File: test_ranking.py

package info (click to toggle)
scikit-learn 0.23.2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 21,892 kB
  • sloc: python: 132,020; cpp: 5,765; javascript: 2,201; ansic: 831; makefile: 213; sh: 44
file content (1477 lines) | stat: -rw-r--r-- 60,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
import re
import pytest
import numpy as np
import warnings
from scipy.sparse import csr_matrix

from sklearn import datasets
from sklearn import svm

from sklearn.utils.extmath import softmax
from sklearn.datasets import make_multilabel_classification
from sklearn.random_projection import _sparse_random_matrix
from sklearn.utils.validation import check_array, check_consistent_length
from sklearn.utils.validation import check_random_state

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns

from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
from sklearn.metrics import coverage_error
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import label_ranking_loss
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics._ranking import _ndcg_sample_scores, _dcg_sample_scores
from sklearn.metrics import ndcg_score, dcg_score

from sklearn.exceptions import UndefinedMetricWarning


###############################################################################
# Utilities for testing

def make_prediction(dataset=None, binary=False):
    """Make some classification predictions on a toy dataset using a SVC

    If binary is True restrict to a binary classification problem instead of a
    multiclass classification problem
    """

    if dataset is None:
        # import some data to play with
        dataset = datasets.load_iris()

    X = dataset.data
    y = dataset.target

    if binary:
        # restrict to a binary classification task
        X, y = X[y < 2], y[y < 2]

    n_samples, n_features = X.shape
    p = np.arange(n_samples)

    rng = check_random_state(37)
    rng.shuffle(p)
    X, y = X[p], y[p]
    half = int(n_samples / 2)

    # add noisy features to make the problem harder and avoid perfect results
    rng = np.random.RandomState(0)
    X = np.c_[X, rng.randn(n_samples, 200 * n_features)]

    # run classifier, get class probabilities and label predictions
    clf = svm.SVC(kernel='linear', probability=True, random_state=0)
    probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:])

    if binary:
        # only interested in probabilities of the positive case
        # XXX: do we really want a special API for the binary case?
        probas_pred = probas_pred[:, 1]

    y_pred = clf.predict(X[half:])
    y_true = y[half:]
    return y_true, y_pred, probas_pred

# This has been observed on 32-bit ARM with soft float, for example
with warnings.catch_warnings(record=True) as w:
    1. / np.array([0.])
    numpy_lacks_div0_warning = len(w) == 0


###############################################################################
# Tests

def _auc(y_true, y_score):
    """Alternative implementation to check for correctness of
    `roc_auc_score`."""
    pos_label = np.unique(y_true)[1]

    # Count the number of times positive samples are correctly ranked above
    # negative samples.
    pos = y_score[y_true == pos_label]
    neg = y_score[y_true != pos_label]
    diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1)
    n_correct = np.sum(diff_matrix > 0)

    return n_correct / float(len(pos) * len(neg))


def _average_precision(y_true, y_score):
    """Alternative implementation to check for correctness of
    `average_precision_score`.

    Note that this implementation fails on some edge cases.
    For example, for constant predictions e.g. [0.5, 0.5, 0.5],
    y_true = [1, 0, 0] returns an average precision of 0.33...
    but y_true = [0, 0, 1] returns 1.0.
    """
    pos_label = np.unique(y_true)[1]
    n_pos = np.sum(y_true == pos_label)
    order = np.argsort(y_score)[::-1]
    y_score = y_score[order]
    y_true = y_true[order]

    score = 0
    for i in range(len(y_score)):
        if y_true[i] == pos_label:
            # Compute precision up to document i
            # i.e, percentage of relevant documents up to document i.
            prec = 0
            for j in range(0, i   1):
                if y_true[j] == pos_label:
                    prec  = 1.0
            prec /= (i   1.0)
            score  = prec

    return score / n_pos


def _average_precision_slow(y_true, y_score):
    """A second alternative implementation of average precision that closely
    follows the Wikipedia article's definition (see References). This should
    give identical results as `average_precision_score` for all inputs.

