
Han-Wen Nienhuys

Faster Git-as-a-Database

● NoteDB, or Git-as-a-Database
● Ref storage - the Problem
● Reftable: All Hail The King
● Demo
● Outlook

Agenda

● Code - refs/changes/12345/20
● Metadata

● Status = active
● PatchSet = 20

● Create refs/changes/12345/21
● Advance refs/heads/master
● Metadata

○ Status = merged
○ Patchset = 21

What is a review?

SUBMIT

(rebase)

Git

SQL database

ABANDON

● Code - refs/changes/12345/20
● Metadata

○ Status = abandoned
○ Patchset = 20

NoteDb: store metadata in Git branches
● refs/changes/12345/20
● refs/changes/12345/meta

Reasons: with two storage systems:
● Consistent operations?
● Concurrent writes?
● Takeout?
● Backup?
● Two systems to maintain, tune, etc.

A Tale of Two Storage Systems

NoteDb occasion:

 :
“Hey Gerrit team, we’re shutting down your
SQL database January 1, 2018.

Rewrite all your glue code, or else.”

● Code - refs/changes/12345/20
● Metadata - refs/changes/12345/meta

● Status = active
● PatchSet = 20

● Create refs/changes/12345/21
● Advance refs/heads/master
● Advance refs/change/12345/meta

○ Status = merged
○ Patchset = 21

NoteDb solves atomicity woes

SUBMIT

(rebase)

Atomic ref update

Read:
● Random access:

○ refs/changes/12345/meta
○ refs/heads/master

● Prefix search:
○ refs/heads/*
○ refs/changes/12345/*

Size:
● Chromium src: 1.7M branches
● Android pfb: 1.8M branches

Git branch access patterns

File: .git/refs/heads/master

● Random access:
○ Open, Read/Write, Close

● Prefix search: refs/changes/*
○ Open, Read, Close directory
○ Recurse

● Space: 4096 bytes / ref , 1 file / ref

File system limitations:
● master/bla vs master
● MASTER vs master

Branch storage, v1: “loose refs”

O(1) , but system call overhead

File: .git/packed-refs

refs/heads/a abc123abc..
refs/heads/b 456abc123..
..
refs/heads/z 789def456..

Branch storage, v2: “packed refs”

● Random access
○ O(log N) in memory

● Prefix search
○ O(log N) in memory

● Space
○ 20 bytes + name / ref

● Write
○ Rewrite file, O(N)

● Combine packed & loose
● Loose ref overrides packed-ref
● Compact occasionally

Branch storage, v3: “packed refs” + “loose refs”

● Performance
○ Packed-refs + a few reads

● Space:
○ 20 bytes + name / ref

● Write
○ write 1 file, O(1)

● Difficult to understand
● Deletion is O(N)

Lock = create single file
Transaction = rename file to destination

● Recompact loose refs
● Update ref data in memory
● Write new packed-refs file

Cost: O(N)

Atomicity in the file system

A NEW HOPE

Fix all of this
● We only need a format for fast reading
● Fast writing

○ transactions are small
○ Write just the delta
○ Merge delta on read
○ Compact regularly

● List of tables is a single file
○ can provide transactions

Merged table
..
master: 666666
stable: def4678
..

table-1.ref
..
master: abc1234
next: 77a2fde
stable: def4678
...

table-2.ref

master: 666666

table-3.ref

next: delete

table-1.ref
table-2.ref
table-3.ref

A NEW HOPE

● Storage likes to use blocks
○ 4kb default
○ 64kb at Google

● Store keys sorted
● Prefix compression for keys
● Index key restarts

Blocks
‘R’ 4096
refs/changes/12341 abc...
refs/changes/12342 a2bc...
refs/changes/12343 ab3c...
refs/changes/12344 a4bc...
refs/changes/12345 ab5c...
refs/changes/12346 abc6...
refs/heads/master abc6...
refs/heads/stable def7...
refs/tags/v1.0 a1b3...
refs/tags/v1.1 b1b3...
refs/tags/v1.2 a2b3...

‘R’ 4096
 0refs/changes/12341 abc...
16 2 a2bc...
16 3 ab3c...
16 4 a4bc...
16 5 ab5c...
16 6 abc6...
 0refs/heads/master abc6...
11 stable def7...
 0refs/tags/v1.0 a1b3...
13 1 b1b3...
13 2 a2b3...

‘R’ 4096
 0refs/changes/12341 abc...
16 2 a2bc...
16 3 ab3c...
16 4 a4bc...
16 5 ab5c...
16 6 abc6...
 0refs/heads/master abc6...
11 stable def7...
 0refs/tags/v1.0 a1b3...
13 1 b1b3...
13 2 a2b3...

03 restarts

● Index minimizes number of seeks
● Index block holds

○ Key => Block offset
● Index blocks have same layout

○ Prefix compression!
● Large tables will have multiple levels

Block indexes
‘r’
refs/changes/10000 abc
...

refs/changes/45678 1df

‘r’
refs/changes/45679 52c
...

refs/changes/80000 ffb

‘i’

refs/changes/45678 0000
refs/changes/80000 4096

0000

4096

8192

● Store Reflog in “log” blocks
○ No more dir/file conflicts
○ RefDB + Reflog updates atomically

● Store SHA1 => ref mapping
○ Fast inverse lookups
○ Needed for visibility checks
○ Needed for Gerrit patch upload

Fix other gripes too

Chromium push performance

Ref storage in Bigtable at Google

android:wifi:changes/1000 a1b2c3...

android:wifi:changes/1001 ff7dcb...

... ...

android:NduoVksXjobBg uoDCiroSd...

android:qX+uqdhzMCs7 9i37ZDCM...

... ...

Encryption

● Aug 2017: Shawn Pearce introduces reftable format
● Dec 2017: reftable deployed at Google
● Nov 2019: JGit support in FileRepository

Reftable history

● Demo
● Measurements for write rate (synthetic)

○ 1ms/update (SSD, Linux/Mac)
○ 20 ms/update (NFS)

● Gerrit benchmark:
○ 1700 changes, SSD storage
○ Reftable
○ Packed-refs: 123ms / createchange (median)
○ Reftable: 71ms / createchange (median)

Demo

● JGit: https://git.eclipse.org/r/c/146568/
● Library: https://github.com/google/reftable

○ Go - full implementation of (de)deserialization
○ C - the same; reflog storage missing
○ Plan: integrate into git-core

● CGit doesn’t support it yet
○ Hooks plugin?

● Ref storage is transparent to Gerrit
○ Go back and forth

Outlook

