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A Nonlinear Matrix Decomposition for Mining the Zeros of Sparse Data∗

Lawrence K. Saul†

Abstract. We describe a simple iterative solution to a widely recurring problem in multivariate data analysis:
given a sparse nonnegative matrix X, how to estimate a low-rank matrix Θ such that X ≈ f(Θ),
where f is an elementwise nonlinearity? We develop a latent variable model for this problem and
consider those sparsifying nonlinearities, popular in neural networks, that map all negative values
to zero. The model seeks to explain the variability of sparse high-dimensional data in terms of a
smaller number of degrees of freedom. We show that exact inference in this model is tractable and
derive an expectation-maximization (EM) algorithm to estimate the low-rank matrix Θ. Notably,
we do not parameterize Θ as a product of smaller matrices to be alternately optimized; instead, we
estimate Θ directly via the singular value decomposition of matrices that are repeatedly inferred (at
each iteration of the EM algorithm) from the model’s posterior distribution. We use the model to
analyze large sparse matrices that arise from data sets of binary, grayscale, and color images. In all
of these cases, we find that the model discovers much lower-rank decompositions than purely linear
approaches.
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1. Introduction. Many empirical disciplines depend increasingly on principled and trans-
parent methods for high-dimensional data analysis [29, 123]. The simplest methods arise from
basic tools of linear algebra, for example, when data is stored in a large matrix X, we can
use singular value decomposition (SVD) to approximate X by another matrix Θ of lower
rank [30]. Very often such decompositions can help to analyze high-dimensional data in terms
of a much smaller number of degrees of freedom [26, 118].

Many types of data, however, have low-dimensional structure that is not revealed by such
methods. This is especially true for nonnegative or binary data that is represented by a large
sparse matrix (i.e., a matrix whose elements are mostly zero). Such data is better analyzed by
models that introduce some additional constraint or nonlinearity to prohibit values that the
data cannot realize [24, 41, 72, 103, 119]. Typically, these models parameterize their low-rank
matrices as the product of smaller matrices—for instance, writing Θ=WH, where W is tall
and thin and H is short and wide—and then optimize the factors W and H in an alternating
fashion.

These types of alternating approaches are common for problems in high-dimensional data
analysis that do not have closed-form solutions. In such problems, it is natural to identify
the largest subsets of model parameters that can be efficiently optimized while holding the
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others fixed. The conceptual goal here is simple—to encapsulate the model updates as well-
understood optimizations, and then to rely on the most powerful black-box solvers for those
optimizations that we have at our disposal. In a nutshell, that is why many generalized low-
rank models perform alternating least-squares or convex optimizations over factors W and H
of a low-rank matrix Θ.

One might ask, though, whether this parameterization is always necessary for generalized
low-rank models—whether, instead, it might be possible to optimize the low-rank matrixΘ di-
rectly, in a way that provides an even higher-level encapsulation of the model updates? There
are few tractable optimizations over nonconvex sets of low-rank matrices, but as mentioned
above, one notable exception is to compute (via SVD) an optimal low-rank approximation to
some other matrix. This suggests using truncated SVDs as the basis of an iterative strategy
for generalized low-rank modeling. Of course, such a strategy presumes that there exist gen-
eralized low-rank models of interest that can be estimated in this way. The motivation to find
such models is compelling: if they do exist, then their fitting procedures can piggyback for
the rest of time on better and faster algorithms for SVD. Note that this strategy takes a com-
pletely agnostic view of how the truncated SVD is computed. There are many choices for this
purpose (e.g., bidiagonalization and column pivoting [22, 38], alternating least-squares [46],
other nonconvex optimizations [19, 57], randomized methods [34, 44, 80, 116, 117]), but in
this framework the choice becomes a lower-level operational decision that can be based on the
specific problem instance. The goal of higher-level encapsulation is achieved no matter which
routine is ultimately chosen.

In this paper we develop a nonlinear matrix decomposition (NMD) for sparse nonnegative
data that achieves this goal. By this we mean that the decomposition is not computed by an
alternating optimization over the factors W and H of a low-rank matrix Θ=WH. Instead we
describe an iterative algorithm that leverages the full power of SVD to optimize Θ directly; in
particular, at each iteration, the algorithm uses SVD to reestimate Θ as the optimal low-rank
approximation to another matrix of inferred values. In addition, as in many previous studies,
the decomposition exploits a single but essential nonlinearity [1, 6, 5, 25, 36, 43, 87, 95, 97,
130, 131]: given a sparse nonnegative matrix X, it attempts to estimate a low-rank matrix Θ
such that X ≈ f(Θ), where f is an elementwise nonlinearity that does not take on negative
values. As we shall see, the form of this nonlinearity can be purposefully tailored to reveal
low-dimensional structure in sparse data.

Another contribution of our work lies in its appeal to latent variable modeling [3, 9]. There
are well-known latent variable models for many canonical problems in high-dimensional data
analysis (e.g., Gaussian mixture distributions for clustering [85], factor analysis for dimen-
sionality reduction [98]). These models have been widely applied, in large part because there
are simple, provably convergent algorithms for estimating their parameters. In this paper, we
derive an equally tractable latent variable model for NMD—one in which inference does not
require sampling-based or variational approximations, and one in which parameter estimation
does not require line searches, learning rates, or projected gradients. This model should be
of broad interest because NMD can also be viewed as a framework for unsupervised learning
in two-layer neural networks—specifically, those networks [74, 83] with one hidden layer of
binary threshold or rectified linear units (ReLU). This is perhaps the paper’s main conceptual
contribution: it elevates yet another core problem of unsupervised learning into the canon
that can be studied by especially tractable latent variable models.
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The paper is organized as follows. In section 2, we present several motivations for this
work, and in section 3, we contrast our goals to those of previous approaches. In section 4, we
show how to formulate NMD as a problem in latent variable modeling; here, in particular, we
show how repeated SVDs can be used to estimate a low-rank matrix Θ such that X ≈ f(Θ).
In section 5, we present experimental results on several illustrative data sets and examine the
low-dimensional representations discovered by NMD. Finally, in section 6, we offer our main
conclusions and discuss important directions for future work.

2. Motivation. Sparse nonnegative matrices arise in many areas of application. The ele-
ments of these matrices can record, for example, the edges of objects in grayscale images [15],
the gene expression levels in cells [11], the presence of links in a social network [51], the word
counts in a large corpus of documents [26], and the ratings or purchases of users on the in-
ternet [66]. In addition, it is widely believed that natural images and sounds are encoded
by the brain as sparse distributed patterns of neural activity [28, 33, 49, 91], so that any
collection of these patterns (e.g., over time) can also be visualized as a sparse nonnegative
matrix.

From many disparate applications, then, there arises the same question: how to discover
low-dimensional structure in sparse high-dimensional data? The possibility of such structure
is precisely what motivates the search for low-rank models [24, 41, 72, 88, 103, 107, 119]. The
rank of a matrix is equal to the number of its columns (or rows) that are linearly independent.
If the columns of such a matrix store the patterns of a data set, then the rank provides one
way to quantify the data’s underlying degrees of freedom. In practice, we can settle for a low-
rank matrix that does not exactly match the data, but still provides a close approximation.
Moreover, for certain types of data, we can hypothesize a nonlinear relationship between the
data and its underlying degrees of freedom. The next sections motivate our low-rank model
with these ideas in mind.

2.1. Strengths and limitations of SVD. As is well known, the rank of a real-valued d×n
matrix X can be immediately ascertained from its SVD. To do so, we write X = UΣV⊤,
where U and V are orthogonal matrices (of size d × d and n × n, respectively) and Σ is a
rectangular diagonal matrix that stores the singular values Σii ≥ 0. The rank of X is given
by the number of its nonzero singular values.

The SVD of a matrix can also be used to find its optimal low-rank approximation, where
the error of the approximation is measured by the Frobenius norm [30]. In particular, the
SVD is used to solve the following optimization,

min ∥X−Θ∥F such that rank(Θ) = r,(2.1)

where r is less than the rank of X. In this case, the solution is given by the truncated SVD,
with Θ = UΣrV

⊤, where Σr has the same dimensions as Σ but retains only its top r singular
values and replaces the others by zero.

The SVD is widely used in this way1 for high-dimensional data analysis. Suppose, for
instance, that the columns of X store the patterns of a data set, and also that X is well

1This usage of SVD is equivalent to principal components analysis if the data has been centered to have
zero mean. For sparse data, however, it is not usual to perform this centering.
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approximated by a matrix of lower rank. Then we can regard the rank r of the approximation
as a measure of the data’s most consequential degrees of freedom, and we can regard the error
in the approximation as a measure of imprecision or noise.

