Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
⠄⠄⣿⣿⣿⣿⢀⠼⣛⣛⣭⢭⣟⣛⣛⣛⠿⠿⢆⡠⢿⣿⣿⠄⠄⠄⠄⠄
⠄⠄⠸⣿⣿⢣⢶⣟⣿⣖⣿⣷⣻⣮⡿⣽⣿⣻⣖⣶⣤⣭⡉⠄⠄⠄⠄⠄
⠄⠄⠄⢹⠣⣛⣣⣭⣭⣭⣁⡛⠻⢽⣿⣿⣿⣿⢻⣿⣿⣿⣽⡧⡄⠄⠄⠄
⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⣿⣶⣌⡛⢿⣽⢘⣿⣷⣿⡻⠏⣛⣀⠄⠄
⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⠙⡅⣿⠚⣡⣴⣿⣿⣿⡆⠄
⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠄⣱⣾⣿⣿⣿⣿⣿⣿⠄
⠄⢀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢸⣿⣿⣿⣿⣿⣿⣿⣿⠄
⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠣⣿⣿⣿⣿⣿⣿⣿⣿⣿⠄
⠄⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠑⣿⣮⣝⣛⠿⠿⣿⣿⣿⣿⠄
⢠⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟
☼ ♥ . Put this on the wall of all the people you've carried . ♥ ☼
╚══════════════ ೋღ☃ღೋ ══════════════╗
⢰⠋⠉⠒⢄ ⣠⠤⠔⢒⠎ ⠈⠳⣤⢤⡀
⢀⡏ ⠔⠉ ⢄ ⠘⢦⠈⠑⢤⡀ ⢀⣤⣤⡀
⢸⢠⢆ ⠈⡆ ⢈⠆ ⠙⢔⠋⢀⡼⠃
⠸⢨⠊ ⠈⠃ ⠈⢯⠁
⡰⠁ ⠈⡆
⣰⠁⢀⣀ ⣷
⡇⣂⢸⣿⠂⠠⣀⡠ ⢰⣿⣷ ⣀ ⡏
⢳⡀ ⠉⠁⠐⠄ ⢀⡜⠁
⠙⢤⡀ ⣀⡴⠋
⠉⠉⠒⠒⠦⠤⠤⣤⣤⣤⣤⣤⠤⠤⠶⠒⠚⠉⠁
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average D ick height of about 80 cm off the ground. The average D ick weighs about 100 grams.
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
So in conclusion If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed.