vectors

Bit vectors are the basic terms in the encoded SMT formula. To solve type constraints with
bit vector encoding, type qualifiers need to be represented as bit vectors. In power-set-like
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type hierarchy, each qualifier represents a set of basic elements in the universe set. To
represent these qualifiers in bit vector form, the encoded bit vectors have to reflect the set
of elements that these qualifiers represent. Therefore, a bit vector represents a set of basic
elements. Each bit in the vector represents a distinct basic element in the universe set. A
bit with value 1 means the corresponding element is belongs to the set represented by this
bit vector, and vice versa. In order to precisely indicate the existence of every elements in
a bit vector , the length of each bit vector is equal to the size of the universe set. Notice
that it is not necessary to pre-encoded every qualifiers in the type hierarchy. The only
thing need to pre-encoded is the unit bit vectors, that each one represents only one distinct
basic element in the universe set. Bit vectors of all qualifiers in the type hierarchy can be
computed by the bit operations (and, or) on these unit bit vectors. For example, given
a power-set-like hierarchy with three basic elements {A,B,C}. One possible encoding for
unit bit vectors is to let the left-most bit represents element A, the middle bit represents
element B, and the right-most bit represents C:

1 BV_A = 100

2 BV_B = 010

3 BV_c = 001

With above unit bit vectors, all other qualifiers in the hierarchy can be easily computed.
For example, a qualifier represents set {A,B} can be computed by the result of disjunction
between BVA and BVB, i.e. BVQ1 = BVA ∪ BVB. As another example, the qualifier
represents the empty set is always the zero bit vector, and this also can be computed by
the result of conjunctions among all unit bit vectors, i.e. BV∅ = (BVA ∩BVB ∩BVC).

In implementation level, as type system with power-set-like type qualifier hierarchy
usually only declare a single type qualifier annotation class, and define member values in
the annotation to represent different qualifiers in the hierarchy. This makes implementing
a general encoding for translating qualifiers between bit vectors very hard on the Back End
level. As a result of trade off, concrete type system is required to provide a translation
between qualifiers and bit vectors by implementing the Z3BitV ectorCodec interface, as
shown in Fig. 4.5.

There are three methods need to be implemented by concrete type systems. First, type
system need to tell the Back End the size of the universe set for the given program (as even
the theoretical universe set can be infinite large, only a subset of elements will appear in
a given program in practice). And then, concrete type system need to implement the two
methods of encoding a type qualifier (AnnotationMirror) to the bit vector value represented
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1 public interface Z3BitVectorCodec {

2
3 /**

4 * Get the fixed Bit Vector size.

5 *

6 * @return the fixed Bit Vector size

7 */

8 int getFixedBitVectorSize();

9
10 /**

11 * Encode a given AnnotationMirror to a numeric value whose

12 * binary representation is the encoded bit vector.

13 *

14 * @param am a given AnnotationMirror.

15 * @return numeral value of the encoded bit vector

16 */

17 BigInteger encodeConstantAM(AnnotationMirror am);

18
19 /**

20 * Decode a given BigInteger value to the corresponding

21 * AnnotationMirror.

22 *

23 * @param numeralValue a BigInteger that represents

24 * a bit vector

25 * @return the decoded AnnotationMirror

26 */

27 AnnotationMirror decodeNumeralValue(BigInteger numeralValue);

28 }

Figure 4.5: The code of Z3BitV ectorCodec interface.
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by a BigInteger, and of decoding the bit vector value represented by a BigInteger back
to a type qualifier.

4.3.3 Type Constraints Encoding

In SMT Bit Vector encoding, each constraint variable will be encoded as a bit vector
variable, and constant variable, i.e. a variable with a constant value to a known qualifier
in the hierarchy, will be encoded by concrete type system as a bit vector constant. Type
constraints then will be encoded as a SMT formula with boolean predicates on these bit
vectors.

Encoding for Subtype Constraint

For a type system with a power-set-like type qualifier hierarchy, a subtype constraint
represents a subset relationship between the basic elements that the constraint variables
represented. The direction of subset relationship is determined by the concrete type qual-
ifier hierarchy, i.e. whether the super type represents a super set of the set represented by
the subtype, or in a reversed direction. Therefore, a subtype constraint is encoded as a
subset constraint on the two bit vector variables corresponding to the constraint variables
in the subtype constraint. The direction of the encoded subset constraint is determined
by the concrete type qualifier hierarchy. A subset constraint between two bit vectors are
expressed by union and intersection operations. Specifically, given two bit vectors B1 and
B2, we can compute their unions Bu = B1 ∪ B2 and intersection BI = B1 ∩ B2. if B1

and B2 has subset relationship, then the one represents the subset should equal to their
intersection set, and the one represents the superset should equal to their union set. Fur-
thermore, an assertion on only one of these two cases should be enough, as they have to
be both satisfied or both failed.

Therefore, the algorithm of encoding a subtype constraint would be:

Algorithm 1 Algorithm for encoding subtype constraint

1: procedure EncodeSubtypeConstraint(subtypeBitVector, supertypeBitVector)
2: superset = subtypeBitV ector ∪ supertypeBitV ector
3: assert(predicate(superset equal to subtypeBitVector))

The boolean flag supertypeIsSuperSet indicates the direction of the type hierarchy.
The default value of supertypeIsSuperSet is true, and concrete type system can override
the value to indicates the direction of its type hierarchy.
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Algorithm 2 Algorithm for encoding equality constraint

1: procedure EncodeEqualityConstraint(bitVector1, bitVector2 )
2: assert(predicate(bitVector1 equal to bitVector2))

Encoding for Equality and Inequality Constraint

As constraint variables are directly encoded as bit vectors, the equality and inequality
type constraints between constraint variables can be directly encoded as boolean predicates
between the bit vectors. I.e. the equality type constraint between variable v1 and v2 will
be directly encoded as the equality boolean predicate between bv1 and bv2. Similarly,
Inequality type constraint will be encoded as the inequality boolean predicate between the
corresponding bit vectors.

Encoding for Comparable Constraint

A Comparable constraint means the two constraint variables have subtype relationships,
but do not specify which are the super type and which are the subtype. Therefore, given
a comparable constraint between variables V1 and V2, the encoding is a disjunction of the
case ”V1 is subtype of V2” and ”V1 is super type of V2”. The detail encoding algorithm is:

Algorithm 3 Algorithm for encoding comparable constraint

1: procedure EncodeComparableConstraint(firstBitVector, secondBitVector)
2: subset = firstBitV ector ∩ secondBitV ector
3: superset = firstBitV ector ∪ secondBitV ector
4: firstIsSuper = predicate(superset equal to firstBitVector)
5: firstIsSub = predicate(subset equal to firstBitVector)
6: assert(firstIsSuper ∨ firstIsSub)

Encoding for Preference Constraint

The preference constraint in the Checker Framework Inference is always between a variable
and a constant. The meaning of preference constraint is to express the preference on
preferring variable v to have a solution exactly as constant c. Therefore, the preference
constraint is treated as a soft equality constraint with a weight. The encoding of preference
constraint is similar to the equality constraint, just with an additional weight to expressing
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the extend of preference. As preference constraint is a soft constraint, Z3 will try to find
a solution that satisfies all other constraints and also maximized the number of these
soft constraints to be satisfied, instead of try to always find a solution satisfies all the
constraints.

4.4 Conclusion

This chapter discussed the improvement on Type Constraint Solver [11]. We extended
the Type Constraint Solver from only supporting SAT solvers to also supporting SMT
solvers. A new SMT back-end based on Z3 solver has been implemented and integrated
into the Type Constraint Solver . Also, a new SMT encoding with Bit Vector Theory is
proposed for type systems with a power-set-like type hierarchy.
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Chapter 5

Improvements to the Dataflow Type
System

This chapter discusses the improvement of applying the SMT encoding with Bit Vector
theory introduced in Chap. 4 to the Dataflow type system (abbreviated as Dataflow in the
rest of this chapter). Dataflow is previous work [11] that reasons about concrete run-time
types of components in programs.