It is worth pausing to appreciate the closed-form solution to (2.1) provided by the trun-
cated SVD. The domain of the optimization is the set of d × n matrices with rank r, where
r < min(d, n). Note that these matrices do not form a convex set, and as a result, this over-
all optimization is not convex. Nevertheless, the truncated SVD yields the globally optimal
solution. This is the strength of the SVD, and naturally, one might hope to leverage this
strength in the search for low-rank models that are specialized, in some way, to sparse non-
negative matrices. We develop this idea further in subsection 2.5, and then again more fully
in section 4.

2.2. Mining the zeros of sparse data. The goal of NMD is easily stated: given a sparse
nonnegative matrix X, it attempts to estimate a low-rank matrix Θ such that X ≈ f(Θ),
where f is an elementwise nonlinearity. In general, for nonnegative matrices, we will consider
approximations of the formX ≈ max(0,Θ); this is the same hinge nonlinearity that appears in
neural networks with ReLUs. However, for binary matrices in particular—-where the elements
are equal to either zero or one—we will consider approximations of the formX ≈ 1

2 [1+sign(Θ)]
with a threshold nonlinearity. Thus, in both cases, the nonlinearity serves to restrict the
approximated values of X to their underlying domain—an idea that has been widely explored
for models of binary, ordinal, and mixed data [1, 43, 51, 52, 87, 97, 96, 131]. This is not,
however, the only purpose of the nonlinearity in our model. For nonnegative matrices, as we
shall see, it is especially important that the nonlinearity maps all negative values of Θ into
zeros of X. As a result, when X is sparse—with mostly zero elements—NMD has much more
flexibility than SVD to discover low-rank decompositions.

This idea is illustrated in Figure 2.1. Here, X is a sparse nonnegative matrix of full rank.
However, it is possible, by replacing the zeros of X with strategically chosen negative values,
to find a matrix Θ of lower rank such that X = max(0,Θ). More generally, the goal is to
find a lower-rank matrix Θ such that the reconstruction X ≈ max(0,Θ) is accurate to an
acceptable degree of approximation.

As an aside, we note that a similar idea has been very extensively explored for the problem
of matrix completion [14, 46]. In this problem, one considers a matrix (not necessarily sparse
or nonnegative) whose elements are only partially specified. Then, to complete the matrix,
one fills in its missing elements by assuming that the matrix has the lowest possible rank.
Thus the larger the number of missing elements, the more flexibility one has to complete the
matrix with a low-rank model.

In our problem, this flexibility is derived from the zeros of the sparse nonnegative ma-
trix X. In particular, as shown in Figure 2.1, the sparser the matrix X, the more zeros we can
mine to lower the rank of Θ. As we shall see, NMD fully exploits this flexibility to replace
the zeros of X by strategically chosen negative values. Finally, we note that an even greater
flexibility is obtained when the matrix X is binary. In this case, NMD searches for approxi-
mations of the form X ≈ 1

2 [1 + sign(Θ)]; thus, in constructing Θ, not only can it replace the
zeros of X by arbitrary negative values, but it can also replace the ones of X by arbitrary
positive values.
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Figure 2.1. Top: X is a sparse nonnegative matrix containing mainly zeros (shown in red). Bottom: Θ
is a lower-rank matrix satisfying X = max(0,Θ); it is obtained by replacing the zeros of X, as needed, with
strategically chosen negative values (shown in yellow). In general, the sparser the matrix X, the more zeros we
can mine to lower the rank of Θ.

While the example in Figure 2.1 illustrates the basic idea behind NMD, it does not par-
ticularly convey why such a decomposition might be useful. The matrix X in Figure 2.1 was
randomly generated, and for that reason, it is not especially deserving of further study. Next
we consider a more interesting example where the low-rank model provides exactly this type
of insight.

2.3. Low-rank models of pattern manifolds. We adapt an example from [74] showing
how an elementwise nonlinearity can model large disparities in rank between the matrices Θ
and X. To this end, let α > 0, and consider the n× n circulant matrices with elements

Θij = 1− α

[
1− cos

2π

n
(i−j)

]
,(2.2)

Xij = max(0,Θij).(2.3)

For these matrices, it is straightforward to show that rank(Θ) = 3 for all n≥3, while X is of
full rank for a range of values for α. Note that when α is very large, the matrix X in (2.3)
reduces to the identity matrix, which is obviously of full rank. However, we will be focused on
values of α for which X also has an interesting interpretation as a data set of sparse images;
see Figure 2.2.

Let us quickly prove the above claims. First we show that rank(Θ) = 3. This is most
easily done by defining the orthogonal column vectors c, s,u ∈ Rn with elements

ci = cos

(
2πi

n

)
, si = sin

(
2πi

n

)
, ui = 1(2.4)
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for 1 ≤ i ≤ n. These vectors correspond in fact to the only eigenvectors of Θ with nonzero
eigenvalues, as can be seen by writing Θ = (1−α)uu⊤+ α(cc⊤+ ss⊤). This decomposition
establishes that rank(Θ) = 3 for n ≥ 3. Note that this result holds for all values of α ̸∈ {0, 1}.

Next we prove that X has full rank. The idea of the proof is straightforward. First we
show that the diagonal elements of X are all equal to one; then we show that the remaining
(off-diagonal) elements of X are either zero or sufficiently small that none of its eigenvalues
can deviate too far from unity. To simplify the analysis, we consider the fixed value

α =
1

2 sin π
n sin π

2n

,(2.5)

but it is not difficult to show that the results also hold for all larger values of α. We start by
substituting (2.5) into (2.2), which after some simplification yields

Θij = 1−
sin2 π

n(i−j)
sin π

n sin 2π
n

.(2.6)

Immediately we see that Θii = 1, and hence from (2.3) we also have Xii = 1 for all terms
on the diagonal. In addition, among the off-diagonal terms, we see that Θij < 0 (and hence
Xij = 0) unless i− j ≡ 1 mod n. Next let us evaluate (2.6) for terms just above or below the
diagonal. Then we see (for n≥ 3) that each row of X has exactly two positive off-diagonal
terms bounded by

Xi,i±1 = 1−
sin π

n

sin 2π
n

= 1−
(
2 cos

π

n

)−1
<

1

2
.(2.7)

From this last result, we have shown not only that Xii = 1 everywhere on the diagonal, but
also that

∑
j ̸=i |Xij | < 1. It follows from the Gershgorin circle theorem that X has no zero

eigenvalues and hence must be of full rank. The particular choice of α in (2.5) was convenient
for this proof, but note that any larger choice pushes X even closer to the identity matrix
(and its eigenvalues closer to unity).

The example in (2.2) and (2.3) may seem contrived, but as shown in [74], it arises naturally
from a data set of sparse one-dimensional images (i.e., each image consisting of a single row of
n pixels) that are related by simple translations. In particular, consider a data set of n such
images in which each image contains a symmetric blip—three pixels wide, and darkest in its
center pixel—against a light background. Here we also allow the blip to wrap around the edge
of the image if its center lies on a boundary; see Figure 2.2. If we order the images by the
center of these blips, then we see that each successive image is formed by shifting the pixels
of the previous one; moreover, the data set as a whole is invariant under this operation. This
invariance is, in turn, reflected in the eigenvectors of Θ, which correspond to simple Fourier
modes. In sum, the data set for X in (2.3) can be viewed as arising from a pattern manifold
of one-dimensional translations, and the essential structure of this manifold is reflected in the
much lower rank matrix Θ of (2.2). This transformation is illustrated in Figure 2.2.

It is worth emphasizing two points about this transformation. First, it elicits a manifold-
like structure that is not immediately apparent in the original space of images. In particular,
note that most pairs of images in this data set have zero overlap (i.e., they are orthogonal)
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Figure 2.2. Illustration of the matrices Θ and X in (2.2) and (2.3). The matrix X stores a data set
of sparse, one-dimensional images in which a darkened blip (three pixels wide) is translated across a light
background. The matrix Θ, of much lower rank, satisfies X = max(0,Θ). See text for further details.

when viewed as vectors of pixel values. Second, the transformation does not precisely reveal
the number of degrees of freedom in the data, but it does provide, through the rank of Θ,
an upper bound on this number. To be precise, the rank specifies a dimensionality in which
the data’s underlying manifold can be embedded. In Figure 2.2, for instance, the data have
one essential degree of freedom, and the underlying one-dimensional manifold—the circle—is
embedded in the three-dimensional space spanned by the columns of Θ.

