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1. INTRODUCTION & OBJECTIVE

The use of high order methods have advantages over the lower order methods [1], in terms of
accuracy as well as computational efficiency. However, a lack of robustness and difficulties in
implementation of high order methods on unstructured mesh has been observed. A relatively
new method called the solution dependent weighted least square (SDWLS) [2, 3] tries to
overcome these difficulties by using a very simple to implement methodology on arbitrary
mesh. In this work, the order of accuracy analysis of the SDWLS method, using linear and
quadratic reconstruction, is performed.

2. RESULTS & DISCUSSIONS

2.1 Two-Dimensional Scalar Problems
A two-dimensional scalar advection equation may be written as,

The exact solution of this equation is simple translation of the initial distribution with a
velocity of (1,1). A standard test case [4, 5| with an initial smooth distribution given by
(2) is solved by using various reconstruction methods and an order of accuracy analysis is
performed on structured and unstructured mesh.

u:sin(g(x—l—y)) —2<2<2;, —-2<y<2 (2)
2.1.1 Smooth sinusoidal distribution (on unstructured mesh)
The equation (1) is solved on a unstructured mesh using the Local Lax-Friedrich (LLF)
Riemann solver, using two Gauss-Quadrature points and a C'F'L = 0.3. The results of the
accuracy analysis are displayed in table 1. It can be observed that the L, error in case of
SDWLS-L drops at an order of about 1.7 and in case of SDWLS-Q the error drops at an
order of about 2. The SDWLS-L. method does not behave very well in terms of L., error as
the error drops only at the rate of about 1, while SDWLS-Q maintains the order of about 2.
As expected the magnitude of error in case of SDWLS-Q is smaller compared to SDWLS-L
by an order of magnitude. The results from the literature [4, 5| for third order WENO and
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fourth order WENO show 3.0 and 4.0 respectively as the order for fine mesh. The magnitude
of error of the WENO3 on fine mesh is better compared to SDWLS-Q, however on coarser
mesh SDWLS-Q behaves much better, comparing the results from the literature [6] with
similar mesh sizes.
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Figure 1: Mesh with 1218 and 4898 cells — for scalar advection equation

Table 1: 2D Linear advection problem — unstructured mesh, T=2, RK3

‘ Method ‘ Mesh Cells ‘ L, Error ‘ Lq Order ‘ L., Error ‘ L., Order ‘

308 1.4587 x 101 — 3.4983 x 1071 -
1218 6.2217 x 1072 1.240 1.4327 x 1071 1.299
4898 1.7940 x 1072 1.787 | 5.7394 x 1072 1.315

SDWLS-L 20076 45129 x 1073 | 1.957 | 2.1144 x 1072 1.416
80186 1.2476 x 1073 | 1.857 | 1.2088 x 1072 0.808
322940 | 4.0421 x 1074 1.618 | 6.0216 x 1073 1.000
308 6.3938 x 102 — 1.2679 x 1071 —
1218 15111 x 1072 | 2.098 | 2.9719 x 1072 2.110
SDWLS-Q 4898 3.6505 x 1073 | 2.042 |6.9103 x 1073 2.097

20076 8.8506 x 1074 2.009 1.5355 x 1073 2.133
80186 2.2109 x 1074 2.003 3.7314 x 1074 2.043
322940 5.4800 x 107° 2.003 8.9400 x 107° 2.051

2.2 Two-Dimensional Euler Equations
The general form of two dimensional conservation equations of gas dynamics can be written
as,

oU | OF | 0G _

o or Oy
where, U is the vector of conservative variables and F and G are flux vectors. In case of
Euler equations,

0 (3)
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U= pu . F= pu” +p . G- pguv (4)
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where, £/ = (e + #), e=c,1 = %, and R and ~ are gas constants.

2.2.1 Isentropic vortex (on structured mesh)

The literature |4] and [5] can be referred to for detailed description of this problem. An
isentropic vortex travels such that, after one full travel cycle, the exact solution is the ini-
tial condition itself as shown in figure 2. The table 2 shows the order of accuracy analysis
performed using Cartesian structured grid using various methods with gradually refined grid
size starting from a grid of 40 x 40 up to a grid of 640 x 640. The values presented are the
errors in p (density).
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Figure 2: Solution of isentropic vortex problem

Table 2: Isentropic vortex problem — structured mesh, CFL=0.3, T=10, RK3

‘ Method ‘ Grid Size ‘ L, Error ‘ Lq Order ‘ Lo, Error ‘ L., Order ‘

40x40 1.6162 x 1072 - 3.2021 x 1071 -

80x80 4.7500 x 1073 1.766 9.7100 x 1072 1.721
SDWLS-L | 160x160 | 1.3529 x 103 1.812 5.3834 x 1072 0.851
320x320 | 3.8434 x 1074 1.816 2.7490 x 1072 0.97
640x640 | 9.2878 x 107 2.049 9.4313 x 1073 1.543

40x40 7.2217 x 1073 - 1.5153 x 107! -

80x80 1.4289 x 1073 2.337 2.9510 x 1072 2.36
SDWLS-Q | 160x160 | 2.5447 x 10~* 2.489 5.6347 x 1073 2.389
320x320 | 4.3264 x 107 2.556 1.0280 x 1073 2.454
640x640 | 8.9168 x 10°° 2.279 2.0525 x 1071 2.324

2.2.2 Isentropic vortex (on unstructured mesh)
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The size of finite volume cells is maintained similar to [4] and [5] so that the results can be
compared with WENO methods. The flux is integrated over the cell interfaces using two
quadrature points. The table 3 shows the results obtained for order of accuracy for SDWLS-L
and SDWLS-Q. Tt is seen that the order of accuracy of SDWLS methods reduces slightly on
unstructured mesh compared to structured mesh. This can be attributed to the first order
boundary conditions applied at the boundaries, due to shortage of neighboring cells.
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Table 3: Isentropic vortex problem — unstructured mesh, CFL=0.3, T=10, RK3

‘ Method ‘ Mesh Cells ‘ L, Error ‘ L, Order ‘ L., Error ‘ Lo, Order ‘

300 2.7387 x 1072 — 4.4705 x 1071 —
1212 2.3037 x 102 0.248 | 4.1500 x 101 0.107
4960 1.3521 x 1072 0.756 2.5222 x 1071 0.707

SDWLS-L 20076 5.1255 x 1073 1.388 1.2212 x 1071 1.038
80578 1.9941 x 1073 | 1.359 | 4.7943 x 1072 1.346
323802 [ 8.7036 x 10~*| 1.192 | 2.3380 x 102 1.033
300 2.3812 x 1072 — 3.9192 x 1071 —
1212 8.4004 x 1073 | 1.492 [ 1.7874 x 1071 1.125
SDWLS-Q 4960 1.8300 x 102 | 2.163 | 4.0530 x 1072 2.106

20076 3.8147 x 1071 2.243 8.4089 x 1073 2.25
80578 7.9387 x 107° 2.259 1.8051 x 1073 2.214
323802 1.8002 x 107 2.134 3.8676 x 1074 2.215
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