    References
    ----------
    .. [1] `Wikipedia entry for the Average precision
       <https://en.wikipedia.org/wiki/Average_precision>`_
    """
    precision, recall, threshold = precision_recall_curve(y_true, y_score)
    precision = list(reversed(precision))
    recall = list(reversed(recall))
    average_precision = 0
    for i in range(1, len(precision)):
        average_precision  = precision[i] * (recall[i] - recall[i - 1])
    return average_precision


def _partial_roc_auc_score(y_true, y_predict, max_fpr):
    """Alternative implementation to check for correctness of `roc_auc_score`
    with `max_fpr` set.
    """

    def _partial_roc(y_true, y_predict, max_fpr):
        fpr, tpr, _ = roc_curve(y_true, y_predict)
        new_fpr = fpr[fpr <= max_fpr]
        new_fpr = np.append(new_fpr, max_fpr)
        new_tpr = tpr[fpr <= max_fpr]
        idx_out = np.argmax(fpr > max_fpr)
        idx_in = idx_out - 1
        x_interp = [fpr[idx_in], fpr[idx_out]]
        y_interp = [tpr[idx_in], tpr[idx_out]]
        new_tpr = np.append(new_tpr, np.interp(max_fpr, x_interp, y_interp))
        return (new_fpr, new_tpr)

    new_fpr, new_tpr = _partial_roc(y_true, y_predict, max_fpr)
    partial_auc = auc(new_fpr, new_tpr)

    # Formula (5) from McClish 1989
    fpr1 = 0
    fpr2 = max_fpr
    min_area = 0.5 * (fpr2 - fpr1) * (fpr2   fpr1)
    max_area = fpr2 - fpr1
    return 0.5 * (1   (partial_auc - min_area) / (max_area - min_area))


@pytest.mark.parametrize('drop', [True, False])
def test_roc_curve(drop):
    # Test Area under Receiver Operating Characteristic (ROC) curve
    y_true, _, probas_pred = make_prediction(binary=True)
    expected_auc = _auc(y_true, probas_pred)

    fpr, tpr, thresholds = roc_curve(y_true, probas_pred,
                                     drop_intermediate=drop)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, expected_auc, decimal=2)
    assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_end_points():
    # Make sure that roc_curve returns a curve start at 0 and ending and
    # 1 even in corner cases
    rng = np.random.RandomState(0)
    y_true = np.array([0] * 50   [1] * 50)
    y_pred = rng.randint(3, size=100)
    fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True)
    assert fpr[0] == 0
    assert fpr[-1] == 1
    assert fpr.shape == tpr.shape
    assert fpr.shape == thr.shape


def test_roc_returns_consistency():
    # Test whether the returned threshold matches up with tpr
    # make small toy dataset
    y_true, _, probas_pred = make_prediction(binary=True)
    fpr, tpr, thresholds = roc_curve(y_true, probas_pred)

    # use the given thresholds to determine the tpr
    tpr_correct = []
    for t in thresholds:
        tp = np.sum((probas_pred >= t) & y_true)
        p = np.sum(y_true)
        tpr_correct.append(1.0 * tp / p)

    # compare tpr and tpr_correct to see if the thresholds' order was correct
    assert_array_almost_equal(tpr, tpr_correct, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_multi():
    # roc_curve not applicable for multi-class problems
    y_true, _, probas_pred = make_prediction(binary=False)

    with pytest.raises(ValueError):
        roc_curve(y_true, probas_pred)


def test_roc_curve_confidence():
    # roc_curve for confidence scores
    y_true, _, probas_pred = make_prediction(binary=True)

    fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.90, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_hard():
    # roc_curve for hard decisions
    y_true, pred, probas_pred = make_prediction(binary=True)

    # always predict one
    trivial_pred = np.ones(y_true.shape)
    fpr, tpr, thresholds = roc_curve(y_true, trivial_pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.50, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # always predict zero
    trivial_pred = np.zeros(y_true.shape)
    fpr, tpr, thresholds = roc_curve(y_true, trivial_pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.50, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # hard decisions
    fpr, tpr, thresholds = roc_curve(y_true, pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.78, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_one_label():
    y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    # assert there are warnings
    w = UndefinedMetricWarning
    fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred)
    # all true labels, all fpr should be nan
    assert_array_equal(fpr, np.full(len(thresholds), np.nan))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # assert there are warnings
    fpr, tpr, thresholds = assert_warns(w, roc_curve,
                                        [1 - x for x in y_true],
                                        y_pred)
    # all negative labels, all tpr should be nan
    assert_array_equal(tpr, np.full(len(thresholds), np.nan))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_toydata():
    # Binary classification
    y_true = [0, 1]
    y_score = [0, 1]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 0, 1])
    assert_array_almost_equal(fpr, [0, 1, 1])
    assert_almost_equal(roc_auc, 1.)