It is widely believed that many data sets—and perhaps even the neural responses that un-
derlie brain activity—can be understood or analyzed in terms of these pattern manifolds [102].
The degrees of freedom in these manifolds may arise from spatial transformations (e.g., trans-
lation, rotation) in the physical world; they may also reflect the continuous variabilities that
are inherent to classes of diverse objects (e.g., the different shapes of faces). In section 5, we
consider several sparse data sets, of increasing complexity, that are motivated by the example
of this section.

2.4. Interpretation as a neural network. Low-rank models with elementwise nonlin-
earities have also been studied as a paradigm for unsupervised learning in neural net-
works [49, 50, 74, 83]. Consider the network shown in Figure 2.3, with a bottom layer of r
hidden units, a top layer of d visible units, and an r×d weight matrix W connecting the units
in these layers. We assume that r<d, so that the network is attempting to explain a larger
pattern of activities in the visible layer by a smaller pattern of activities in the hidden one.
Such a network can be trained, in an unsupervised fashion, from a data set (x1,x2, . . . ,xn) of
n visible patterns, each of dimensionality d. In this case, the goal of learning is to estimate
a weight matrix W and infer a corresponding set (h1,h2, . . . ,hn) of hidden patterns, each of
dimensionality r, such that

xi ≈ f(Whi),(2.8)
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xdxd-1x2x1 …

hrh1 h2 …

Figure 2.3. A two-layer neural network for unsupervised learning. In the top layer, visible units (shown in
red) encode nonnegative patterns of activity. In the bottom layer, hidden units (shown in blue) encode a lower-
dimensional representation of these patterns. The weights and hidden units are allowed to take on arbitrary real
values, but the visible units are constrained to nonnegative values by an elementwise nonlinearity x = f(Wh).

where f is an elementwise nonlinearity of the sort we have described above. Equation (2.8)
makes clear the connection to the low-rank models that we are considering in this paper. In
particular, suppose that we represent the data set by a d×n matrix X and that we represent
the network’s inferred patterns by an r×n matrix H. Then (2.8) reduces to X ≈ f(Θ), where
Θ = WH is a matrix of rank r.

Unsupervised neural networks are commonly trained by alternating procedures for infer-
ence and learning. Roughly speaking, the goal of inference is to reveal target activities for the
hidden units, and the goal of learning is to stabilize these target activities by adapting the
network’s weights. For the network in Figure 2.3, this can be implemented as an alternating
optimization over the factors H and W of the low-rank matrix Θ = WH. As already men-
tioned, this paper explores a different approach, optimizing directly over the set of low-rank
matrices from which Θ must be chosen. This approach can be viewed as a strategy for jointly
estimating the network’s weights along with the hidden unit activities for all of the training
patterns. We develop this approach further in the next section.

2.5. The idea in a nutshell. Suppose that X is a sparse nonnegative matrix. It is possible
to convey the main idea behind our approach without fully developing it as a Gaussian latent
variable model. We do so here for the problem of estimating a low-rank matrix Θ such that
X ≈ max(0,Θ). (The binary case is similar.) Consider the following optimization over the
matrix Θ and an additional auxiliary matrix Z, which is not required to be of low rank:

min
Z,Θ

∥Z−Θ∥2F such that

{
rank(Θ) = r,
max(0,Z) = X.

(2.9)

We make two simple observations: first, the bottom constraint in (2.9) enforces that the
elements of X can be perfectly recovered from those of Z, and second, the objective function
in (2.9) is bounded below by zero and only obtains this minimum value when X = max(0,Θ).

This objective function can be minimized by a simple alternating optimization over the
matrix variables Z and Θ. Suppose that Θ is fixed. Then Z is optimized by choosing

Zij =

{
Xij if Xij > 0,
min(0,Θij) if Xij = 0.

(2.10)

Likewise, suppose that Z is fixed. Then Θ is optimized by computing (via a truncated SVD)
the best matrix approximation of rank r to Z. These updates for Z and Θ can be alternated
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to compute a (possibly local) minimum of the objective function. Intuitively, if this minimum
value is close to zero, then it is likely that X ≈ max(0,Θ).

We develop this approach more fully as a latent variable model in section 4. There is
a useful analogy here to the k-means algorithm for clustering [79], which also involves an
alternating optimization. The k-means algorithm may be viewed as a limiting case of the EM
algorithm [27] for parameter estimation in Gaussian mixture models [85]. The optimization
in (2.9) plays an analogous role for the latent variable model at the heart of this paper.

3. Relation to previous work. There is a large literature on low-rank models for multi-
variate data analysis, and our work builds on many previous approaches. In this section we
survey these approaches, focusing on those for nonnegative or binary data, while highlighting
the essential similarities and differences with our own work. We also return to some of these
comparisons in section 6.

3.1. Nonnegative matrix factorization. Interest in low-rank models for nonnegative
data [92] exploded after the work of Lee and Seung [72, 73] on nonnegative matrix factor-
ization (NMF). Given a nonnegative matrix X, the goal of NMF is to discover a low-rank
factorization X ≈ WH where the factors W and H are also constrained to be nonnegative.
In NMF these factors are estimated to minimize the error of the approximation, as measured
by either the Frobenius norm or generalized Kullback–Liebler divergence. The popularity of
NMF is owed in large part to closed-form, multiplicative updates that can be derived for up-
dating W and H. These updates are not only simple to implement, but can also be shown to
monotonically decrease the error of the approximation. In fact, the updates are widely used
even though more traditional solvers (e.g., based on quasi-Newton methods [12]) are often
much faster. It also remains an active area of research [2, 20, 31, 55, 63] to develop even faster
approaches.

The popularity of NMF is owed in addition to the interpretability of its low-rank models.
By constraining the factors W and H to be nonnegative, NMF is able to discover parts-based
representations of the objects that it is used to model. For example, NMF can model images
of faces as the compositions of different facial features, such as eyes, noses, and lips. These
representations are notably different than those discovered by SVD or vector quantization, and
they have been explored for many different applications [21, 35, 37, 94, 111]. Models based on
similar representations have also been explored for factorizations of binary matrices [8] (whose
elements are either zero or one) and stochastic matrices [54, 100] (whose rows or columns sum
to one).

Our work differs in motivation from NMF; whereas NMF’s low-rank models seek parts-
based representations of the data, ours are predicated on the search for pattern manifolds.
These are two different types of low-dimensional structure that can exist (or coexist) in high-
dimensional data. The inventors of NMF were, in fact, quite aware that not all pattern
manifolds can be described by purely linear models [74, 102]. The reason is simple: some
form of nonlinearity may be required to express the data in terms of its essential degrees of
freedom. Note also that due to the nonnegativity constraints on W and H, NMF generally
requires factorizations of higher rank than SVD to achieve the same degree of approximation.
Thus, while NMF excels at discovering parts-based representations, it cannot reveal many
other types of low-dimensional structure (e.g., the example in Figure 2.2).
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3.2. Exponential-family Principal Component Analysis. A different low-rank model for
nonnegative or binary data was developed by Collins, Dasgupta, and Schapire [24]. Their
approach can be viewed as an extension of generalized linear modeling [84] to the problem of
matrix factorization. As usual, let X denote the matrix of data, and let Θ denote a low-rank
matrix parameter of the same size as X. In this model, the type of data is paired with its
appropriate distribution from the exponential family. Thus, for binary matrices, the model
maximizes the log-likelihood

logP (X|Θ) = −
∑
ij

[
Xij log

(
1 + e−Θij

)
+ (1−Xij) log

(
1 + eΘij

)]
,(3.1)

whose form is derived from the Bernoulli distribution for binary random variables, while for
matrices of whole numbers, it maximizes the log-likelihood

logP (X|Θ) =
∑
ij

[Xij logΘij −Θij − log(Xij !)](3.2)

whose form is derived from the Poisson distribution over nonnegative counts. (In the latter
case, the matrix Θ is also constrained to be nonnegative.) The model is known as exponential-
family principal component analysis (efPCA) because it contains, as a special case, the stan-
dard method of principal component analysis (PCA): this is the case when the model employs
a Gaussian distribution over real-valued matrix elements. The model for binary data in (3.1)
is known as logistic PCA.

As in NMF, these models are estimated by parameterizing Θ = WH as the product
of smaller matrices and alternately optimizing over the factors W and H. In efPCA, each
of these alternating optimizations is convex (although it is not generally possible to derive
closed-form updates). For binary data, in particular, these optimizations take the form of
logistic regressions. It is also possible, by introducing an auxiliary function, to optimize (3.1)
by an alternating least-squares method [101].