The rest of this chapter is organized as follows: Sec. 5.1 gives a brief introduction to
Dataflow. It discusses the type hierarchy, and introduces the solving approach in previous
work. Sec. 5.2 motives the improvement of applying the SMT encoding to Dataflow,
and discusses the Bit Vector encoding for Dataflow qualifiers in detail. Sec. 5.3 gives the
experimental results of comparing the new SMT approach with the previous approach.
Sec. 5.4 discusses some possible future works for Dataflow. Finally, Sec. 5.5 concludes.

5.1 Background on Dataflow Type System

This section introduces a brief background of Dataflow that is necessary for understanding
the new SMT solving approach based on Bit Vector Encoding for Dataflow. A more detailed
introduction on Dataflow type system can be found in the original Master’s thesis [11].
In the rest of this section, Sec. 5.1.1 introduces Datatlow qualifiers and the type hierarchy.
Sec. 5.1.2 introduces Dataflow annotated base cases, which are the ground truth for type
inference of Dataflow used in both graph-solving approach and the new SMT approach.
Sec. 5.1.3 describes previous constraint graph based solving approach.
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5.1.1 Dataflow Qualifiers and Qualifier Hierarchy

As Java supports type polymorphism, the run-time types of fields, methods, parameters,
and local variables may vary from their declared types. Dataflow reasons about the concrete
run-time types for type declarations in programs. Fig. 5.1 gives an example for illustrating
the purpose of Dataflow.

1 Object foo(boolean b) {

2 if (b) {

3 return "aString";

4 }

5 return Integer.valueOf(1);

6 }

Figure 5.1: An example illustrating the purpose of Dataflow.

The return type of method foo is declared as Object. Dataflow reasons about the
concrete run-time return types are either String or Integer. To represent the run-time
types anaylsis result for declare types, Dataflow uses a single Java Annotation @Dataflow

with two parameters:

• typeNames : indicates an over-approximation of all possible run-time types of the
annotated object.

• typeRoots : indicates an over-approximation of all possible upper bounds of run-time
types of the annotated object.

For the code example in Fig. 5.1, Dataflow will infer @Dataflow(typeNames={"String",
"Integer"}) on the return type of method foo.

Notice that an inferred Dataflow qualifier may have overlaps between its typeRoots

and typeNames. In this case, the more general one will be kept, i.e. an upper bound
in typeRoots subsumes all subtypes in typeNames. For example, an inferred Dataflow
qualifier with typeRoots ”Object” and typeNames ”String” will be simplified as a Dataflow
qualifier with only typeRoots ”Object”, as upper bound ”Object” subsumes the concrete
run-time type ”String”.

The subtype relationship between Dataflow type τ1 and τ2 is: τ1 is a subtype of τ2,
if and only if values in typeNames and typeRoots of τ1 can be bounded by the values in
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R=”Object”

R=”Number”
N=”String”

N=”String”,
”Integer”

R=”Number” N=”String”

N=”Integer”

R=”” N=””

Figure 5.2: A partial qualifier hierarchy of Dataflow type system for value set of
typeRoots={Object,Number} and typeNames={Integer,String}. In each node, R means
typeRoots, and N means typeNames. Solid arrow represents a strict subtype relation-
ship between two nodes in this partial qualifier hierarchy, and dashed arrow represents a
non-strict subtype relationship.

τ2. For example, @Dataflow(typeRoots="Object") is the top qualifier in the hierarchy,
as values in any other Dataflow qualifier are bounded by Object.

Theoretically, the type hierarchy of Dataflow is infinite, as there are infinite concrete
run-time types and upper bounds may appear in programs. However, the shape of Dataflow
type hierarchy is always power-set-like; i.e. given an universe set consists of all possi-
ble run-time types and upper bounds in a program, any subset of the universe set can
be represented by a distinct Dataflow qualifier in the type hierarchy. As an example,
Fig. 5.2 shows the sub-hierarchy on values set: typeRoots={”Object”, ”Number”} and
typeNames={”String”, ”Integer”}.

5.1.2 Base Cases

Base cases are those Java expressions that can directly determine their concrete run-time
types in programs. These expressions are Literals, Class Instance Creations, and
Array Creations. In addition, although Method Invocation for methods from byte code
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cannot provide information of the concrete run-time types they return, these expressions
can provide an upper bound of the run-time return types, therefore Method Invocation

for byte code methods also counts as a base case.

Dataflow reasons about run-time types of other places in programs by propagating these
base cases. The base case propagation is done by solving the type constraints generated
according to the type rules.

5.1.3 Constraint Graph Based Solving Approach

As Dataflow type system has infinite qualifiers in theory, and usually uses a lot of qualifiers
(>10, sometimes even >100) in practice for a given program, the general SAT encoding
approach [11] cannot solve type constraints for Dataflow type system in a reasonable time.
To resolve this time-out problem, a constraint graph based solving approach is proposed
[11].

The basic idea of graph-solving approach is to compute the reachability of each base
case to the variables in their super type chain. A super type chain of a base case consisted
of all variables that are transitively constrained as super types of this base case by subtype
constraints. If a variable is on the super type chain of a base case, then the run-time type
represented by the base case could ”flow” into this variable. Therefore, the solution of a
variable is the union set of the base cases that can reach this variable through a super
type chain. Fig. 4 shows an algorithm for illustrating the graph-solving approach. Notice
that in [11] the graph-solving approach is designed as a separate-and-merge algorithm.
However, the graph-solving algorithm described here is essentially the same as the one
in [11], and this one is easier to illustrate and understand than the separate-and-merge
algorithm described in [11].

It is worth to notice that the graph solving approach will ignore some variables in a
constraint graph. Specifically, variables that are not in any super type chain of any base
case will be ignored. Fig. 5.3 shows an example constraint graph for illustrating which
variables can be solved and which variables are ignored by graph-solving approach.

Ignoring variables that are not in any super type chain of base cases actually weakens
the meaning of Dataflow qualifier — a Dataflow qualifier only reflect the run-time types
that Dataflow can observe, therefore it reflects a partial-approximation instead of an over-
approximation of the annotated object. Fig. 5.4 shows an example for illustrating this
limitation of graph-solving approach. In this example, string literal "str" and method
parameter boo are both assigned to local variable bar. Therefore, all possible run-time
types of variable bar should be the union set of String type and all possible run-time types
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Algorithm 4 Algorithm of Graph-solving Approach

1: procedure GraphSolving(variables, baseCases)
2: Initialize solutions as an empty map
3: for each variable in variables do
4: solution = ∅
5: for each runtimeType in baseCases do
6: if isReachableBySuperTypeChain(runtimeType, variable) then
7: solution← solution ∪ runtimeType
8: if solution 6= ∅ then
9: solutions← variable, solution

return solutions

N=”C1”

N=”C2”

Var1

N=”C1”

Var2

N=”C2”

Var3

N=”C1”,”C2”

Var4

N=”C1”,”C2”

Var5

Var6 Var7

Figure 5.3: An example graph for illustrating the graph-solving approach. Each arrow
indicates a subtype relationship from subtype point to super type. The label of each
variable node with red text is the solution of that variable given by graph-solving approach.
Variable nodes in dashed shape are the variables ignored by graph-solving approach.
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1 /*foo*/ Object foo(Number boo) {

2 /*bar1*/ Object bar = "str";

3 /*bar2*/ bar = /*boo*/ boo;

4 return bar;

5 }

(a) Code example.

N=”str” bar1

N=”String”

bar2 boofoo

(b) The constraint graph.

