ในคณิตศาสตร์ สามชนิดดั้งเดิมของมัชฌิมพีทาโกรัส (อังกฤษ: Pythagorean means) คือ มัชฌิมเลขคณิต (AM) มัชฌิมเรขาคณิต (GM) และมัชฌิมฮาร์มอนิก (HM) มัชฌิมเหล่านี้ถูกศึกษาโดยชาวพีทาโกรัส และนักคณิตศาสตร์ชาวกรีกรุ่นหลัง[1] เพราะความสำคัญในเรขาคณิต และดนตรี
มัชฌิม แต่ละตัวมีสมบัติดังนี้
สำรับทุก และ
ความโมโนโทนิค และนิจพลบอกว่ามัชฌิมของเซตจะอยู่ระหว่างค่าน้อยสุด และค่ามากสุด
มัชฌิมฮาร์มอนิก และมัชฌิมเลขคณิตเป็นส่วนกลับของกันและกัน
มัชฌิมเรขาคณิตเป็นส่วนกลับของตัวเอง
ความไม่สมมูลระหว่างมัชฌิม
[แก้]
หากค่า ทั้งหมดเป็นบวก การเรียงลำดับของมัชฌิมเหล่านี้คือ
ที่มีความสมมูลกันก็ต่อเมื่อ เท่ากันทั้งหมด
นี่คือลักษณะทั่วไปของความไม่สมมูลกันของมัชฌิมเลขคณิตและมัชฌิมเรขาคณิต และกรณีพิเศษของความไม่สมมูลกันสำหรับมัชฌิมทั่วไป หลักฐานดังต่อไปนี้จากความไม่สมมูลกันของมัชฌิมเลขคณิต-เรขาคณิต และความเป็นคู่ส่วนกลับ ( และ ก็เป็นส่วนกลับซึ่งกันและกันด้วย)
การศึกษาวิธีพีทาโกรัสมีความสัมพันธ์อย่างใกล้ชิดกับการศึกษาฟังก์ชัน majorization และ Schur-convex มัชฌิมฮาร์มอนิกและเรขาคณิตเป็นฟังก์ชันสมมาตรเว้าของอาร์กิวเมนต์ด้วยเหตุนี้จึงเป็นฟังก์ชัน Schur-concave ขณะที่มัชฌิมเลขคณิตเป็นฟังก์ชันเชิงเส้นของอาร์กิวเมนต์ ดังนั้นจึงเป็นทั้งฟังก์ชันสมมาตรเว้าและนูน
- ↑ ถ้า AC = a และ BC = b OC = AM ของ a และ b, และรัศมี r = QO = OG
ใช้ทฤษฎีพีทาโกรัส, QC² = QO² OC² ∴ QC = √QO² OC² = QM
ใช้ทฤษฎีพีทาโกรัส, OC² = OG² GC² ∴ GC = √OC² − OG² = GM
ใช้สามเหลี่ยมคล้าย, HC/GC = GC/OC ∴ HC = GC²/OC = HM