Our model for NMD uses elementwise nonlinearities in a similar way to efPCA. But
whereas efPCA is rooted in distributions from the exponential family, NMD is formulated as
a Gaussian latent variable model—even for data that is binary or nonnegative. (In NMD, the
values of observed data arise by quantizing or clipping the model’s Gaussian latent variables,
an idea that has been explored in a wide variety of contexts [1, 6, 5, 25, 36, 43, 87, 97, 131].)
As we shall see, it is due to this formulation that NMD can optimize Θ directly without
resorting to an alternating minimization over its smaller factors.

Naturally, it is also possible to develop models that combine intuitions from both NMF
and efPCA. This has been done mainly for binary data: such models maximize the log-
likelihood in (3.1) while in addition constraining one or both of the factors W and H to be
nonnegative [70, 114].

3.3. Probabilistic models. Many researchers have more fully developed probabilistic
models of matrix factorization [3, 10, 17, 39, 48, 86, 88, 93, 112, 113]. These models of-
ten incorporate a prior distribution over possible factorizations, and some also seek to learn a
proper distribution that describes how the data were generated. The estimation of these mod-
els can involve extra complications, such as additional iterative procedures—based on Markov
chain Monte Carlo (MCMC) [89] or variational methods [61]—for approximate inference. On
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the other hand, these models are often better regularized and easier to interpret. In this
section, we survey some especially prominent applications of these models to nonnegative and
binary matrices.

One such application has been topic modeling. While NMF can be used to factor large
word document matrices, it does not provide a fully probabilistic model of how words come
to appear in text. Such a model was developed by Blei, Ng, and Jordan [10] to discover
prevalent topics that run through a large corpus of documents. The model is known as latent
Dirichlet allocation (LDA) because it places a Dirichlet prior over the distribution of topics in
a document; the number of topics in LDA plays a role analogous to the rank of the factors in
NMF. It is not possible to perform an exact inference over the latent variables in LDA, but it
is possible to scale variational methods for approximate inference to very large corpora [53].
The model is trained to estimate a distribution over words for each topic (analogous to the
nonnegative matrix W in NMF), and in the course of this training, it infers a posterior
distribution over topics for each document (analogous to the nonnegative matrix H). Thus
LDA discovers similar parts-based representations of documents as NMF, but the topics in
LDA are even easier to interpret by virtue of the model’s explicitly probabilistic semantics. As
mentioned earlier, NMD was not conceived to learn parts-based representations of data, nor is
it specialized to count-based data. It is possible, however, that it could serve as a complement
to LDA for topic modeling; we discuss this possibility further in section 6.

Probabilistic models of matrix factorization have also been widely applied to recommender
systems [66]; most relevant to NMD are those that explicitly model the user-item matrix
as nonnegative or binary. One such framework was introduced by Mnih and Salakhutdi-
nov [88], who used a Gaussian model with a sigmoid nonlinearity to bound matrix elements
between minimum and maximum ratings. A related approach—known as logistic matrix
factorization—was taken by Johnson [60] to model the probability of a user choosing an item;
it extends the binary model from efPCA [24] by adding bias terms and Gaussian priors on the
factors. Large-scale models for binary data have also been investigated in a Bayesian frame-
work using variational methods for approximate inference [48]. While some user-item matrices
record ratings on a binary or Likert scale, others record the number of times that users have
purchased items; this type of data is most naturally treated in models of Poisson matrix fac-
torization [39, 40]. Like LDA, Poisson matrix factorization relies on variational methods for
approximate inference of its latent variables. For very sparse matrices of implicit feedback
data, it also has two key advantages: first, it can incorporate domain knowledge through infor-
mative priors, and second, its computations scale linearly in the number of nonzero elements
of the user-item matrix.

Probabilistic models of matrix factorization have also been widely applied to linkage analy-
sis in social and biological networks. Typically, these networks are represented by binary ma-
trices where zeros and ones indicate the absence and presence of links. A low-rank factorization
for such matrices was explored in an influential line of work by Hoff [51, 52]. Hoff’s initial
eigenmodels were estimated using Bayesian methods, but later approaches by Wu, Levina,
and Zhu [124] and Ma, Ma, and Yuan [78] led to more efficient algorithms based on projected
gradient methods. These later approaches also substituted a logistic link function for the
probit link function in Hoff’s model. The factorizations in these models are more general than
what we explore here, as they incorporate auxiliary information about individual nodes in the
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network. But even ignoring these terms, it is fair to say that these models differ considerably
in both their mechanics and motivation from our approach. In particular, unlike Hoff’s model,
we do not attempt a Bayesian treatment (thereby avoiding the expense of MCMC methods),
and unlike the projected gradient methods, the optimizations for NMD do not involve the
tuning of variable or adaptive step sizes. Finally, NMD was motivated more generally for
sparse rectangular matrices with nonnegative elements as opposed to square (and typically,
symmetric) matrices with binary elements.

In addition to the above applications, there has also been a great deal of methodologi-
cal and theoretical interest in Gaussian latent variable models with elementwise nonlinear-
ities. These models have been widely developed for matrices of binary, ordinal, and mixed
data [3, 5, 6, 25, 36, 43, 87, 97], most recently through the use of copula methods [1, 130, 131].
All of these models use an elementwise nonlinearity to relate an observed (or partially ob-
served) matrix of values to an unobserved matrix of Gaussian latent variables; this is also the
starting point of our work. To the best of our knowledge, though, such models have not been
empirically or systematically investigated for sparse nonnegative data using an elementwise
ReLU nonlinearity. We develop these ideas further in section 4.

3.4. Theoretical guarantees. Suppose that X ≈ f(Θ), where f is an elementwise non-
linearity and Θ is a low-rank matrix. Then each observed element of X provides some infor-
mation about the corresponding element of Θ. It is known that under certain assumptions, a
low-rank matrix Θ can be recovered (or completed) given the values of only a small fraction
of its elements [14, 18, 62]. It is natural to ask whether these results can be extended to
the nonlinear setting where Θ must be additionally inferred from observed elements of the
higher-rank matrix X ≈ f(Θ).

This question has been investigated by a number of authors. Davenport et al. [25] studied
the problem of 1-bit matrix completion, where X is a partially observed binary matrix, and
presented a convex program to recover Θ with high accuracy. Bhaskar [5] studied the more
general problem, where the elements of X are quantized, but not necessarily binary, and
presented a globally convergent algorithm with similar guarantees of recovery; her paper also
compares a number of related approaches [13, 16, 42, 68, 67, 69, 106] for these problems. More
recently, Mazumdar and Rawat [83] studied this problem where f(z) = max(0, z) is a ReLU
operation and proved that a maximum likelihood estimate could recover Θ with high probabil-
ity and small error. (They did not, however, describe or empirically investigate an algorithm
for maximum likelihood estimation.) Ganti Balzano, and Willett [36] described an even
more general approach to jointly estimate both the low-rank matrix Θ and the elementwise
nonlinearity f ; they assume only that the function f is monotonic, and within this framework,
they also provide bounds on the mean squared error of the recovered matrix. Finally, more
specialized guarantees are also available for the recovery of rank-one matrices [6, 7], and
nonrigorous results have been obtained in the thermodynamic limit of very large matrices [75].

At the moment, we cannot provide similar theoretical guarantees for the method in this
paper. Our approach differs from the above lines of work in two main respects: first, we assume
that the matrix X of data is fully observed, and second, we are motivated by the possibility
that rank(Θ) ≪ rank(X), thus revealing the low-dimensional structure of some underlying
manifold. The latter hypothesis may be at odds with typical assumptions that the matrix Θ
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is incoherent or not very spiky. In particular, many of the above analyses require the elements
of Θ to be of order unity or similarly bounded; note, however, that this intuition does not
hold for the example of subsection 2.3, where from (2.6) we see that maxij |Θij | ∼ O(n2). In
addition, many of the above guarantees are obtained by minimizing a convex surrogate for the
rank of a matrix (e.g., the nuclear norm). But other work in matrix completion has shown
that the manifold structure of data is sometimes best recovered by pursuing a nearly opposite
objective (e.g., maximizing the trace of a positive semidefinite matrix [110, 120, 121]).

3.5. Generalized low-rank models. There have been many efforts to treat both proba-
bilistic and nonprobabilistic models of matrix factorization in a unified framework [41, 81,
103, 107, 119]. These efforts have been able to identify core optimizations at the heart of
many different models. As above, let us denote the factors in these models by W and H.
Then it has been observed, across a very wide range of low-rank models, that their opti-
mizations are biconvex in these factors. This observation has led to an extensive study of
alternating minimization algorithms for low-rank models. Such algorithms reflect a common
wisdom, namely, that in any nonconvex problem, it is often expeditious to identify and solve
the largest subproblems that are convex or otherwise tractable.