Figure 5.4: An example for illustrating why the graph-solving approach weakens the mean-
ing of Dataflow qualifiers. Node bar1 is the constraint variable on bar’s declaration, and
node bar2 is a refined constraint variable represents the data-flow refinement result of
the new assignment context in line 3. Notice the solution of local variable bar given by
graph-solving approach is typeNames=”String”, and node boo is ignored.

of parameter bar. If method foo never get called in the analyzed program, the solution
of bar given by graph-solving approach would be typeNames ”String”, and the effect of
boo on bar is ignored. Therefore, the solution of bar given by graph-solving approach is a
partial-approximation if no invocation of method foo is observed by Dataflow. Similarly,
for programs that partially annotated with Dataflow qualifiers, graph-solving approach
cannot enforce the variables on the subtype chains of these manually annotated base cases.
Consequently, graph-solving approach does not support annotated programs.

5.2 The Improvement: SMT Encoding Approach for

Dataflow

5.2.1 Bit Vector Encoding for Dataflow qualifiers

As discussed in Chap. 4, using Bit Vector encoding for a type system with a power-set-like
qualifier hierarchy can reduce the solving time of type constraints into a reasonable range.
Dataflow qualifiers follow a power-set-like qualifier hierarchy, and subtype relationships
between Dataflow qualifiers can be translated to subset relationships between the elements
(run-time types) represented by these qualifiers. Therefore, to resolve the limitation of
graph-solving approach (ignoring variables that are not on super type chains of base cases),
the bit vector Encoding introduced in Chap. 4 has been applied to Dataflow type system.
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Figure 5.5: A example of Bit Vector encoding of @Dataflow(typeRoots=”Number”) under
the universe set: typeRoots={”Object”,”Number”, ”Integer”} typeNames={”Double”,
”Integer”, ”String”}. Notice that type Integer takes two bits in the Bit Vector, one
represents Integer as a run-time type upper bound (it is possible if a byte code method
returns an integer), and one represents Integer as a concrete run-time type.

The bit vector encoding for Dataflow qualifiers follows the encoding specification in-
troduced earlier in Sec. 4.3.2. For a given program, the bit vector size is the sum of the
number of typeRoots and the number of typeNames that appear in this program. For
each Dataflow qualifier that represents a single typeName, a unit bit vector is encoded
to represent this typeName. For each Datflow qualifier represents a single typeRoot, the
encoded bit vector represents all run-time types in the universe set that are bounded by
this typeRoot. Therefore, the encoded bit vector is the union result of the unit bit vector
represents this typeRoot, and all unit bit vectors that represents a typeName or a typeRoot

that is a subtype of this typeRoot. Fig. 5.5 shows an example of encoding of a Dataflow
qualifier represents a single typeRoot.

The type constraints encoding is the same as described in Sec. 4.3.3.

5.2.2 Preference Tuning on Subtype Constraints

Dataflow type system is under-constrained, i.e. for a given program, the type constraints
are not expressive enough to guide the solver to give a desired solution. For example,
given a subtype constraint in which constraint variable var is subtype, constant typeRoot
”Number” is super type. Suppose var was not on any super type chains of base cases. An
empty solution (bottom) is valid for var, but it reflects no useful information. In contrast,
propagates the type bound typeRoot ”Number” to var as its solution would provide more
information of var.

In order to guide solver to give a desired solution, subtype constraints are tuned by
preferences. To propagate base cases as much as possible, subtype variables are preferred
to have the same solution as their super type variables. By preferring equal solutions on
variables in subtype constraints, variables that connects to base cases by subtype con-
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1 void foo() {

2 /*bar*/ Object bar = "str";

3 }

(a) Code example.

N=str bar

N=”Str”

R=Obj

(b) The constraint graph.

Figure 5.6: An example that explains why case constant <: variable has more weight of
equality preference than the case variable <: constant.

straints are preferred to have a solution that equals to the base case they are connected
to.

Specifically, different weights are made for different compositions of variables for a
subtype constraint:

• case constant <: variable: Prefer variable equals to constant with weight 3.

• case variable <: constant: Prefer variable equals to constant with weight 2.

• for all variable in subtype constraints: Prefer variable equals to BOTTOM with
weight 1.

Notice the case of constant <: variable has more weight of this equality preference than
the case of variable <: constant. This is because for the case of a variable directly connects
to both a super type constant, and a subtype constant, the subtype constant is preferred
to be the solution of this variable as it contains more specific information. Fig. 5.6 shows
an example for illustration.

Preference all variables to BOTTOM is for avoiding the solver gives random solutions
on orphan variables (variables that do not connect to any base cases).

5.2.3 Type Declaration Bound

As bit vector approach is able to propagate type bounds in base cases to constraint variables
in their subtype chains, it is reasonable to constrain each constraint variable with its
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N=str bar1

R=”Object”

bar2 boo

R=”Number”

foo

R=”Number”

R=Obj R=Num

Figure 5.7: The new constraint graph with type declaration bound for code example in
Fig. 5.4. The label above each variable node with red text is the solution given by bit
vector encoding approach.

declaration type in programs. This has two benefits: 1) avoid solver gives a solution on
a variable that conflicts with its declaration type. For example, inferring a solution with
run-time type Number to a variable of String type. 2) If Dataflow observes no concrete
run-time types for a given variable, at least its type declaration can be provided as an
upper bound of its run-time types. Fig. 5.7 shows the constraint graph of code example
with the newly added type declaration bound constraints in Fig. 5.4. Fig. 5.8 shows
a comparison with inferred result by graph-solving approach and by bit vector approach
with declaration bound constraints for the previous code example.

Notice that the bit vector approach doesn’t give the best solution for local variable
bar due to the preference tuning on preferring bar equal to its type declaration bound.
This problem can be solved by adding a more desired preference to prefer each constraint
variable in the super type chains of base cases has a solution with the smallest set of
run-time types (i.e. prefer variables equal to the least upper bound of these base cases).
However, how to encode this preference is still need further research.

5.3 Experiment

We evaluate Dataflow in 4 un-annotated scientific libraries. Fig. 5.9 shows the size of each
library in the benchmark. The number of Java files, comments, blanks, and lines of source
code are computed by the cloc tool. To give a more straightforward observation of the
relation between project size and the sizes of constraints and variables generated for each
project, the size of constraints and variable slots are also shown in the table.
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1 Object foo(Number boo) {

2 @DataFlow(typeNames={"String"})

3 Object bar = "str";

4 bar = boo;

5 return bar;

6 }

(a) Inferred result of graph-solving approach

1 @DataFlow(typeRoots={"Number"}) Object foo(

2 @DataFlow(typeRoots={"Number"}) Number boo) {

3 @DataFlow(typeRoots={"Object"}) Object bar = "str";

4 bar = boo;

5 return bar;

6 }

(b) Inferred result of bit vector encoding approach with type declaration bound

Figure 5.8: The inferred results of graph-solving approach and bit vector approach on the
code example in Fig. 5.3.

Benchmark
Project Size Constraint and Slot sizes

Files Blank Comment
Java
LoC

Variable
Slots

Constraints
Subtype Equality

imagej 14 220 694 796 82 47 6
FaceDetection 27 320 141 1074 549 717 88

jama 17 1055 1817 4599 2974 4159 550
jblas 117 6096 12215 22378 13787 22469 1349

Figure 5.9: Size of projects, and corresponding generated constraint and slot sizes for the
Dataflow Type system.
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Benchmark Slot Constraint
Encoding Time (ms) Solving Time (ms)
Seq. Par. B.V. Seq. Par. B.V.

imagej 82 53 84 2 15 6546 647 57
FaceDetection 549 811 2 5 58 30212 1111 582

jama 2974 4712 9 119 74 15093 721 2532
jblas 13787 23853 14 373 246 63408 2662 357939

Figure 5.10: Timing result of Running Dataflow with different settings. Text in olive
color represents the result of using Graph-soling approach with sequentially executing
solvers (Seq.). Text in blue color represents the result of using Graph-soling approach with
executing solvers in parallel (Par.). Text in red color represents the result of using the bit
vector approach with Z3 back-end (B.V.). Run on Mac OS, with 2.3 GHZ Intel Core i7
processor, 4 cores, 16 GB memory.

