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1. INTRODUCTION & OBJECTIVE

The use of high order methods have advantages over the lower order methods [1], in terms of
accuracy as well as computational e�ciency. However, a lack of robustness and di�culties in
implementation of high order methods on unstructured mesh has been observed. A relatively
new method called the solution dependent weighted least square (SDWLS) [2, 3] tries to
overcome these di�culties by using a very simple to implement methodology on arbitrary
mesh. In this work, the order of accuracy analysis of the SDWLS method, using linear and
quadratic reconstruction, is performed.

2. RESULTS & DISCUSSIONS

2.1 Two-Dimensional Scalar Problems

A two-dimensional scalar advection equation may be written as,

ut + ux + uy = 0 (1)

The exact solution of this equation is simple translation of the initial distribution with a
velocity of (1, 1). A standard test case [4, 5] with an initial smooth distribution given by
(2) is solved by using various reconstruction methods and an order of accuracy analysis is
performed on structured and unstructured mesh.

u = sin
(
π

2
(x+ y)

)
− 2 ≤ x ≤ 2; −2 ≤ y ≤ 2 (2)

2.1.1 Smooth sinusoidal distribution (on unstructured mesh)
The equation (1) is solved on a unstructured mesh using the Local Lax-Friedrich (LLF)
Riemann solver, using two Gauss-Quadrature points and a CFL = 0.3. The results of the
accuracy analysis are displayed in table 1. It can be observed that the L1 error in case of
SDWLS-L drops at an order of about 1.7 and in case of SDWLS-Q the error drops at an
order of about 2. The SDWLS-L method does not behave very well in terms of L∞ error as
the error drops only at the rate of about 1, while SDWLS-Q maintains the order of about 2.
As expected the magnitude of error in case of SDWLS-Q is smaller compared to SDWLS-L
by an order of magnitude. The results from the literature [4, 5] for third order WENO and
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fourth order WENO show 3.0 and 4.0 respectively as the order for �ne mesh. The magnitude
of error of the WENO3 on �ne mesh is better compared to SDWLS-Q, however on coarser
mesh SDWLS-Q behaves much better, comparing the results from the literature [6] with
similar mesh sizes.

Figure 1: Mesh with 1218 and 4898 cells � for scalar advection equation

Table 1: 2D Linear advection problem � unstructured mesh, T=2, RK3

Method Mesh Cells L1 Error L1 Order L∞ Error L∞ Order

SDWLS-L

308 1.4587× 10−1 � 3.4983× 10−1 �
1218 6.2217× 10−2 1.240 1.4327× 10−1 1.299
4898 1.7940× 10−2 1.787 5.7394× 10−2 1.315
20076 4.5129× 10−3 1.957 2.1144× 10−2 1.416
80186 1.2476× 10−3 1.857 1.2088× 10−2 0.808
322940 4.0421× 10−4 1.618 6.0216× 10−3 1.000

SDWLS-Q

308 6.3938× 10−2 � 1.2679× 10−1 �
1218 1.5111× 10−2 2.098 2.9719× 10−2 2.110
4898 3.6505× 10−3 2.042 6.9103× 10−3 2.097
20076 8.8506× 10−4 2.009 1.5355× 10−3 2.133
80186 2.2109× 10−4 2.003 3.7314× 10−4 2.043
322940 5.4800× 10−5 2.003 8.9400× 10−5 2.051

2.2 Two-Dimensional Euler Equations

The general form of two dimensional conservation equations of gas dynamics can be written
as,

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (3)

where, U is the vector of conservative variables and F and G are �ux vectors. In case of
Euler equations,
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U =


ρ
ρu
ρv
ρE

 ; F =


ρu

ρu2 + p
ρuv

(ρE + p)u

 ; G =


ρuv
ρuv

ρv2 + p
(ρE + p) v

 (4)

where, E =
(
e+ u2+v2

2

)
, e = cvT = RT

(γ−1) , and R and γ are gas constants.

2.2.1 Isentropic vortex (on structured mesh)
The literature [4] and [5] can be referred to for detailed description of this problem. An
isentropic vortex travels such that, after one full travel cycle, the exact solution is the ini-
tial condition itself as shown in �gure 2. The table 2 shows the order of accuracy analysis
performed using Cartesian structured grid using various methods with gradually re�ned grid
size starting from a grid of 40× 40 up to a grid of 640× 640. The values presented are the
errors in ρ (density).

density x-velocity y-velocity

Figure 2: Solution of isentropic vortex problem

Table 2: Isentropic vortex problem � structured mesh, CFL=0.3, T=10, RK3

Method Grid Size L1 Error L1 Order L∞ Error L∞ Order

SDWLS-L

40x40 1.6162× 10−2 � 3.2021× 10−1 �
80x80 4.7500× 10−3 1.766 9.7100× 10−2 1.721
160x160 1.3529× 10−3 1.812 5.3834× 10−2 0.851
320x320 3.8434× 10−4 1.816 2.7490× 10−2 0.97
640x640 9.2878× 10−5 2.049 9.4313× 10−3 1.543

SDWLS-Q

40x40 7.2217× 10−3 � 1.5153× 10−1 �
80x80 1.4289× 10−3 2.337 2.9510× 10−2 2.36
160x160 2.5447× 10−4 2.489 5.6347× 10−3 2.389
320x320 4.3264× 10−5 2.556 1.0280× 10−3 2.454
640x640 8.9168× 10−6 2.279 2.0525× 10−4 2.324

2.2.2 Isentropic vortex (on unstructured mesh)
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The size of �nite volume cells is maintained similar to [4] and [5] so that the results can be
compared with WENO methods. The �ux is integrated over the cell interfaces using two
quadrature points. The table 3 shows the results obtained for order of accuracy for SDWLS-L
and SDWLS-Q. It is seen that the order of accuracy of SDWLS methods reduces slightly on
unstructured mesh compared to structured mesh. This can be attributed to the �rst order
boundary conditions applied at the boundaries, due to shortage of neighboring cells.

Table 3: Isentropic vortex problem � unstructured mesh, CFL=0.3, T=10, RK3

Method Mesh Cells L1 Error L1 Order L∞ Error L∞ Order

SDWLS-L

300 2.7387× 10−2 � 4.4705× 10−1 �
1212 2.3037× 10−2 0.248 4.1500× 10−1 0.107
4960 1.3521× 10−2 0.756 2.5222× 10−1 0.707
20076 5.1255× 10−3 1.388 1.2212× 10−1 1.038
80578 1.9941× 10−3 1.359 4.7943× 10−2 1.346
323802 8.7036× 10−4 1.192 2.3380× 10−2 1.033

SDWLS-Q

300 2.3812× 10−2 � 3.9192× 10−1 �
1212 8.4004× 10−3 1.492 1.7874× 10−1 1.125
4960 1.8300× 10−3 2.163 4.0530× 10−2 2.106
20076 3.8147× 10−4 2.243 8.4089× 10−3 2.25
80578 7.9387× 10−5 2.259 1.8051× 10−3 2.214
323802 1.8002× 10−5 2.134 3.8676× 10−4 2.215
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