    y_true = [0, 1]
    y_score = [1, 0]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1, 1])
    assert_array_almost_equal(fpr, [0, 0, 1])
    assert_almost_equal(roc_auc, 0.)

    y_true = [1, 0]
    y_score = [1, 1]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1])
    assert_array_almost_equal(fpr, [0, 1])
    assert_almost_equal(roc_auc, 0.5)

    y_true = [1, 0]
    y_score = [1, 0]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 0, 1])
    assert_array_almost_equal(fpr, [0, 1, 1])
    assert_almost_equal(roc_auc, 1.)

    y_true = [1, 0]
    y_score = [0.5, 0.5]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1])
    assert_array_almost_equal(fpr, [0, 1])
    assert_almost_equal(roc_auc, .5)

    y_true = [0, 0]
    y_score = [0.25, 0.75]
    # assert UndefinedMetricWarning because of no positive sample in y_true
    tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true,
                               y_score)
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0., 0.5, 1.])
    assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan])

    y_true = [1, 1]
    y_score = [0.25, 0.75]
    # assert UndefinedMetricWarning because of no negative sample in y_true
    tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true,
                               y_score)
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [np.nan, np.nan, np.nan])
    assert_array_almost_equal(fpr, [0., 0.5, 1.])

    # Multi-label classification task
    y_true = np.array([[0, 1], [0, 1]])
    y_score = np.array([[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="macro")
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="weighted")
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.)

    y_true = np.array([[0, 1], [0, 1]])
    y_score = np.array([[0, 1], [1, 0]])
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="macro")
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="weighted")
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5)

    y_true = np.array([[1, 0], [0, 1]])
    y_score = np.array([[0, 1], [1, 0]])
    assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0)

    y_true = np.array([[1, 0], [0, 1]])
    y_score = np.array([[0.5, 0.5], [0.5, 0.5]])
    assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5)


def test_roc_curve_drop_intermediate():
    # Test that drop_intermediate drops the correct thresholds
    y_true = [0, 0, 0, 0, 1, 1]
    y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0]
    tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True)
    assert_array_almost_equal(thresholds, [2., 1., 0.7, 0.])

    # Test dropping thresholds with repeating scores
    y_true = [0, 0, 0, 0, 0, 0, 0,
              1, 1, 1, 1, 1, 1]
    y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9,
               0.6, 0.7, 0.8, 0.9, 0.9, 1.0]
    tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True)
    assert_array_almost_equal(thresholds,
                              [2.0, 1.0, 0.9, 0.7, 0.6, 0.])


def test_roc_curve_fpr_tpr_increasing():
    # Ensure that fpr and tpr returned by roc_curve are increasing.
    # Construct an edge case with float y_score and sample_weight
    # when some adjacent values of fpr and tpr are actually the same.
    y_true = [0, 0, 1, 1, 1]
    y_score = [0.1, 0.7, 0.3, 0.4, 0.5]
    sample_weight = np.repeat(0.2, 5)
    fpr, tpr, _ = roc_curve(y_true, y_score, sample_weight=sample_weight)
    assert (np.diff(fpr) < 0).sum() == 0
    assert (np.diff(tpr) < 0).sum() == 0


def test_auc():
    # Test Area Under Curve (AUC) computation
    x = [0, 1]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0, 0]
    y = [0, 1, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [0, 1]
    y = [1, 1]
    assert_array_almost_equal(auc(x, y), 1)
    x = [0, 0.5, 1]
    y = [0, 0.5, 1]
    assert_array_almost_equal(auc(x, y), 0.5)


def test_auc_errors():
    # Incompatible shapes
    with pytest.raises(ValueError):
        auc([0.0, 0.5, 1.0], [0.1, 0.2])