To evaluate the timing influence of the bit vector approach, we run Dataflow with three
different settings: 1) using graph-solving approach with sequentially executing SAT solvers,
2) using graph-solving approach with executing SAT solvers in parallel, and 3) using bit
vector encoding approach with z3 solver. Fig. 5.10 shows the timing result. Specifically,
the timing result of running SAT solvers sequentially is the accumulative result of all
solvers’ encoding time and solving time. For the timing result of running SAT solvers in
parallel, the solving time is computed as the time difference between the first solver has
been started, till the last solver has finished its solving. The encoding time is computed
as the maximum encoding time among these solvers.

The timing result suggests that bit vector approach needs more time for encoding, and
has the best solving time performance on the two small projects (<5k LoC). However,
for the two larger projects, Bit Vector approach adds non-trivial solving time overhead
compared to the graph solving approach with parallel setting. In detail, for the two small
projects, the Bit Vector approach faster 83 times than the graph solving approach with
sequential setting, and faster 6.6 times than the parallel setting. However, for the two
larger projects, on average the Bit Vector approach add 68.9 times overhead, and add
134.4 times overhead for the largest project jblas than the graph solving approach with
parallel setting.

Fig. 5.11 shows the inference result of running Dataflow by using graph-solving ap-
proach and by using bit vector encoding approach respectively. To give a more concrete
comparison of the inference result, we filter out three kinds of solutions that are not in-
terested: 1) TOP solutions, 2) BOTTOM solutions, and 3) Primitive solutions. TOP and
BOTTOM are filtered out as they do not provide useful informations. Primitive solutions
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are filtered out because primitive types do not support polymorphism, hence primitive
solutions are not interesting. For every project, we manually examine the inference results
of two approaches, and verified that both approaches give a correct and meaningful result.

Generally, since the Bit Vector encoding approach does not ignore any variables, it
propagates more Dataflow annotations in projects. On average, the bit vector encoding
approach propagates 1.56 times more interesting Dataflow annotations than the graph-
solving approach. In detail, through the manually examination on the inference results,
the Bit Vector encoding approach is able to give typeRoots information on the return
type of methods that Dataflow does not observe any invocations of these methods, while
the graph solving approach does not provide any information. This result suggests the bit
vector encoding approach is able to reason about more run-time types information than
the graph-solving approach.

5.4 Future Work

There are several possible future work to further improve the Dataflow type system.

First, the current preference tuning is actually an ”equality” preference. The equality
preference would become ineffective for those variables on the intersections of multiple base
cases, as none of the preference of these variables to be equal to a single base case can be
satisfied. For these variables, a more desired preference tuning would be a ”least upper
bound” preference, so that the most specific solution is preferred

Also, the current preference tuning does not takes advantage of the information in
constraint graph. For example, instead of propagating type bounds to all variables on
their subtype chains, we only propagate type bounds to the variables that are not on any
super type chain of base cases. This can guide solver to give more precise solutions on the
variables that are on the super type chains of base cases.

Finally, during our development, the type declaration bound implementation keep run-
ning into corner cases for complicated projects. For the 15 scientific libraries, the Bit
Vector approach with the type declaration bound crashed on 11 projects. We will try to
fix the bugs behind these crashes, and make the system robust.
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5.5 Conclusion

This chapter discusses the improvements for the Dataflow type system. We discuss the
limitation of previous graph-solving approach in detail, and show how the bit vector en-
coding approach can improve the Dataflow inference results compared to the graph-solving
approach.

For experimentation, we run Dataflow on 4 real world projects. The result suggests the
bit vector encoding approach adds non-trivial time overhead for solving large projects (>
5K LoC) compared to the graph-solving approach with parallel execution setting. However,
the bit vector encoding approach is able to propagate more run-time type information than
the graph-solving approach.
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Chapter 6

Ontology Type System

This chapter introduces the Ontology type system. Ontology type system (abbreviated
as Ontology in the rest of this chapter) and its inference is used to reason about a coarse
abstraction for a given program based on ontic concepts. One straightforward example for
illustrating ontic concept is the SEQUENCE concept. SEQUENCE represents a collection
of elements organized in some orders. Ontology groups Java Array type, List, and List
subtypes to SEQUENCE concept. With Ontology inference, a program abstraction with
ontic concepts is produced, and concrete Java types are grouped by ontic concepts. The
goal of Ontology is to produce reasonable semantic abstractions for programs, so that the
produced abstractions may facilitate other program analysis tools on their tasks.

The rest of this chapter is organized as follows: Sec. 6.1 motivates Ontology, and
gives a basic overview on the type system. Sec. 6.2 describes Ontology qualifiers and the
type hierarchy in detail. Sec. 6.3 discusses the type inference for Ontology, which is a
key process to produce program abstractions with ontic concepts. Sec. 6.4 summarizes
the implementation of Ontology, and discusses on how to integrate Ontology with other
program analysis tools. Sec. 6.5 presents the experimental result of Ontology on 15
scientific libraries. Sec. 6.6 discusses some possible future work for Ontology. Finally,
Sec. 6.7 concludes.

6.1 Introduction

With the increasing amount of available source code on the Internet, many approaches
[19, 14, 22, 12, 17, 10] have been proposed to retrieve, reuse, and repair code based on

49



the understanding of given programs. Building proper abstractions that remain importan-
t/interesting properties and meanwhile striped out trivial noises from concrete programs
is a key foundation that many of these approaches rely on. Types, as a natural and
powerful approach to classify the objects that a program manipulates, contains valuable
informations that may reflect important properties of programs. However, efficiently uti-
lizing types for enhancing comprehension among multiple programs is difficult. Different
programs/libraries may use different types to achieve similar logic, organize similar ob-
jects, and represent similar components. Therefore, many efforts have been dedicated on
researching how to utilize types for mining useful informations from programs [6, 15, 16].

This chapter presents the Ontology type system, that proposes a new way of catego-
rizing types by ontic concepts. For a programming language, Ontology group types in
two dimensions. First, it groups similar types to more general concepts (ontic concepts)
that reflect essential semantic properties of these types. For an illustration of grouping
similar types into ontic concepts in Java, Array type and List type are similar. Ontology
groups both Array type, List type, and subtypes of List to SEQUENCE ontic concept.
In another dimension, Ontology propagates domain-specific concepts mined by other pro-
gram analysis tools. For a given program, a set of ground truths that labels fields with
domain-specific concepts is obtained from other program analysis tools. Then Ontology
propagates this ground truth set on variables, functions, and interfaces in the program.
For a simple illustration, given a physic library, suppose Ontology obtains a ground truth
of FORCE concept on a field f of type V ector, i.e. this field f is considered to relate to
FORCE concept. As a result, Ontology propagates the FORCE concept from this field f
to other related places in the program by type inference. The produced inference result is
guaranteed to be sound according to the type rules and type hierarchy in Ontology. There-
fore the result is ensured to reflect program constructs that are related to the propagated
domain-specific concepts.

The focus of Ontology type system is to provide an infrastructure of ontic concept
propagation. Clients of Ontology can customize on what types should be considered as
similar types in their programs, and what are semantic concepts generalized from these
types. Also, client of Ontology can specify the domain-specific concepts that are desired
to be propagated in programs. Sec. 6.3.1 introduces the two dimensions of ontic concepts
in detail, and Sec. 6.4 provides concrete instruction of how to import customized ontic
concepts into Ontology.

