1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
//
// Copyright 2010-2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/gain_group.hpp>
#include <uhd/utils/log.hpp>
#include <boost/bind.hpp>
#include <algorithm>
#include <vector>
#if (BOOST_VERSION >= 106000)
using namespace boost::placeholders;
#endif
using namespace uhd;
static bool compare_by_step_size(
const size_t& rhs, const size_t& lhs, std::vector<gain_fcns_t>& fcns)
{
return fcns.at(rhs).get_range().step() > fcns.at(lhs).get_range().step();
}
/*!
* Get a multiple of step with the following relation:
* result = step*floor(num/step)
*
* Due to small doubleing-point inaccuracies:
* num = n*step e, where e is a small inaccuracy.
* When e is negative, floor would yield (n-1)*step,
* despite that n*step is really the desired result.
* This function is designed to mitigate that issue.
*
* \param num the number to approximate
* \param step the step size to round with
* \param e the small inaccuracy to account for
* \return a multiple of step approximating num
*/
template <typename T>
static T floor_step(T num, T step, T e = T(0.001))
{
if (num < T(0)) {
return step * int(num / step - e);
} else {
return step * int(num / step e);
}
}
gain_group::~gain_group(void)
{
/* NOP */
}
/***********************************************************************
* gain group implementation
**********************************************************************/
class gain_group_impl : public gain_group
{
public:
gain_group_impl(void)
{
/*NOP*/
}
gain_range_t get_range(const std::string& name)
{
if (not name.empty())
return _name_to_fcns.get(name).get_range();
double overall_min = 0, overall_max = 0, overall_step = 0;
for (const gain_fcns_t& fcns : get_all_fcns()) {
const gain_range_t range = fcns.get_range();
overall_min = range.start();
overall_max = range.stop();
// the overall step is the min (zero is invalid, first run)
if (overall_step == 0) {
overall_step = range.step();
} else if (range.step()) {
overall_step = std::min(overall_step, range.step());
}
}
return gain_range_t(overall_min, overall_max, overall_step);
}
double get_value(const std::string& name)
{
if (not name.empty())
return _name_to_fcns.get(name).get_value();
double overall_gain = 0;
for (const gain_fcns_t& fcns : get_all_fcns()) {
overall_gain = fcns.get_value();
}
return overall_gain;
}
void set_value(double gain, const std::string& name)
{
if (not name.empty())
return _name_to_fcns.get(name).set_value(gain);
std::vector<gain_fcns_t> all_fcns = get_all_fcns();
if (all_fcns.size() == 0)
return; // nothing to set!
// get the max step size among the gains
double max_step = 0;
for (const gain_fcns_t& fcns : all_fcns) {
max_step = std::max(max_step, fcns.get_range().step());
}
// create gain bucket to distribute power
std::vector<double> gain_bucket;
// distribute power according to priority (round to max step)
double gain_left_to_distribute = gain;
for (const gain_fcns_t& fcns : all_fcns) {
const gain_range_t range = fcns.get_range();
gain_bucket.push_back(floor_step(
uhd::clip(gain_left_to_distribute, range.start(), range.stop()),
max_step));
gain_left_to_distribute -= gain_bucket.back();
}
// get a list of indexes sorted by step size large to small
std::vector<size_t> indexes_step_size_dec;
for (size_t i = 0; i < all_fcns.size(); i ) {
indexes_step_size_dec.push_back(i);
}
std::sort(indexes_step_size_dec.begin(),
indexes_step_size_dec.end(),
boost::bind(&compare_by_step_size, _1, _2, all_fcns));
UHD_ASSERT_THROW(all_fcns.at(indexes_step_size_dec.front()).get_range().step()
>= all_fcns.at(indexes_step_size_dec.back()).get_range().step());
// distribute the remainder (less than max step)
// fill in the largest step sizes first that are less than the remainder
for (size_t i : indexes_step_size_dec) {
const gain_range_t range = all_fcns.at(i).get_range();
double additional_gain =
floor_step(uhd::clip(gain_bucket.at(i) gain_left_to_distribute,
range.start(),
range.stop()),
range.step())
- gain_bucket.at(i);
gain_bucket.at(i) = additional_gain;
gain_left_to_distribute -= additional_gain;
}
UHD_LOGGER_DEBUG("UHD") << "gain_left_to_distribute " << gain_left_to_distribute;
// now write the bucket out to the individual gain values
for (size_t i = 0; i < gain_bucket.size(); i ) {
UHD_LOGGER_DEBUG("UHD") << i << ": " << gain_bucket.at(i);
all_fcns.at(i).set_value(gain_bucket.at(i));
}
}
const std::vector<std::string> get_names(void)
{
return _name_to_fcns.keys();
}
void register_fcns(
const std::string& name, const gain_fcns_t& gain_fcns, size_t priority)
{
if (name.empty() or _name_to_fcns.has_key(name)) {
// ensure the name name is unique and non-empty
return register_fcns(name "_", gain_fcns, priority);
}
_registry[priority].push_back(gain_fcns);
_name_to_fcns[name] = gain_fcns;
}
private:
//! get the gain function sets in order (highest priority first)
std::vector<gain_fcns_t> get_all_fcns(void)
{
std::vector<gain_fcns_t> all_fcns;
for (size_t key : uhd::sorted(_registry.keys())) {
const std::vector<gain_fcns_t>& fcns = _registry[key];
all_fcns.insert(all_fcns.begin(), fcns.begin(), fcns.end());
}
return all_fcns;
}
uhd::dict<size_t, std::vector<gain_fcns_t>> _registry;
uhd::dict<std::string, gain_fcns_t> _name_to_fcns;
};
/***********************************************************************
* gain group factory function
**********************************************************************/
gain_group::sptr gain_group::make(void)
{
return sptr(new gain_group_impl());
}
|