The latent variable model in this paper presents an intriguing special case where this wis-
dom can be even more powerfully applied. The model has a matrix parameter Θ of fixed rank,
and its overall optimization is nonconvex. Nevertheless it is not necessary to parameterize
the matrix Θ as the product of smaller factors; instead it is possible to update the low-rank
matrix Θ directly, without line searches or learning rates. In addition, these updates are guar-
anteed to converge monotonically in the model’s likelihood. Thus our approach demonstrates
the potential for larger substructures to be exploited in the optimization of some generalized
low-rank models.

3.6. Exceptions to the above. It is worth noting some exceptions to the above, where
generalized low-rank models were estimated by a novel application of SVD rather than an
alternating optimization over factors. There are two studies, in particular, that strongly
motivated our work.

The first is the continuous latent variable model for binary data in Lee and Som-
polinksy [74]. Their model was fit by a moment-matching method that takes an especially
simple form for unbiased data (where each bit has equal probability to be zero or one). Our
work extends their approach in two ways—first, by showing that similarly motivated models
can be fit by maximum likelihood estimation, and second, by considering the case of sparse
nonnegative data, to which their moment-matching method is less easily generalized. We also
adapted the example in subsection 2.3 from their paper.

The second is the work of Srebro and Jaakkola [108] on weighted low-rank approxima-
tions. As discussed in subsection 2.1, the errors of low-rank approximations are conventionally
measured by a Frobenius norm that treats all matrix elements with equal weight. Suppose,
however, that the approximation is chosen to minimize a weighted sum of elementwise errors.
For this case, Srebro and Jaakkola derived an EM algorithm where a truncated SVD is used to
improve the approximation at each iteration. Our work is based on an analogous application
of EM, but to low-rank models with an elementwise nonlinearity.

Finally, on a related note, we mention a recent study on nonnegative low-rank matrix
approximations [104], in which a low-rank nonnegative matrix is estimated without assuming
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that it can be written as the product of two smaller nonnegative matrices. This is a novel
generalization of NMF that can discover significantly better low-rank approximations—as
measured by the Frobenius norm—to a nonnegative matrix of higher rank. We note, however,
that the quality of these approximations is still (necessarily) worse than what is provided by
a truncated SVD, which is not hampered by nonnegativity constraints. Our method differs
from this approach in two important ways: first, it focuses exclusively on sparse matrices, and
second, for these matrices, it exploits an elementwise nonlinearity to obtain decompositions
of even lower rank.

3.7. Semidiscrete decompositions. Yet another type of matrix decomposition was ex-
plored in a series of papers by O’Leary and Peleg [90] and Kolda and O’Leary [64, 65]. They
studied a semidiscrete decomposition (SDD) whose goal is to express a matrix as a weighted
sum of constrained outer products. Unlike the models considered earlier, however, this de-
composition imposes a discrete constraint: the elements of vectors in these outer products are
chosen from the set {−1, 0, 1}. This decomposition can provide comparable approximations
as SVD while requiring much less storage.

Our motivation in this paper differs from that of SDD. In particular, with NMD we are
not seeking a low-rank decomposition that requires the least amount of storage, but one that
suggests or hints at the number of underlying degrees of freedom in the data. Generally
speaking, while the quantized elements of SDD are ideally suited to compress dense matrices,
they are less apt to model continuous modes of variability. On the other hand, while NMD
is ideally suited to analyze sparse matrices, it is not designed to provide further levels of
compression.

4. Model. In this section we formally describe our approach. We start by formulating
the latent variable model for NMD and deriving its log-likelihood. Next we discuss the twin
problems of inference and parameter estimation; in NMD, as in most latent variable models,
these problems are closely intertwined. Finally we describe how we initialize the model and
test for convergence.

4.1. Formulation. NMD shares many aspects of previous low-rank models, particularly
in its interplay of Gaussian latent variables and elementwise nonlinearities. NMD is used to
analyze a d × n matrix X, where each d-dimensional column of X stores a single instance
of some data set and n denotes the number of such examples. Next we use a similarly
sized matrix Θ of rank r<min(d, n) to parameterize a Gaussian latent variable model for
the data [51, 108, 112]. In particular, given the matrix Θ, we generate a distribution over
nonnegative or binary matrices in the following way. First, for each element Θij , we sample a
Gaussian latent variable

Zij ∼ N
(
Θij , σ

2
)
,(4.1)

where the variance σ2 is a single additional parameter of the model that we will estimate.
Then, we obtain the matrix X deterministically from the elementwise nonlinear mapping

Xij = f(Zij),(4.2)
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where f(z) = 1
2 [1 + sign(z)] for binary data and f(z) = max(0, z) for nonnegative data. Thus

the nonlinearity ensures that Xij ∈ {0, 1} in the former case and Xij ∈ [0,∞) in the latter.
Our main interest is in the case of sparse nonnegative data, but we present both models for
completeness.

The model is estimated by maximizing the likelihood of the data X in terms of the ma-
trixΘ and variance σ2. To obtain this likelihood, however, we must first compute the marginal
distribution P (Xij |Θij , σ

2) for an individual observed element; this is done by integrating over
those values of its corresponding latent variable Zij that are consistent with the observation
Xij = f(Zij). For zero elements of X, we note that f(z) = 0 if and only if z ≤ 0. Thus we
have

P
(
Xij = 0|Θij , σ

2
)
=

∫ 0

−∞
dz P

(
Zij=z|Θij , σ

2
)
= Φ(−Θij/σ),(4.3)

where Φ(·) denotes the cumulative distribution function for a normal distribution with zero
mean and unit variance. For nonzero elements of X, the form of the marginal distribution
depends on the type of data. For binary data, where all nonzero elements of X are equal to
one, we can simply use the complement of the previous result,

P (Xij = 1|Θij , σ
2) = 1− P

(
Xij = 0|Θij , σ

2
)
.(4.4)

On the other hand, for nonnegative data, we note that Xij = Zij if and only if Zij > 0. Hence
for positive values x>0, we have

P (Xij = x|Θij , σ
2) = P

(
Zij = x|Θij , σ

2
)
,(4.5)

where Zij is normally distributed by (4.1). From the above results we easily obtain the overall
log-likelihood logP (X|Θ, σ2) of the data under this model. First we observe that in NMD,
the elements of X are conditionally independent given those of Θ. Then it follows that

logP (X|Θ, σ2) =
∑
ij

logP (Xij |Θij , σ
2).(4.6)

The parametersΘ and σ2 in our model are estimated by maximizing this sum, thus accounting
for all the observed elements in X.

Before proceeding down this path, it is instructive to compare the form of the log-likelihood
in (4.6) to the log-likelihoods for efPCA in subsection 3.2. For binary data, the log-likelihoods
in (3.1) and (4.6) are qualitatively similar, except that the logistic model in efPCA is replaced
by a probit model in NMD (as in many Gaussian latent variable models for binary-valued
matrices [3, 51]). On the other hand, for nonnegative data, the log-likelihood in (4.6) is
qualitatively different than common forms of efPCA. In particular, unlike efPCA based on
the Poisson distribution, NMD is not specialized to count-based data, nor does it constrain
the mean and variance of the distribution P (Xij |Θij) to have equal values. Also, unlike efPCA
based on the exponential distribution, NMD employs a distribution P (Xij |Θij , σ

2) that can
be peaked at or away from zero.

Finally, we observe that the model for binary data in (4.1) and (4.2) has a degeneracy in its
parameterization: in particular, the model’s predictions in (4.3) and (4.4) are invariant under
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the change of parameters Θ → λΘ and σ2 → λ2σ2, where λ > 0. The model can be made
identifiable in this case by fixing σ2 = 1. We note, however, that a similar degeneracy arises in
models of probit regression, and there it has been observed that the EM algorithm converges
more quickly when a variance σ2 is estimated alongside the model’s other parameters [76].
We observed a similar phenomenon in NMD when the value of σ2 was fixed to unity; we
therefore retained and estimated the variance parameter σ2 for all the experiments in this
paper. More recent work also suggests that the EM algorithm may discover better solutions
with overparameterized models [125].

4.2. Inference. With the above formulation, we can follow a well-traveled path for latent
variable modeling of high-dimensional data. Given a matrix of observed data X, we estimate
the parameters Θ and σ2 of the model by maximizing the likelihood in (4.6). To do this, we
avail ourselves of the well-known EM procedure [27] for latent variable models. This procedure
alternates between two steps: the E-step computes the posterior means and variances of
the model’s latent variables, and the M-step uses these posterior statistics to reestimate the
model’s parameters. The EM algorithm can also be viewed as a way of solving difficult,
nonconvex optimizations via a sequence of simpler and better understood procedures [57]
(e.g., fitting a Gaussian mixture model via a sequence of least-squares problems). In this
section, we focus on the problem of probabilistic inference; these calculations are necessary to
perform the E-step of the model’s EM algorithm.

