ефективні інструменти для розв’язування звичайних рівнянь, принцип дії яких полягає в наступному: спочатку ми вибираємо початкову точку,
Немає перевірених версій цієї сторінки; ймовірно, її ще не перевіряли на відповідність правилам проекту.
Метод Адамса — група методів чисельного інтегрування звичайних диференційних рівнянь, які дозволяють обчислювати таблицю наближених значень розв'язку за даними в початкових точках.
В однокрокових методах для обчислення значення уn 1 використовується значения тільки уn і для підвищення точності при фіксованому кроці необхідно проводити обчислення великої кількості допоміжних величин. Це є причиною того, що для багатьох задач застосування формул Рунге-Кутти неможливе внаслідок надто великого обсягу обчислень. Тому часто раціональніше переходити до багатокрокових методів, які дають можливість, використовуючи значення f(xi,yi), що обчислені на попередніх кроках, отримати прийнятну точність.
Серед k-крокових методів найчастіше використовують методи інтегрування на сітці з постійним кроком, які називаються скінченно-різницевими схемами. Розглянемо загальне диференційне рівняння (1)
Припустимо, що вже відомі розв'язки на множині значень Хi (і=0,1,. . .,п). Тобто можна записати рівняння (2):
При обчисленні інтеграла в правій частині цього виразу підінтегральну функцію замінимо на інтерполяційний многочлен Ньютона для інтерполяції назад на сітці хп, xn-1, xn-2 ,...
При цьому
де і Rm(x) - похибка інтерполяції, яка і буде визначати похибку
отриманих нижче формул. Нагадаємо, що — скінченні ліві різниці k-го порядку функції f(x,y) в точці хn. Підставивши в (2) праву частину (1) і знехтувавши оцінкою похибки, отримаємо
Обчислимо декілька перших інтегралів:
У результаті отримаємо формулу Адамса
де порядок точності методу збігається з кількістю доданків у квадратних дужках.
На практиці, для користування цією формулою залежно від порядку точності, необхідно знати відповідну початкову послідовність значень fi (а значить і yi) у вузлах Хi. Для їх обчислення зазвичай використовують однокроковий метод (наприклад Рунге-Кутти) в початкових точках поблизу x0, а потім переходять до використання формули Адамса.
Метод Ейлер однокроковий. Простий багатокроковий метод це двокроковий метод Адамса-Бешфорта (англ.Adams–Bashforth method)
Цей метод для отримання наступного значення, , потребує два значення, і . Однак, задача з початковим значенням надає лише одне, . Один з підходів полягає у використанні обчисленого методом Ейлера як другого значення. З таким вибором, метод Адамса-Бешфорта видає (округлено до чотирьох цифр):
Точний розв'язок при є , отже двокроковий метод Адамса-Бешфорта точніший ніж метод Ейлера. Це завжди виконується якщо крок достатньо малий.