    # Too few x values
    with pytest.raises(ValueError):
        auc([0.0], [0.1])

    # x is not in order
    x = [2, 1, 3, 4]
    y = [5, 6, 7, 8]
    error_message = ("x is neither increasing nor decreasing : "
                     "{}".format(np.array(x)))
    with pytest.raises(ValueError, match=re.escape(error_message)):
        auc(x, y)


@pytest.mark.parametrize(
    "y_true, labels",
    [(np.array([0, 1, 0, 2]), [0, 1, 2]),
     (np.array([0, 1, 0, 2]), None),
     (["a", "b", "a", "c"], ["a", "b", "c"]),
     (["a", "b", "a", "c"], None)]
)
def test_multiclass_ovo_roc_auc_toydata(y_true, labels):
    # Tests the one-vs-one multiclass ROC AUC algorithm
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]])

    # Used to compute the expected output.
    # Consider labels 0 and 1:
    # positive label is 0, negative label is 1
    score_01 = roc_auc_score([1, 0, 1], [0.1, 0.3, 0.35])
    # positive label is 1, negative label is 0
    score_10 = roc_auc_score([0, 1, 0], [0.8, 0.4, 0.5])
    average_score_01 = (score_01   score_10) / 2

    # Consider labels 0 and 2:
    score_02 = roc_auc_score([1, 1, 0], [0.1, 0.35, 0])
    score_20 = roc_auc_score([0, 0, 1], [0.1, 0.15, 0.8])
    average_score_02 = (score_02   score_20) / 2

    # Consider labels 1 and 2:
    score_12 = roc_auc_score([1, 0], [0.4, 0.2])
    score_21 = roc_auc_score([0, 1], [0.3, 0.8])
    average_score_12 = (score_12   score_21) / 2

    # Unweighted, one-vs-one multiclass ROC AUC algorithm
    ovo_unweighted_score = (
        average_score_01   average_score_02   average_score_12) / 3
    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo"),
        ovo_unweighted_score)

    # Weighted, one-vs-one multiclass ROC AUC algorithm
    # Each term is weighted by the prevalence for the positive label.
    pair_scores = [average_score_01, average_score_02, average_score_12]
    prevalence = [0.75, 0.75, 0.50]
    ovo_weighted_score = np.average(pair_scores, weights=prevalence)
    assert_almost_equal(
        roc_auc_score(
            y_true,
            y_scores,
            labels=labels,
            multi_class="ovo",
            average="weighted"), ovo_weighted_score)


@pytest.mark.parametrize("y_true, labels",
                         [(np.array([0, 2, 0, 2]), [0, 1, 2]),
                          (np.array(['a', 'd', 'a', 'd']), ['a', 'b', 'd'])])
def test_multiclass_ovo_roc_auc_toydata_binary(y_true, labels):
    # Tests the one-vs-one multiclass ROC AUC algorithm for binary y_true
    #
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[0.2, 0.0, 0.8], [0.6, 0.0, 0.4], [0.55, 0.0, 0.45], [0.4, 0.0, 0.6]])

    # Used to compute the expected output.
    # Consider labels 0 and 1:
    # positive label is 0, negative label is 1
    score_01 = roc_auc_score([1, 0, 1, 0], [0.2, 0.6, 0.55, 0.4])
    # positive label is 1, negative label is 0
    score_10 = roc_auc_score([0, 1, 0, 1], [0.8, 0.4, 0.45, 0.6])
    ovo_score = (score_01   score_10) / 2

    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class='ovo'),
        ovo_score)

    # Weighted, one-vs-one multiclass ROC AUC algorithm
    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class='ovo',
                      average="weighted"), ovo_score)


@pytest.mark.parametrize(
    "y_true, labels",
    [(np.array([0, 1, 2, 2]), None),
     (["a", "b", "c", "c"], None),
     ([0, 1, 2, 2], [0, 1, 2]),
     (["a", "b", "c", "c"], ["a", "b", "c"])])
def test_multiclass_ovr_roc_auc_toydata(y_true, labels):
    # Tests the unweighted, one-vs-rest multiclass ROC AUC algorithm
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[1.0, 0.0, 0.0], [0.1, 0.5, 0.4], [0.1, 0.1, 0.8], [0.3, 0.3, 0.4]])
    # Compute the expected result by individually computing the 'one-vs-rest'
    # ROC AUC scores for classes 0, 1, and 2.
    out_0 = roc_auc_score([1, 0, 0, 0], y_scores[:, 0])
    out_1 = roc_auc_score([0, 1, 0, 0], y_scores[:, 1])
    out_2 = roc_auc_score([0, 0, 1, 1], y_scores[:, 2])
    result_unweighted = (out_0   out_1   out_2) / 3.