The produced result of Ontology on a given program is a semantic abstraction that
types are annotated with ontology qualifiers that represent specific ontic concepts. Sec. 6.2
introduces the meaning of ontology qualifiers in detail. With real types grouped by ontic
concepts, clients of Ontology may be able to facilitate their program analysis tasks by
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analyzing on higher-level semantic abstractions.

6.2 Type Qualifiers and Qualifier Hierarchy

This section introduces ontology qualifiers and its qualifier hierarchy. Sec. 6.2.1 intro-
duces the meaning of ontology qualifiers and the qualifier hierarchy. Sec. 6.2.2 introduces
the polymorphic qualifier for Ontology, which is helpful for generating context-sensitive
constraint variables.

6.2.1 Ontology Qualifiers and Qualifier Hierarchy

Ontology encodes ontic concepts as enum values, and uses a single Java annotation class
@Ontology that takes an enum array of these ontic concepts as an argument. Hence,
all normal ontology qualifiers are represented by a single Java annotation @Ontology .
An ontology qualifier with a group of ontic concepts is an under-approximation of the
annotated object. An under-approximation means this approximation reflects some precise
information on the approximated object, but may not reflect all information. In contrast,
over-approximation gives an upper bound of the information that the approximated object
can express, but not sure what the exact information the object is expressed. As the
desire of Ontology is to provide precise information of objects in programs, therefore under-
approximation is chosen for ontology qualifiers. For example, if an object is annotated with
@Ontology({SEQUENCE ,FORCE}), it means this object is ensured that it is related to
SEQUENCE and FORCE concepts. However, this object may possible also related to
other concepts. Therefore, the type hierarchy starts from an empty under-approximation,
and given a collection of constraints, the goal is to find the lowest satisfied fixed-point that
is expressed the most precise under-approximation. Specifically, the subtype relationship
in Ontology type system is: Ontology type τ1 is subtype of Ontology type τ2, if the set of
ontic concepts represented by τ1 is a super set of the set represented by τ2. For example,
@Ontology({SEQUENCE ,FORCE}) is a subtype of @Ontology({SEQUENCE}).

Theoretically, the type hierarchy of Ontology is infinite, as there are infinite ontic
concepts can be expressed. However, the type hierarchy of Ontology always follow a power-
set-like shape, and Fig. 6.1 shows a sub-hierarchy on three ontic concepts SEQUENCE
(SEQ), VELOCITY (VEL), FORCE (FOR).

@Ontology{TOP} is the top qualifier in the hierarchy. It represents an empty set
of ontic concepts. The BOTTOM qualifier in the type hierarchy is a theoretical lowest
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TOP

VELOCITYSEQUENCE FORCE

FOR,SEQSEQ,VEL FOR,VEL

VEL,FOR,SEQ

BOTTOM

Figure 6.1: A sub-hierarchy of Ontology Type System on three ontic concepts: SEQUENCE
(SEQ), VELOCITY (VEL), and FORCE (FOR).

bound to make the type lattice complete. In practice, objects in programs should never be
annotated with @Ontology({BOTTOM }).

Since @Ontology{TOP} represents an empty under-approximation, annotating every
location by @Ontology{TOP} is a valid solution. However, this is an useless solution, as
it does not give any useful approximation about the given program. Sec. 6.3.3 describes
how subtype constraints in Ontology are tuned by preference to infer a desired solution.

6.2.2 Polymorphic Qualifier: PolyOntology

Usually, there are some classes in a library that encapsulate some common logics needed
by other components in this library. The methods in these classes are general and do not
related to specific ontic concepts. Fig. 6.2 shows an example of a code snippet from a
physic library.
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1 class VectorFactory {

2 Vector createVector() {

3 // Some initializations...

4 return new Vector();

5 }

6 }

Figure 6.2: A code snippet from a physic library.

The createVector method in Vector class is a general method that is commonly used
by other components in the physic library. Consequently, Ontology may infer unexpected
result on this common createVector method, if the createVector method was used by
multiple callers that are related to different ontic concepts, for example:

1 @Ontology({FORCE}) Vector force;

2 @Ontology ({VELOCITY}) Vector velocity;

3 //...

4 force = vectorFactory.createVector();

5 velocity = vectorFactory.createVector();

1 @SEQUENCE List<Integer> swapsort(@SEQUENCE List<Integer> list) {

2 int n = list.size();

3 int k;

4 for (int m = n; m >= 0; m--) {

5 for (int i = 0; i < n - 1; i++) {

6 k = i + 1;

7 if (list.get(i) > list.get(k)) {

8 int temp;

9 temp = list.get(i);

10 list.set(i, list.get(j));

11 list.set(j, temp);

12 }

13 }

14 }

15 return list;

16 }
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1 @VELOCITY Vector externalVelocity;

2 @FORCE Vector externalForce;

3
4 public void applyVelocity(@VELOCITY Vector velocity) {

5 externalVelocity.add(velocity);

6 }

7
8 public void applyForce(@FORCE Vector force) {

9 externalForce.add(force);

10 }

Suppose the constraint variable on the return type of createVector method declara-
tion is v1 . The two assignment statements in above code cause two subtype constraints
on v1 : v1 <: FORCE and v1 <: V ELOCITY . Consequently, Ontology inferred v1 as
@Ontology({FORCE ,VELOCITY }). This is an unexpected result, as the createVector

method is a common method, and does not related to any specific ontic concepts. The
reason of this unexpected result is because Ontology doesn’t consider invocation context
when generating type constraints. To resolve this problem, @PolyOntology is introduced.

@PolyOntology is a polymorphic qualifier that follows the qualifier polymorphism de-
fined in the Checker Framework. Polymorphic qualifier allows a single method to have mul-
tiple different type signatures, depending on the invocation context. For example, with the
createVector method annotated by @PolyOntology , for each invocation of createVector
method, a new constraint variable will be created for the return type of createVector

method. The new constraint variable represents the invocation context, and decouples
the invocation context with the method declaration. Consequently, the two subtype con-
straints for above example would be: v2 <: FORCE and v3 < V ELOCITY , where v2
represents the first invocation context, and v3 represents the second invocation context.

Currently, Ontology cannot infer @PolyOntology automatically. Clients of Ontology
need to annotate polymorphic methods with @PolyOntology , to represents the return type
and method parameters in this method are polymorphic, and do not related to concrete
ontic concepts. A future work would be designing constraints to enable Ontology infer
@PolyOntology for programs.
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6.3 Type Inference for Ontology

This section introduces the type inference approach for Ontology. Type inference is a key
process that propagates the customized ontic concepts from clients of Ontology. The result
of this concept propagation by type inference is a semantic abstraction of a given program,
in which real types are grouped by ontic concepts.

The rest of this section is organized as follows: Sec. 6.3.1 discusses the two dimensions
of customized ontic concepts that clients of Ontology can customized on. Then Sec. 6.3.2
introduces what kinds of type constraints are generated in Ontology. Finally, Sec. 6.3.3
describes the Bit Vector solving approach for solving the type constraints.

6.3.1 Annotated Base Cases

The type inference of Ontology is actually a process of propagating ontic concepts that
come from base cases. Base cases are ground truths as pre-knowledges for Ontology that
mapping some places in programs to ontic concepts. Base cases come from two dimensions:

Type Summarization Rules

A type summarization rule defines a mapping from a group of real types to a corresponding
ontic concept. For a given real type τ , if a type summarization rule summarizes this real
type to an ontic concept C, then Ontology will annotate @Ontology({C}) on all variables,
creation expression whose type is a subtype of τ .

Ontology has two built-in type summarization rules. The first one summarizes Java
Array type, List, and subtype of List to SEQUENCE concept. The second one summarizes
Dictionary, Map, and their corresponding subtypes to DICTIONARY concept.