We begin by noting that exact inference in this model is tractable. In particular, all the
required integrals can be expressed in terms of simple functions that arise from the model’s
elementwise nonlinearity. Also, by design, the model does not attempt a Bayesian treatment;
i.e., it does not incorporate a prior distribution over its parameters Θ and σ2. As a result,
it is not necessary to resort to approximate procedures based on MCMC methods [89] or
variational inference [9, 61]. Indeed, the integral in (4.3) is typical of the calculations required
for inference.

The problem of inference in NMD is to compute the posterior statistics of the model’s
latent variables. First let us see why the posterior distributions in NMD take an especially
simple form. Recall that for each observed matrix element Xij , there is a corresponding latent
variable Zij . Its posterior distribution is given by Bayes rule:

P
(
Zij |Xij ,Θij , σ

2
)
=
P
(
Xij |Zij ,Θij , σ

2
)
P
(
Zij |Θij , σ

2
)

P (Xij |Θij , σ2)
.(4.7)

Note that the first term in the numerator equals one if Xij = f(Zij) and zero otherwise. Thus
there are three possible cases for the posterior distribution in (4.7): (i) for the case Xij =0,
it reduces to a right-truncated Gaussian, with no probability mass for positive values of Zij ;
(ii) for binary data with Xij=1, it reduces to a left-truncated Gaussian, with no probability
mass for negative values of Zij ; (iii) finally, for nonnegative data with Xij>0, it reduces to a
Dirac delta function centered at Zij=Xij . The last of these cases is trivial, and the first two
give rise to truncated Gaussian distributions, of the sort shown in Figure 4.1.

As we shall see, the EM algorithm for NMD relies on repeatedly computing the posterior
means and variances of the latent variables Zij . As shorthand, we denote these statistics by
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Figure 4.1. A normal distribution can be viewed as the mixture of two truncated distributions, one for
negative values (shown in blue), and one for positive values (shown in red). The means and variances of such
truncated distributions, as shown in the figure, are needed to implement the EM algorithm for NMD; their forms
are shown in Tables 4.1 and 4.2.

Table 4.1
Inference in NMD for binary data, along with the equations in which these results are used. Results are

expressed in terms of the dimensionless parameter γij = σ−1Θij and the functions Φ(z), and ψ(z) from sub-
section 4.2.

NMD for binary data

likelihood (4.6)
P (Xij =0|Θij , σ

2) = Φ(−γij)
P (Xij =1|Θij , σ

2) = Φ(γij)

Zij
posterior

(4.8)
E[Zij |Xij =0,Θij , σ

2] = Θij − σψ(−γij)
mean E[Zij |Xij =1,Θij , σ

2] = Θij + σψ(γij)

δZ
2
ij

posterior
(4.9)

Var[Zij |Xij =0,Θij , σ
2] = σ2

[
1 + γijψ(−γij) − ψ(−γij)2

]
variance Var[Zij |Xij =1,Θij , σ

2] = σ2
[
1 − γijψ(γij) − ψ(γij)

2
]

X̂ij

expected
(4.10) E[Xij |Θij , σ

2] = Φ(γij)observed
value

Zij = E
[
Zij |Xij ,Θij , σ

2
]
,(4.8)

δZ
2
ij = E

[
(Zij − Zij)

2|Xij ,Θij , σ
2
]
.(4.9)

The nontrivial statistics that we need are illustrated in Figure 4.1. For each zero element of X,
we must compute the posterior mean and variance of a distribution that has been truncated
on the right (shown in blue). Likewise, for each non-zero element of X (when X is binary),
we must compute the posterior mean and variance of a distribution that has been truncated
on the left (shown in red).

These statistics are most easily expressed in terms of some elementary functions, which
we define next. To start, let φ(z) = 1√

2π
e−z2/2 and Φ(z) = 1

2

[
1 + erf

(
z/

√
2
)]

denote, respec-

tively, the probability density and cumulative distribution function for a normal distribution
with zero mean and unit variance. Also, as further shorthand, let ψ(z) = φ(z)/Φ(z) denote
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Table 4.2
Inference in NMD for nonnegative data, along with the equations in which these results are used. Results

are expressed in terms of the dimensionless parameter γij = σ−1Θij and the functions φ(z), Φ(z), and ψ(z)
from subsection 4.2.

NMD for nonnegative data (x>0)

likelihood (4.6)
P (Xij =0|Θij , σ

2) = Φ(−γij)
P (Xij =x|Θij , σ

2) = 1√
2πσ2

e
− 1

2σ2 (x−Θij)
2

Zij
posterior

(4.8)
E[Zij |Xij =0,Θij , σ

2] = Θij − σψ(−γij)
mean E[Zij |Xij =x,Θij , σ

2] = x

δZ
2
ij

posterior
(4.9)

Var[Zij |Xij =0,Θij , σ
2] = σ2

[
1 + γijψ(−γij) − ψ(−γij)2

]
variance Var[Zij |Xij =x,Θij , σ

2] = 0

X̂ij

expected
(4.10) E[Xij |Θij , σ

2] = ΘijΦ(γij) + σφ(γij)observed
value

the ratio of the above functions. Then straightforward calculations, of the sort in (4.3), give
the posterior statistics in (4.8) and (4.9) in terms of these functions. For convenience, the
results of these calculations are collected in Tables 4.1 and 4.2, respectively, for NMD with
binary and nonnegative data.

The above are not the only inferences that we can make from the model. We can also
compute the expected value of an observed matrix element:

E
[
Xij |Θij , σ

2
]

= E
[
f(Zij)|Θij , σ

2
]

=

∫ ∞

−∞
dz

1√
2πσ2

e−
1

2σ2 (z−Θij)
2

f(z).(4.10)

The results of this calculation are also shown in Table 4.1 when f is a threshold nonlinearity
(for binary data) and in Table 4.2 when f is a ReLU nonlinearity (for nonnegative data).
As evident from (4.10), these expected values behave very simply in the limit of vanishing
variance with E[Xij |Θij , σ

2] → f(Θij) as σ
2 → 0. In practice, of course, the estimated value

of σ2 will never be exactly equal to zero. Instead, when σ2 is small but finite, the expected
value E[Xij |Θij , σ

2] approaches this limiting behavior as shown in Figure 4.2.

4.3. Learning. We derive parameter updates for NMD using the EM procedure for max-
imum likelihood estimation in latent variable models [27]. In particular, given the model’s
current parameter estimates Θ and σ2, this procedure yields updated estimates Θ̃ and σ̃2

that increase the log-likelihood in (4.6). Since the derivation may be of less interest than the
final result, we begin by presenting the EM updates as a fait accompli:

Θ̃ = argminΘ
∥∥Θ− Z

∥∥
F

such that rank(Θ) = r,(4.11)

σ̃2 =
1

dn

∑
ij

[
(Zij − Θ̃ij)

2 + δZ
2
ij

]
.(4.12)
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Figure 4.2. Expected value X̂ij = E[Xij |Θij , σ
2] from NMD as a function of Θij for different values of σ2.

The expectation depends on whether the data are modeled as binary (left) or nonnegative (right); see (4.10) and
Tables 4.1 and 4.2.

Note how simply in these expressions the model parameters are reestimated from the posterior
statistics in (4.8) and (4.9) of the model’s latent variables. We make a number of further
observations. First, the update in (4.11) is obtained by performing a truncated SVD of the
matrix Z of posterior means. Thus we see that the update leverages the full power of SVD
to optimize (at each iteration) over the nonconvex set of low-rank matrices in its parameter
space. Second, at each iteration, the updates should be performed in the order shown; this is
necessary because the result for σ̃2 in (4.12) depends on the result for Θ̃ in (4.11). Finally, we
observe that these updates have the desirable guarantee of increasing the likelihood in (4.6)
at each iteration (except at stationary points). In practice, we iterate these steps to a desired
level of convergence. The final result is a nonlinear low-rank decomposition X ≈ f(Θ), where
the error of the approximation is modeled by the magnitude of σ2.

Let us now show, in more detail, how these updates are derived. The EM algorithm
works, at each iteration, by calculating a surrogate for the log-likelihood that is easier to
optimize [27]. For NMD, this surrogate is given by

E
[
logP

(
Z|Θ̃, σ̃2

) ∣∣∣X,Θ, σ2]
= E

[
−dn

2
log(2πσ̃2)− 1

2σ̃2
∥∥Z− Θ̃

∥∥2
F

∣∣∣X,Θ, σ2] ,
= −dn

2
log(2πσ̃2)− 1

2σ̃2

∑
ij

[
(Zij − Θ̃ij)

2 + δZ
2
ij

]
,(4.13)

where Z and δZ2 denote the posterior means and variances of the model’s latent variables,
as defined in (4.8) and (4.9). The M-step of the EM algorithm reestimates the model’s
parameters by maximizing the expression in (4.13). This maximization is straightforward and
leads immediately to the reestimation formulas in (4.11) and (4.12).

