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Summary

LLE is developing a new diagnostic technique to infer  
the areal density (tR) on OMEGA cryogenic-DT implosions

•	 The down-scattered neutron ratio (DSR) is not suitable for tR 
measurements with neutron time-of-flight (nTOF) spectroscopy 
on OMEGA

•	 Measuring the nT backscatter neutron ratio (BSR) is possible 
with the yields and tR for cryogenic-DT experiments on OMEGA

•	 The backscattered ratio Y(nT)/Y(DT) is proportional to the fuel tR

•	 Preliminary results indicate the BSR has promise for high accuracy  
tR measurement
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One of the main goals of the cryogenic campaign  
on OMEGA is to validate modeling of tR, Ti, and yield
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•	 R. Betti developed an ignition threshold factor* based on measureable  
conditions at neutron-production time

•	 The tR on cryogenic DT implosions on OMEGA is currently based 
on a single MRS** measurement

	 *	R. Betti et al., Phys. Plasmas 17, 058102 (2010).
	**	J. A. Frenje et al., Phys. Plasmas 17, 056311 (2010).
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An additional independent measure of tR would give 
higher confidence in the inferred values of |.



In current cryogenic-DT experiments, tR is inferred 
based on the down-scattered neutron ratio (DSR)

E20371 *J. P Knauer, NO6.00003

The TT spectrum does not affect the measurement in the 10- to 12-MeV region.

•	 The MRS and nTOF* DSR techniques are well developed  
	 in the 10- to 12-MeV region
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A DSR measurement is impractical on OMEGA  
for cryogenic-DT experiments
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•	 tR’s on OMEGA (<300 mg/cm2) would down-scatter about 1% 
of the primary neutrons into the 10 to 12 MeV range

•	 The light decay after the DT primary signal is smaller on the NIF  
than on OMEGA since the detector is 2× further away

•	 The DT primary neutron afterglow from the scintillator  
is 3× the expected down-scatter signal (S/B ~ 0.3)

A new approach to infer tR on OMEGA cryo-DT implosions is needed. 



The nT backscatter yield is proportional to tR
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•	 The nT differential cross section has been measured  
with a charged-particle spectrometer (CPS) on OMEGA

*J. A. Frenje et al., Phys. Rev. Lett. 107, 122502 (2011).
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The nT backscattered ratio has the potential  
for a higher signal to background measurement
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•	 The 3.5- to 5.0-MeV neutrons 
correspond to 6% of the 
down-scattered neutrons

•	 An accurate measurement 
of the nT kinematic edge 
is possible since the TT 
spectrum is well behaved

•	 The nT neutron sensitivity  
is linearly proportional  
to the DD sensitivity*

*T. Phillips, private communications (2011).

300

1210 8 6 45 3 214

100

10–1

10–2

10–3

102

101

400 500 600 700
Time (ns)

Energy (MeV)

A
rb

it
ra

ry
 u

n
it

s

D(t,n)4He

Elastically scattered
neutrons

T(t,2n)4He

D(d,n)3He



MCNP has been used to optimize shielding to increase  
the signal to background at the detector
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For tR ~ 250 mg/cm2 and Yn ~ 5 × 1012 the estimated 
nT neutron yield is 104.



Preliminary measurements of backscattered neutrons 
confirm our sensitivity estimates
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Preliminary tR is consistent with 1-D prediction;
more work is needed to estimate an error bar.

Charge (pC) Detected neutrons
DD yield  171   4.2 × 105

nT 31  4.4 × 104
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Summary/Conclusions

LLE is developing a new diagnostic technique to infer  
the areal density (tR) on OMEGA cryogenic-DT implosions

•	 The down-scattered neutron ratio (DSR) is not suitable for tR 
measurements with neutron time-of-flight (nTOF) spectroscopy 
on OMEGA

•	 Measuring the nT backscatter neutron ratio (BSR) is possible 
with the yields and tR for cryogenic-DT experiments on OMEGA

•	 The backscattered ratio Y(nT)/Y(DT) is proportional to the fuel tR

•	 Preliminary results indicate the BSR has promise for high accuracy  
tR measurement



A particle transport code is used to minimize neutron 
scattering from surrounding structures
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•	 Monte Carlo n-particle (MCNP) transport code for neutrons, photons, and electrons

•	 The theoretical energy spectrum is inserted into the code with relevant geometry

•	 These simulations are used to help guide the accuracy of the neutron  
energy spectrum

Monte Carlo Simulations

A cross section of the geometry in MCNP with relevant surrounding structures.
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MCNP simulated spectra folded with xylene scintillator 
response function
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There are two ways to infer the fuel tR—external probes 
(radiography) and internal probes (n scattering) 
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*R. Tommasini et al., Phys. Plasmas 18, 056309 (2011).
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