In addition, clients of Ontology can insert additional type summarization rules. One
use scenario of inserting additional type summarization rules is for generalized type search
in multiple libraries. For type search engines, one common use case is users desire to learn
the usage of functions in libraries that operating on some specific concepts. The problem
is users cannot perform this type search without the knowledge of the concrete type that
represents the corresponding concept used in the library. Even worse, different libraries
may use different types to represent the same theoretical concept. For example, an user
want to learn how mathematical libraries operating on Matrix. However, library A uses
a customized type MatrixA to represent Matrix in their library, while library B use type
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MatrixB. A type summarization rule summarizes both MatrixA and MatrixB to a common
ontic concept MATRIX would be helpful to enable users perform type search in these
libraries on the same high level concepts.

Fields Annotated by Domain-specific concepts

Usually programmers assign meaningful name to variables, method, and fields in order to
make their program more understandable. Clients of Ontology may utilize this fact, and
pre-annotate fields with ontic concepts that reflect the interesting meaning of these fields.
For example, given a physical library, if a field named ”externalForce”, then most likely
this field is related to FORCE concept, and the usage of this field is related to some logic
operating on FORCE. If clients of Ontology can provide a set of ground truths on fields in
the program, where these fields are annotated by proper ontic concepts, then Ontology will
utilize these ground truths, and propagate ontic concepts on the ground truths to other
related places in the program.

The reason of requiring ontology annotations on fields instead of on other places is
because Ontology only need a minimum set of ground truths to propagate ontic concepts.
Therefore, instead of requiring clients of Ontology analyze every places in the program,
only field analysis is required for obtaining the ground truths of these domain-specific
concepts.

6.3.2 Constraint Generation

For a given program, the Checker Framework Inference generates a set of type constraints
according to type rules defined in the type system. Ontology uses the standard type rules in
the Checker Framework, and does not add additional type rules. Therefore, only subtype
constraints and equality constraints are generated in Ontology on a given program. In
these constraints, the constraint variables for base cases are created as constants with the
corresponding ontic concepts as values. Therefore, the generated set of constraints are type
constraints between constants of base cases and variables of other places in the program.

6.3.3 Bit Vector Based Solving Approach

Once type constraints are generated, these constraints are encoded as a SMT problem with
Bit Vector theory. Then Z3 BackEnd try to find a solution for the given SMT problem.
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Finally, if a solution is found, it is translated back from bit vectors to ontology qualifiers
that will be inserted into the given program as the ontic concept propagation result.

Encoding Ontology Types to Bit Vector

As a first step of encoding type constraints to a SMT problem with Bit Vector theory,
Ontology qualifiers need to be encoded to Bit Vectors. The bit vector encoding of Ontology
qualifiers follows the encoding specification introduced earlier in Sec. 4.3.2. The bit vector
size is the number of ontic concepts appears in a given program. For ontology qualifier that
represents only one ontic concept, an unit bit vector is encoded to represent the concept.
For ontology qualifier represents a set of ontic concepts, the encoding is computed by the
union operation on corresponding unit bit vectors.

One thing worth to be mentioned is the special treatment on polymorphic qualifer
@PolyOntology. @PolyOntology is filtered out when encoding constraints, and there is
no unit bit vector for @PolyOntology. The reason is that @PolyOntology is just a place
holder for separating invocation contexts. Encoding constraint variables that represents
the concrete invocation context is enough for modeling the corresponding SMT problem.

Tuning on Subtype Constraints

Ontology is an under-constrained system, as a valid solution for a set of constraints is
not always the desired solution, i.e. the constraints are not enough to express the desired
solution. For illustration, given a subtype constraint SEQUENCE <: v1. TOP and
SEQUENCE are both valid solution for v1. However, SEQUENCE is a better solution
as it reflects more useful information on v1.

In order to guide solver to give a desired solution, instead of producing a random valid
solution, subtype constraints are tuned by preferences. Generally, solutions that make
more subtype variables equal to super type variables are preferred. This is because ontic
concepts on base cases are desired to be propagated as much as possible. By preferring
equal solutions on variables in subtype constraints, variables that connects to base cases
by subtype constraints are preferred to have a solution that equals to the base case they
are connected to.

Specifically, different weights are made for different compositions of variables for a
subtype constraint:

• case constant <: variable: Prefer variable equals to constant with weight 3.
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• case variable <: constant: Prefer variable equals to constant with weight 3.

• case variable1 <: variable2: Prefer variable1 equals to variable2 with weight 1.

• for all variable in subtype constraints: Prefer variable equals to BOTTOM with
weight 1.

A subtype constraint between constant and variable is added more weight that prefer
the variable to be equal to the constant. This is because the variable is directly “connect”
with the constant, therefore this is a strong implication that suggests this variable is related
to the constant. With the preference of variables to be equal for subtype constraints
between pure variables, this ensures the propagation from ontic concept on subtype to
super type variables is propagated as far as possible.

Preference on all variables equal to BOTTOM has two purposes. First, for orphan
variables (variables that do not connect to any constants), they prefer to have a fixed so-
lution that reflects no informations, instead of assigning some random ontic concepts. The
most proper preference for these orphan variables should be TOP. However, since in Bit
Vector encoding, it does not have a first pass of recognizing which variables are orphans,
prefer all variables to be TOP would lost the propagation from subtype constant to super
type variables (as solver would tend to give TOP solution for these super type variables
base on the preference to TOP). Therefore, as a workaround, preference on BOTTOM is
chosen. This still make sense based on Karl Popper’s philosophy:“A theory explains ev-
erything, explains nothing”. As BOTTOM means the annotated object is related to every
ontic concepts, actually this BOTTOM annotation does not give any useful information.
Second, preference to BOTTOM helps on restricting the propagation depth from super
type constant to subtype variables. If there are too many variables on a subtype chain of a
super type constant, then solver will prefer to solve these variables as BOTTOM, instead
of solve them as the ontic concepts on (indirectly) connected constant.

6.4 Implementation

The Ontology type system is implemented as a pluggable type inference system on top of
the Checker Framework Inference introduced in Sec. 2.2. In addition, Ontology implements
a customized FormatTranslator and Z3BitVectorCodec for using Z3 BackEnd introduced
in Sec. 4.3.

Overall the implementation effort of Ontology is low, totaling around 1k non-comment,
non-blank lines of Java source code. The Ontology type system uses the standard type
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constraints generation rules in the Checker Framework Inference, only the encoding of
subtype constraints is tuned by customized preference.

Ontology also provide a Python script that allows clients of Ontology to import their
base cases into Ontology. Clients of Ontology only need to provide JSON files that describes
their type summarization rules, and fields labeled by customized concepts, following the
specific format instruction 1. Then, for importing type summarization rules, the utility
script will update Ontology with the new ontic concepts and type rules by modifying
corresponding Java files and recompile the Ontology. For importing ontic concepts in
fields in programs, the script will annotate fields in programs with Ontology annotations
that represent corresponding concepts by using Annotation File Utilities 2.

For a given program, the produced result of Ontology is a copy of the given program
that annotated by the propagated Ontology annotations. For the places where the cor-
responding constraint variables have a solution of TOP or BOTTOM, Ontology does not
insert them into the program, as TOP and BOTTOM solution provide no useful informa-
tion for building a meaningful abstraction of a given program. The annotated program
follows the standard Java 8 type annotation syntax. Consequently, any standard Java
parsers (e.g. JavaParser3 or Eclipse JDT4) that support Java 8 syntax is able to parse the
Ontology annotations in the annotated program correctly.

6.5 Experiments and Evaluations

We evaluate Ontology in two different experiments. Sec. 6.5.1 describes the evaluation
of Ontology on summarizing two built-in concepts SEQUENCE and DICTIONARY, by
running Ontology on 15 un-annotated real-world projects (code size range from 393 LoC to
86k LoC). Sec. 6.5.2 describes the evaluation of Ontology on propagating domain specific
ontic concepts labeled in fields of programs. In this evaluation, we manually annotated
two physical engine libraries by annotating the fields in libraries with 6 domain-specific
ontic concepts, and then evaluating the propagation result of Ontology on these two pre-
annotated libraries.