4.4. Initialization and convergence. The optimization of the log-likelihood in (4.6) is not
convex and cannot be guaranteed to reach a global maximum. In practice, this means that
the results from the EM algorithm can depend on how the model parameters are initialized.
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We adopted the following simple heuristic for initializing these parameters. First we
computed the mean and variance of all the elements in X, given by

x =
1

dn

∑
ij

Xij and δx2 =
1

dn

∑
ij

(Xij − x)2.(4.14)

Then we used these statistics to initialize the model parameters Θ and σ2. Specifically, for
nonnegative data, we set Θij = x and σ2 = δx2, while for binary data, we set Θij =Φ−1(x)
and σ2 = 1. Note that in both cases Θ was initialized by a rank-one matrix in which every
element is equal.

We also adopted a simple heuristic for evaluating the convergence of the EM updates.
Specifically, we terminated the updates if either (a) they did not improve the log-likelihood
(normalized per matrix element) by a minimal increment of 10−5, or (b) they had already
been applied for a maximum of 512 iterations. In general, we observed that the lower-rank
models for NMD were more likely to meet the first of these criteria for early stopping.

For the binary model of NMD, we supplemented these updates with one further optimiza-
tion for the variance σ2. In preliminary experiments, we observed that the estimates for σ2

converged rather slowly at the end of learning. (In this regime, it appears that the surrogate
function in (4.13) does not closely track the effect of σ2 on the log-likelihood.) To account for
this, we performed one additional (golden-section) search of values for the variance σ2 while
holding Θ fixed. In practice this final search led to smaller estimates for the variance σ2 and
larger values for the log-likelihood in (4.6).

5. Experiments. We investigated the performance of NMD on five large matrices derived
from data sets of binary, grayscale, and color images. We describe these matrices and data
sets in subsection 5.1, and we present our empirical results on them in subsection 5.2. Finally,
in subsection 5.3, we compare the results from NMD on binary data to the closely related
model of logistic PCA.

5.1. Data sets. We describe the data sets in order from least to most complex. Our first
data set (dots) consisted of 64× 64 binary images, with each image containing a single black
dot of fixed radius against a white background. Some representative images from this data set
are shown in the top left plot of Figure 5.1. The data set had n=1024 images, each containing
d=4096 pixels, of which a very small fraction (ρ=0.011) were shaded. This data set can be
viewed as a higher-dimensional analog of the example in Figure 2.2; in this case, the images
lie on a pattern manifold with two translational degrees of freedom. One might expect these
data to be modeled very well by an NMD of rank r = 5; intuitively, NMD should require
two additional eigenvectors beyond those in Figure 2.2 to account for the extra translational
degree of freedom. We will confirm this hypothesis in the next section.

Our second data set (sprites) also consisted of 64 × 64 binary images, but in this case,
each image contained a single sprite of varying shape, size, location, and orientation. Some
representative images from each class of shapes—squares, ovals, and hearts—are shown in the
top right plot of Figure 5.1. The images in our experiments were evenly subsampled from a
larger publicly available data set of sprite images [82]; our subsample had n=15246 images,
each containing d=4096 pixels, of which a small fraction (ρ=0.048) on average were shaded.
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Figure 5.1. For matrix decompositions of the same rank, NMD can produce significantly more accurate
reconstructions than SVD. The panels compare the results from these methods on two data sets with binary
values (top) and three data sets with nonnegative values (middle and bottom). Each data set was represented as
a d× n sparse matrix that contains some fraction ρ of nonzero elements. A few representative examples from
each data set are also shown.
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This data set has more variability than the previous one, but the basic degrees of freedom
remain simple to characterize.

Our third data set (digits) consisted of 28 × 28 grayscale images of MNIST handwrit-
ten digits [71]. A representative image from each digit class is shown in the center plot of
Figure 5.1. We experimented on the n=70000 combined images of the training and test set.
These images are relatively sparse, with a small fraction (ρ=0.191) of pixels on average having
nonzero values. The variability in this data set arises not only from different classes of digits,
but also from different templates within each class as well as variable aspects of penmanship
(e.g., slant, thickness).

Our fourth and fifth data sets were derived from 96 × 96 color images in the STL-10
data set [23]. For these experiments, we used the subset of n= 13000 labeled images, each
containing an object from one of ten classes. A representative image from each digit class is
shown in the bottom plots of Figure 5.1. It is evident that these images are not sparse—and
thus not suitable in their own right for models of NMD. However, there are many ways to
derive sparse high-dimensional descriptors from dense color images, and we investigated two
ways in particular, which we describe next.

For our fourth data set, we computed color histograms for the labeled subset of STL-10
images. To compute these histograms, we first requantized each color channel from 8 bits to
4 bits, so that each RGB pixel was represented by a 12-bit number. Then, for each image,
we compiled a color histogram with 212 = 4096 bins. In this way we obtained a data set of
n = 13000 sparse color histograms in which on average only a small fraction (ρ = 0.066) of
the d = 4096 bins had nonzero counts. Note that each such histogram (conveniently, with
4096 = 642 bins) can be also visualized as 64 × 64 grayscale image in its own right. For
illustration, we have accompanied each color image in the bottom left plot of Figure 5.1 by
its corresponding histogram, as visualized in this way.

For our fifth data set, we computed approximate edge maps for the labeled subset of STL-
10 images. This was done by computing the image gradient magnitude (across all three color
channels) at each pixel in these images and then thresholding the values of these magnitudes,
zeroing out all but those in the top 20%. In this way, we obtained the grayscale edge maps
shown in the bottom right plot of Figure 5.1. Thus the resulting data set consisted of n=13000
edge maps, each with d=9216 grayscale pixels of which a fixed fraction (ρ=0.2) per image
were nonzero.

5.2. Empirical results. The main goal of our experiments was to compare the accuracy
of the low-rank approximations obtained by NMD versus SVD. To this end, we estimated
models of widely varying sizes on all five of the data sets described in the previous section.
Specifically, for the matrix X of each data set, we used the updates in (4.11) and (4.12)
to learn low-rank matrices ΘNMD and variances σ2NMD maximizing the log-likelihood in (4.6).
In addition, as a baseline, we performed truncated SVDs to obtain low-rank matrices ΘSVD

minimizing ∥X−ΘSVD∥2F . We compared the quality of these approximations by attempting to
reconstruct X from either ΘSVD or ΘNMD and then calculating the root mean squared error
(RMSE) of these reconstructions. The reconstructions were computed as

X̂SVD = max(0,min(u,ΘSVD)),(5.1)

X̂NMD = E
[
X|ΘNMD, σ

2
NMD

]
,(5.2)
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where the upper limit in (5.1) was set to u= 1 for binary data and u=∞ for nonnegative
data, and the RMSE was computed as

RMSE =
1√
dn

∥X− X̂∥F .(5.3)

Note that in (5.1), we clipped the predicted values from SVD to lie within the bounds of
the data. This always lowers the RMSE for the model obtained by SVD, thus yielding a
stronger baseline. Also, in (5.2), we computed the predictions for NMD from the expected
values in (4.10), thus incorporating the model’s variance parameter, and not merely by setting
X̂ij = f(Θij). In practice, the former predictions were considerably better for small model
sizes (where the estimated variance is higher).

The results of these experiments are shown in Figure 5.1. Each panel compares the RMSE
from SVD and NMD on a particular data set and for different values of the rank r. The results
show a clear pattern. On one hand, the reconstructions from SVD and NMD behave similarly
for small values of the rank (where they both capture only the coarsest properties of the
data) and also for sufficiently large values (where they both reconstruct the data with high
accuracy). On the other hand, between these two extremes, SVD requires factorizations of
much higher rank to achieve the same overall RMSE.

Figure 5.1 provides quantitative evidence that NMD can learn more accurate low-rank
models than SVD. But it is also interesting to examine the qualitative differences between
these models. Some of these differences are illustrated in Figure 5.2, which shows the different
reconstructions from NMD and SVD as images in their own right. The former are much
sharper and contain many fewer artifacts, suggesting that NMD has better modeled the degrees
of freedom at play in this data.

