A New Spin on Particle Analysis: Introducing Centrifugal Sedimentation

partica Centrifuge

Dr. Michael C. Pohl & Carl Lundstedt

June 23, 2022

- Particles must be in a Laminar Flow condition
- Can never measure very large particles due to Turbulent Flow
- Particles must be able to "block" the radiation source
- Particles must be adequately separated to avoid hindered settling
- Settling velocity must exceed the Brownian Motion

Determining particle size from settling velocity

Stokes Law – Sizing by sedimentation speed

$$D(t) = \sqrt{\left(\frac{18\eta_0 \ln\left(\frac{x_2}{x_1}\right)/1000}{(\rho - \rho_0)\left(\frac{1}{3}\alpha^2 t^3 + \omega_0 \alpha t^2 + \frac{1}{3}\omega_0^2 t\right)}} \right)} \quad (0 \le t \le t')$$

$$D(t) = \sqrt{\frac{18\eta_0 \ln\left(\frac{x_2}{x_1}\right)/1000}{(\rho - \rho_0)\left(\frac{1}{3}\alpha^2 t'^3 + \omega_0 \alpha t'^2 + \frac{1}{3}\omega_0^2 t' + \omega_{max}^2(t - t')\right)}} (t' \le t)$$

Symbol	Definition				
<i>D</i> (t)	Particle size distribution (area based)				
η_{o}	Dispersion medium viscosity				
x ₂	Distance from center of rotor to detection point				
x ₁	Distance from center of rotor to liquid surface				
$ ho_0$	Sample density				
$ ho_0$	dispersion medium density				
α	angular acceleration				
t	sedimentation time				
ω ₀	angular velocity at t = 0 [rad/s]				
ω_{max}	angular velocity at 18,000 rpm				

Beer's Law relates absorbance to concentration

$$Abs(t) = -logT$$

$$Abs(t) = -log\left[\frac{I_s(t)}{I_r(t)}\right]$$

$$Abs(t) = \varepsilon bl$$

Symbol	Definition				
Abs(t)	Absorbance				
Т	Transmittance				
/ _s (t)	Intensity of light transmitted through sample cell				
<i>I_r</i> (t)	Intensity of light transmitted through reference cell				
3	Molar absorption coefficient				
b	Molar concentration				
l	Optical path length				

Stokes' Law Challenges

- Materials of different density in the same sample
- Small materials exhibiting Brownian Motion
- Various sources of hindered settling
- Slow measurement for gravity settling
- Cell movement in the case of accelerated measurements
- Non-absorbing particles in the case of X-ray detection methods
- Need for temperature control for the measurement

Advanced temperature control is essential for accurate measurements

Centrifuge Sedimentation Operational Procedures

- It is a first principle measurement method
 - Measure time and light intensity
- Simple data is required to be input
 - Liquid Density, Liquid Viscosity, and Particle Density
- Data is often easy to find
 - CRC Handbook or other reference source
- Parameters can also be measured experimentally
 - Graduated flask, viscometer, and a pycnometer required
- Following data input calculations are all automated
 - Many display options are available

CN-300 Operational Improvements

- Cooling to stabilize the fluid temperature
- Higher speeds to measure smaller particles
- Gradient Centrifugal speeds for measuring broad distributions
- Combined Homogeneous and Line Start measurements
- Quiet design for low noise, even at high speeds
- Versatile data display capabilities

Homogeneous method for low concentration samples

Line-start method for high concentration, high resolution

Density gradient fractionator

Gradient acceleration allows for wide range analysis

Measurement principal diagram

	Average [µm]		Average [µm]
1	0.1125	6	0.1131
2	0.1131	7	0.1123
3	0.1123	8	0.1130
4	0.1129	9	0.1135
5	0.1125	10	0.1119
		Average	0.1127
		CV	0.4 %

Method : Homogeneous Concentration : 3.5%

Wide size range analysis of carbon nanotubes

Mixture of 5 polystyrene latex standards

- 100nm +/- 4nm
- 152nm +/- 5nm
- 496nm +/- 8nm
- 702nm +/- 6nm
- 1.036um +/- .012um

Measuring mixed high concentration battery materials

Fuso ultra high purity colloidal silica

CN-300 Fuso Summary

CN-300 Results	Unit	PL-1	PL-3	PL-7	PL-10H
Median Diameter	nm	12.2	36.4	118.3	229.8

項 目 Items		単位 Unit	PL-1	PL-3	PL-7	PL-10H
一般物性 General properties	<mark>外</mark> 観 _{Appearance}	_	Slightly opaque	Slightly opaque	Milky	Milky
	比重(20/4℃) Specific gravity	-	1.07	1.12	1.14	1.14
	рН	-	7.3	7.3	7.3	7.3
	シリカ濃度 Silica content	%	12	20	23	23
粒 子 径 Particle size	ー 次 粒 子 径 Primary size (D1)	nm	15	35	75	90
	二次粒子径 Secondary size (D2)	nm	40	70	125	220
	会合度 Aggregate ratio	-	2.7	2.0	1.7	2.4