1See https://github.com/aas-integration/integration-test2/blob/master/map2annotation/README_ontology.txt.
2See https://checkerframework.org/annotation-file-utilities/.
3See https://github.com/javaparser.
4See https://www.eclipse.org/jdt/.
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Benchmark
Project Size Constraint and Slot size

File Blank Comment
Java
LoC

Variable
Slot

Constraint
Subtype Equality

imagej 7 110 347 393 221 126 58
FaceDetection 14 162 72 538 766 684 103

imgscalr 11 302 2186 1181 964 841 149
jump 23 770 3211 1937 1766 2404 129
jama 10 589 931 2599 4318 4706 305

jdepend 60 1501 1746 4054 2792 2852 378
exp4j 30 819 761 5129 5389 1839 1034
jdeb 73 1471 1917 5201 1829 552 195
react 63 1147 6338 10095 12890 17075 1120

jReactPhysics3D 105 3515 6251 10455 10030 15379 1241
JLargeArrays 17 882 2496 11337 15554 16670 940

jblas 74 3344 6807 11841 19330 24068 796
la4j 117 3630 5376 13480 13736 16781 854

matrix-toolkits-java 230 5306 12803 15950 15199 19185 1657
ode4j 452 21575 54317 86534 54302 70702 5173

Figure 6.3: Size of Projects, and corresponding generated constraints and slots number
with running Ontology Type system.

6.5.1 Experiment on Propagating Ontology Built-in Concepts

As an initial experiment, we run Ontology on 15 un-annotated real-world projects. The
purpose is evaluating Ontology on summarizing built-in concepts SEQUENCE and DIC-
TIONARY. Fig. 6.3 shows the sizes of each project in the benchmark. The number of
Java files, comments, blanks, and line of source code are computed by the cloc tool. The
sizes of generated constraints and variable slots (constraint variables) are also shown in
the table, to give a more obvious correlation between projects sizes and the number of
constraints and variable slots that are generated by Checker Framework Inference.

To evaluate the effect of preference tuning, we run Ontology on the benchmark in a A/B
test way. Fig. 6.6 gives the type inference result and Fig. 6.7 gives the timing result of
running Ontology with/without preference tuning on the benchmark. In these two tables,
the number in blue color shows the inference result without preference tunning, and the
number in red color shows the inference result with preference tuning. The number of
generated constraints and slots are invariants in this A/B test, and they are shown in the
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table for giving a more obvious correlation between running results and problem sizes.

We first discuss Fig. 6.6 to see how preference tuning influences the inference result.
Then we discuss Fig. 6.7 to evaluate the timing overhead added by preference tuning.

Discussion on Fig. 6.6:Inference Result with/without Preference Tuning

To discuss Fig. 6.6, we compare related columns and draw corresponding conclusions:

Compare Variable Slots and Total Inferred :

Notice that there is a difference between the total number of generated variables slots
and the total inferred solutions for these variable slots. This is because in the Checker
Framework Inference level, Existential Constraints are generated for type variables. On-
tology does not support Existential Constraints, therefore the variable slots in Existential
Constraints are ignored.

Compare Total Inferred with/without preference setting :

An interesting result is the size of total inferred solutions are different in this A/B test.
With preference setting, solver is able to give more solutions. Theoretically this does not
make sense, as the size of encoded variable slots passed to solver are invariants in this
A/B test. It is expected that solver gives each passed variable slot a solution. However,
debugging result on the smallest project imagej shows that solver does not always give
each passed variable slot a solution, i.e. Z3 will exclude some variable slots in the solved
model. For illustration, the total encoded variable slots number for imagej is 158. However,
without preference setting, the solved model returned by Z3 only contain solutions for 154
encoded variable slots. The reason of why Z3 excludes some variable slots in the solved
model is unknown. In contrast, with preference setting, as a preference for each encode
variable slot to be BOTTOM is added, Z3 returns a solved model contains solutions for
all encoded variable slots.

Compare concrete inferred result with/without preference setting :

Overall, without preference setting, Ontology tends to infer most of the variable slots
as TOP. In contrast, with preference setting, Ontology tends to give a ”lower” solution in
the type hierarchy, i.e. infer more variable slots as BOTTOM.

Regarding the result of inferring meaningful solutions (SEQUENCE, DICTIONARY), it
is interesting to see without preference setting Ontology infers more variable slots with non-
empty meaningful concepts than the preference setting. However, numbers does not reflect
the accuracy of solutions. Therefore, as a further investigation, the annotated result by
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Ontology is manually examined on a randomly selected group of projects: 2 small projects
(imagej, FaceDetection), 3 medium projects (jama, react, jReactPhysics3D), plus the
largest project ode4j.

The manually examine result shows, without preference setting, Ontology does not
correctly infer the two built-in concepts. Most of the variable slots that inferred with an
non-empty concept are orphan slots that does not connects to any constant concepts in the
constraints. The inferred result of these orphan slots are just due to the random solution
given by solver, as orphan slots are actually not constrained. Fig. 6.4 shows an example
of the annotated result of Ontology without preference tunning. The field of type int

in the example is just randomly inferred by Ontology with SEQUENCE concept, as the
constraint variable represent this place is an orphan slot.

1 // FaceDetection/FramesDrawer.java: line 33

2 @Ontology(SEQUENCE) int scanningWindowSize = MIN_SIZE;

Figure 6.4: A code example of the annotated result of Ontology without preference tuning.

In contrast, with preference setting, although Ontology reasons about less non-empty
concepts, the inferred results are meaningful. The SEQUENCE and DICTIONARY solu-
tions inferred by Ontology are all correct in the 6 manually examined projects. Fig. 6.5
shows examples of the annotated result of Ontology with preference tuning. Ontology
correctly reasons Array type and List subtypes to SEQUENCE concept, and correctly
reasons Map type to DICTIONARY concept.

Notice the line 5 in Fig. 6.5 gives an example of reasoning field frame with an abstract
Collection type to SEQUENCE. Although Collection is not a subtype of List, the
inference result suggests this field is only assigned by list subtypes, and therefore inferring
it to SEQUENCE reflects the precise semantic concept of this field.

Line 9 in Fig. 6.5 gives an example of Ontology reasoning a precise semantic meaning
of a field defines an “edge adjacency list” in the physical library jReactPhysics3D . A text-
based program analysis is very likely to reason about this field to SEQUENCE concept,
as “list” is a keyword in both the code comment and the name of this field. In compar-
ison, Ontology gives a more precise conclusion of this field: it is a DICTIONARY whose
value is SEQUENCE. This conclusion may help to other program analysis tools to better
understand what is an “adjacency list” in this physical library.

In conclusion, the A/B test result suggests that Ontology requires preference tuning to
give a meaningful inference result, as Ontology type system itself is under-constrained.
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1 // Jama/LUDecomposition.java: line 39

2 int @Ontology(SEQUENCE) [] piv;

3
4 // FaceDetection/FramesDrawer.java: line 33

5 @Ontology(SEQUENCE) Collection<Frame> frames = new ArrayList<>();

6
7 // jreactphysics3d/ConvexMeshShape.java: line 71

8
9 // Adjacency list representing the edges of the mesh

10 @Ontology(DICTIONARY)

11 Map<Integer, @Ontology(SEQUENCE) List<Integer>> edgeAdjList;

Figure 6.5: Code examples of the annotated result of Ontology with preference tuning.

Discussion on Fig. 6.7: Timing result with/without Preference Tuning

The timing result shows preference tuning almost has no influence on encoding time, and
doesn’t hurt solving performance a lot for small projects(< 10k LoC), but do add non-
trivial solving time overhead for large projects (> 10k LoC). On average, for the 8 projects
which size is less than 10k LoC, preference tuning add on average 2.66 times overhead is
added for solving time. However, for projects more than 10k LoC, the preference tuning
add a lot time overhead. For the 7 large projects, on average preference tuning adds 9.2
times overhead on solving time. For the worst case, preference add 22 times overhead for
solving (project jblas).

6.5.2 Experiment on Propagating Domain-specific Concepts

As an advanced experiment, we manually annotate two physical libraries: jReactPhysics3D
and ode4j with six ontic concepts that frequently appears in these two libraries: COOR-
DINATES, VELOCITY, FORCE, TORQUE, AXIS, and ANCHOR. We manually anno-
tate several fields in these two libraries with these 6 ontic concept as the simulated pre-
knowledge input for Ontology. The annotation on each field is decided by examining the
field name or reading the code comments. For example, if a field is named with ”xxxVeloc-
ity”, then we annotated it by @Ontology(VELOCITY). After the manual annotating work,
we run Ontology on these annotated libraries, to see how well it propagates these ontic
concepts. Fig. 6.8 shows the running result. The number in blue color is the amount
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of pre-annotated annotations, and the number in red color is the amount of propagated
annotations.

The result shows Ontology be able to propagate 3.4 annotations on per pre-given anno-
tation. We manually examine the running result, and find all of the propagated annotations
correctly reflects the related concepts of the annotated object. Fig. 6.9 shows three rep-
resentative example of propagation results.

1 // jReactPhysics3D/BoxShape.java: line 46

2 // Pre-annotated

3 // Extent sizes of the box in the x, y and z direction

4 @Ontology(values={COORDINATES}) Vector3 extent;

5 //...

6 // Propagated result: line 64

7 public @Ontology(COORDINATES) Vector3 getExtent() {

8 return extent;

9 }

10
11 // ode4j/DxJointAMotor.java: line 51

12 @Ontology(values={AXIS})

13 DVector3 @Ontology(SEQUENCE}) [] axis;

14
15 // ode4j/DxJoint.java: line 466

16 void setBall(@Ontology(ANCHOR) DVector3 anchor1,

17 @Ontology(ANCHOR) DVector3 anchor2) { ... }

Figure 6.9: Code examples of the annotated result of Ontology with preference tuning.

For code examples in Fig. 6.9, the first example on line 7 suggests Ontology is able
to propagate the knowledge obtained from fields’ code comments to APIs that used these
fields. The COORDINATE concept annotated on line 4 is a manual annotation result by
reading the code comments of this extent field (as the comment include keywords “x, y,
and z direction””). The getExtent method does not have any Javadoc and comments.
Ontology helps to propagate the COORDINATE concept analyzed from field extent to
the API getExtent which lacks of proper code comment that document this knowledge.

The second code example on line 12-13 suggests Ontology is able to combine domain-
specific ontic concept and built-in ontic concept to produce a meaningful composition of
concepts. Text-based analysis may simply concludes field axis is related to AXIS concept
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by name analysis. However, Ontology gives a more precise conclusion of field axis: it is a
SEQUENCE of AXIS.

The third code example on line 16-17 suggests Ontology verifies the method parameters
anchor1 and anchor2 are indeed relate to ANCHOR concept. This is because through the
type inference of Ontology, only fields/variables related to ANCHOR concepts is passed to the
method setBall. Therefore, the inference result concludes these two method parameters
are related ANCHOR concept with high confidence.

6.6 Future Work

Similar to the preference tuning in Dataflow, the current preference tuning for Ontology
is also an “equality” preference, and is unable to guide solver gives desired solutions to
variables on intersections of base cases. A more desired preference tuning would be a
“least upper bound” preference tuning, i.e. a preference that prefers each bit vector should
have as most bits set to 1 as possible. For example, given a constraint variable that
is constrained as the super type of both base case {SEQUENCE,FORCE} and base
case {SEQUENCE, V ELOCITY }, a desired preference tuning is to prefer the bit vector
that represents this variable to have the most bits set to 1, which will guide solver gives
SEQUENCE as the solution to this variable. A brute force approach is to prefer each
bit vector to include every unit bit vector as its subset. However, this enumeration-based
approach requires n preference constraints for each bit vector for a power-set-like type
hierarchy which the universe set size is n. Consequently, too many preference constraints
are generated, which slowdowns the solving time to an unreasonable range. Finding an
efficient encoding for expressing this “least upper bound” would be an interesting future
work.

In addition, we would like to enrich the type qualifier hierarchy of Ontology to express
more relationships between Ontology qualifiers. For example, we would like to mark el-
ements that will flow into a SEQUENCE, and elements that come from a SEQUENCE.
This requires a more expressive type qualifier hierarchy, or have multiple type qualifier
hierarchies to cooperate together.

Moreover, as Sec. 6.2.2 indicates, Ontology currently cannot infer @PolyOntology .
Requiring clients of Ontology to manually insert @PolyOntology annotations into programs
is a non-trivial task. An interesting future work would be investigating on how to enable
Ontology to infer @PolyOntology for programs.
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6.7 Conclusion

This chapter presents a novel type system named Ontology that reasons about a coarse
abstraction for a given program based on ontic concepts. As an infrastructure of on-
tic concept propagation, Ontology provides two built-in ontic concepts SEQUENCE, and
DICTIONARY. In addition, clients of Ontology can add additional ontic concepts by pro-
viding customized type summarization rules or a ground truth set that annotated fields in
programs with customized ontic concepts.

In a case study of running Ontology on 15 real world scientific libraries(project size
range from 393 to 86k LoC), it summarizes 4973 built-in ontic concepts, and propagates
274 domain-specific concepts in two pre-annotated physical libraries. We manually examine
the inference result, and discuss several interesting cases that Ontology might be helpful
for other program analysis tools to better understand programs. The experimental result
suggests Ontology is able to produce meaningful high-level program abstractions based on
ontic concepts.
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Chapter 7

Conclusion

This thesis presents work on three pluggable type systems for helping programmers and
other program analysis tools to better understand programs.

We present the EOF Value Checker, which prevents unsafe end-of-file (EOF) value
comparisons that can lead infinite loops in programs. EOF Value Checker examines ad-
ditional safety-related properties on integer types, and statically ensures no FIO-08J rule
violations appear in a given program.

We also present a novel type system named Ontology, which reasons about a coarse
abstraction for a given program based on ontic concepts. An ontic concept can be a type
summarization rule that groups similar Java types to a general ontic concept, or it can come
from pre-annotated fields in programs. Ontology provides two built-in ontic concepts. The
first groups Java Array type, List, and subtypes of List as SEQUENCE concept. And
the second groups Java Dictionary, Map, and their subtypes to DICTIONARY concept.
Clients of Ontology can also provide customized ontic concepts by providing JSON files that
indicates their type summarization rules and annotated fields. Ontology is able to produce
reasonable semantic abstractions for a given program, so that the produced abstraction
may facilitate other program analysis tools on their tasks.

In addition, we present our work on extending the Type Constraint Solver from sup-
porting only Max-SAT solvers to also supporting Max-SMT solvers. This is a foundational
work for the new SMT approach based on Bit Vector theory for solving the type constraints
of Ontology type system.

We also apply the new SMT encoding with Bit Vector theory to Dataflow type system.
The SMT encoding approach makes Dataflow be able to infer more run-time types in
programs, and also be possible to support partially annotated programs.
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For experimentation, we evaluate EOF Value Checker on 35 real world projects, and
evaluate Ontology and Dataflow type systems on 15 scientific libraries. Through analysis
of the experimentation results, we conclude that pluggable type systems can provide confi-
dence on preventing formalized vulnerabilities, and be able to infer high-level abstractions
for programs.
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