5.3. Comparison to logistic PCA. As mentioned in subsection 3.2, NMD decomposes
binary matrices in a similar manner to logistic PCA (henceforth, σPCA). These methods
can be viewed as generalizations of probit and logistic regression to the problem of matrix
factorization. It is well known that probit and logistic regression produce generally comparable
models for binary classification, so we might also expect NMD and σPCA to obtain comparable
low-rank decompositions.

To test this hypothesis, we trained a family of comparable models for σPCA on the dot
and sprite data sets of binary images. For these models, we parameterized the matrix Θ
in (3.1) as the product of two smaller matrices W and H, and we estimated these smaller
matrices using an alternating least-squares method [101]. We initialized the matrices W
and H with small random values and adopted the same convergence criteria as described
in subsection 4.4. We also performed a final exhaustive sweep to fine-tune the overall scale of
the matrix Θ.

The results of these experiments are shown in Figure 5.3. The figure compares NMD
and σPCA over a wide range of model sizes. The main plots show that NMD and σPCA
yield similar reconstruction accuracies, confirming our expectations based on the similarity of
probit and logistic regression. The insets of these plots, however, compare the computation
time per iteration of these algorithms, and here we see a marked difference. It is clear that the
update for Θ in NMD scales better with the model size than the updates for the individual
factors W and H in σPCA. We explain this next.
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SVD NMD

r = 5

r = 32

r = 32

r = 512

Figure 5.2. Images of dots, sprites, handwritten digits, and edge maps are reconstructed much more
accurately by low-rank models from NMD (right) than SVD (left).

To begin, we examine the time complexity of each EM iteration for NMD. The time com-
plexity in these experiments was dominated by the truncated SVD that maximizes (4.11). The
complete SVD for a d×n matrix requires O(min(dn2, d2n)) operations, and for matrices that
are not too large, it is actually faster in MATLAB to perform a complete SVD than a truncated
one. This is the case for the data set of dot images (d=4096, n=1024), and so in this case
the time per iteration of the EM algorithm does not depend on the desired rank r of Θ. This
analysis is consistent with the flat curve for NMD in the left inset plot of Figure 5.3. On the
other hand, for larger matrices—such as arise from the data set of sprite images (d=4096,
n=15426)—it is faster to perform a truncated SVD; this overall complexity is harder to esti-
mate for the iterative method employed by MATLAB (based on Lanczos bidiagonalization2),
but from the right inset plot of Figure 5.3, this routine appears to scale as O(dnr).

2We also note that for large matrices, it can be much faster in practice to perform a truncated SVD via
randomized methods [44, 116, 117]. For the EM algorithm of NMD, where the matrices to be analyzed are
dense, these methods should scale as O(dnr + (d+ n)r2). This was not done, however, for the experiments in
this paper.
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Figure 5.3. NMD produces comparably accurate decompositions of binary matrices as σPCA via alternating
least squares. As shown in the insets, however, the two approaches scale quite differently in the rank of the
decomposition.

Next we discuss the time complexity for σPCA; specifically, we consider the approach
based on alternating least-squares updates [101]. In each iteration of this approach, it is
necessary to construct and solve multiple systems of linear equations; in particular, a different
system is needed for each row of W (which is d× r) and each column of H (which is r × n).
In total, it requires O(dnr2) operations to construct these systems of linear equations and
O((d+ n)r2) operations to solve them. This analysis is consistent with the poorer scaling of
σPCA in both inset plots of Figure 5.3.

In general, we observed that σPCA and NMD took comparable numbers of iterations to
converge. Thus even though these models lead to similar results in reconstruction accuracy, it
appears that NMD has computational advantages for all but the lowest-rank decompositions.

6. Conclusion. In this paper we have investigated a generalized low-rank model for sparse
nonnegative matrices. The crux of our model is a sparsifying elementwise nonlinearity; with
this nonlinearity, the model can reveal decompositions of much lower rank than linear ap-
proaches. We found this to be the case in all the data sets that we analyzed. Our results also
illuminate the role of these nonlinearities in unsupervised neural networks with ReLU hidden
units. Though not explored here, one hopeful idea is that NMD might serve as a primitive
for layerwise learning in deep neural networks [32, 45, 50, 105, 115, 126, 127, 129]. This idea
remains an important area for future work.

The starting point of our work was to introduce a low-rank matrix as the parameter of a
Gaussian latent variable model. This matrix could then be reestimated, at each iteration of the
model’s EM algorithm, from the truncated SVD of an inferred matrix with the same number
of rows and columns. It should be possible to apply NMD to much larger matrices than
we considered here by computing this truncated SVD via randomized methods [44]. These
methods are both simple to use and highly accurate. This is the benefit of encapsulating the
model updates as truncated SVDs: the implementation of EM can seamlessly leverage other
ongoing work in low-rank matrix approximation [116, 117].
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There may be other ways to optimize the parameters of the latent variable model for
NMD. In subsection 5.3, we observed that the EM algorithm scaled better with the rank of
the approximation than an earlier implementation of σPCA. In general, however, we have not
shown that the EM updates (based on truncated SVDs) converge more quickly or discover
better solutions than other approaches [19] to nonconvex optimization (e.g., conjugate
gradient ascent, alternating least squares). Arguably, the main virtue of the EM algorithm
is conceptual: it exposes and highlights large tractable substructures of the underlying
intractable optimization [57]. It seems difficult to ignore these tractable substructures once
they have been revealed; that is why, perhaps, it is more usual to accelerate the fitting of
latent variable models within the framework of EM [47, 58, 59, 76, 99, 128] than outside of it.

We noted in section 3 that NMD builds on many previous approaches for high-dimensional
data analysis. Some benefits of NMD are most likely to be realized in conjunction with these
other approaches. For instance, NMD seems ideally suited to further decompose the sparse
parts-based representations discovered by algorithms such as NMF [72] and LDA [10]. NMF
in particular is known to discover sparse basis vectors (e.g., pen strokes, facial features) that
exhibit continuous modes of variability (e.g., translations, rotations) akin to those in the data
sets we studied. Likewise, recall that for every document, LDA infers a high-dimensional
vector of nonnegative topic proportions, and these vectors tend to be sparse for large corpora
with fine-grained topics. It seems likely that NMD could detect low-rank structure in these
vectors as well.

There remains a lingering debate over the merits of linear (parts-based) decompositions
versus nonlinear (manifold-based) decompositions of nonnegative matrices [77]. On one hand,
the former are observed to be more interpretable; on the other hand, the latter are claimed to
be more compact. Suffice it to say, many data sets exhibit both parts-based and manifold-like
structure. In general, it seems wiser to combine these intuitions than to insist on one at the
expense of the other.

Another application of NMD may arise from problems in extreme multilabel classifica-
tion [4, 56]. Specifically, consider the problem of learning a large number of binary classifiers
in parallel, where all the classifiers use the same features as input, and where the labels from
parallel tasks are known to be correlated. Let Y denote the ℓ×n binary label matrix, where ℓ
is the number of tasks and n is the number of training examples. For this problem, NMD
could be used to learn a matrix Θ of rank r ≪ ℓ such that Y ≈ 1

2(1 + sign(Θ)). Writing
Θ = WH, we see that each r-dimensional column of H provides a low-dimensional latent
encoding of the ℓ observed labels for its corresponding example. Thus we can reformulate
the problem of ℓ-way multilabel classification as a single nonlinear regression from the shared
feature space of training examples to a shared latent space of dimensionality r ≪ ℓ.

In this paper we have not addressed the problem of missing data, namely, when some
elements of the matrix X are not observed. In fact, the EM updates of subsection 4.3 can
incorporate missing elements simply by equating the prior and posterior statistics of their

corresponding latent variables, i.e., setting Zij = Θij and δZ
2
ij = σ2 whenever Xij does not

have an observed value. With this minor accommodation, the updates retain exactly the same
form3 as (4.11) and (4.12) for fully observed matrices. These updates may not be especially

3If the elementwise nonlinearity in NMD is replaced by the identity function, then this approach reduces to
a special case of the model of Srebro and Jaakkola [108] for weighted low-rank approximations of real-valued
matrices.



A NONLINEAR MATRIX DECOMPOSITION FOR SPARSE DATA 457

efficient, however, when the number of missing elements far exceeds the number of observed
ones. A better solution may be to leverage more scalable methods for matrix completion—
e.g., methods based on alternating least squares [46] or nuclear norm minimization [14]—that
have been expressly developed for very large matrices with many missing entries. Likewise, in
place of (4.11), we can also consider regularized decompositions that yield more interpretable
solutions [122] or better performance in certain domains [66, 88, 109]. All of these methods
can benefit in turn from the elementwise nonlinearity in NMD, which may yield lower-rank
matrices for them to decompose. These possibilities suggest many interesting directions for
future work.
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