    assert_almost_equal(
        roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels),
        result_unweighted)

    # Tests the weighted, one-vs-rest multiclass ROC AUC algorithm
    # on the same input (Provost & Domingos, 2000)
    result_weighted = out_0 * 0.25   out_1 * 0.25   out_2 * 0.5
    assert_almost_equal(
        roc_auc_score(
            y_true,
            y_scores,
            multi_class="ovr",
            labels=labels,
            average="weighted"), result_weighted)


@pytest.mark.parametrize(
    "msg, y_true, labels",
    [("Parameter 'labels' must be unique", np.array([0, 1, 2, 2]), [0, 2, 0]),
     ("Parameter 'labels' must be unique", np.array(["a", "b", "c", "c"]),
      ["a", "a", "b"]),
     ("Number of classes in y_true not equal to the number of columns "
      "in 'y_score'", np.array([0, 2, 0, 2]), None),
     ("Parameter 'labels' must be ordered", np.array(["a", "b", "c", "c"]),
      ["a", "c", "b"]),
     ("Number of given labels, 2, not equal to the number of columns in "
      "'y_score', 3",
      np.array([0, 1, 2, 2]), [0, 1]),
     ("Number of given labels, 2, not equal to the number of columns in "
      "'y_score', 3",
      np.array(["a", "b", "c", "c"]), ["a", "b"]),
     ("Number of given labels, 4, not equal to the number of columns in "
      "'y_score', 3",
      np.array([0, 1, 2, 2]), [0, 1, 2, 3]),
     ("Number of given labels, 4, not equal to the number of columns in "
      "'y_score', 3",
      np.array(["a", "b", "c", "c"]), ["a", "b", "c", "d"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array(["a", "b", "c", "e"]), ["a", "b", "c"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array(["a", "b", "c", "d"]), ["a", "b", "c"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array([0, 1, 2, 3]), [0, 1, 2])])
@pytest.mark.parametrize("multi_class", ["ovo", "ovr"])
def test_roc_auc_score_multiclass_labels_error(
        msg, y_true, labels, multi_class):
    y_scores = np.array(
        [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]])

    with pytest.raises(ValueError, match=msg):
        roc_auc_score(y_true, y_scores, labels=labels, multi_class=multi_class)


@pytest.mark.parametrize("msg, kwargs", [
    ((r"average must be one of \('macro', 'weighted'\) for "
      r"multiclass problems"), {"average": "samples", "multi_class": "ovo"}),
    ((r"average must be one of \('macro', 'weighted'\) for "
      r"multiclass problems"), {"average": "micro", "multi_class": "ovr"}),
    ((r"sample_weight is not supported for multiclass one-vs-one "
      r"ROC AUC, 'sample_weight' must be None in this case"),
     {"multi_class": "ovo", "sample_weight": []}),
    ((r"Partial AUC computation not available in multiclass setting, "
      r"'max_fpr' must be set to `None`, received `max_fpr=0.5` "
      r"instead"), {"multi_class": "ovo", "max_fpr": 0.5}),
    ((r"multi_class='ovp' is not supported for multiclass ROC AUC, "
      r"multi_class must be in \('ovo', 'ovr'\)"),
     {"multi_class": "ovp"}),
    (r"multi_class must be in \('ovo', 'ovr'\)", {})
])
def test_roc_auc_score_multiclass_error(msg, kwargs):
    # Test that roc_auc_score function returns an error when trying
    # to compute multiclass AUC for parameters where an output
    # is not defined.
    rng = check_random_state(404)
    y_score = rng.rand(20, 3)
    y_prob = softmax(y_score)
    y_true = rng.randint(0, 3, size=20)
    with pytest.raises(ValueError, match=msg):
        roc_auc_score(y_true, y_prob, **kwargs)


def test_auc_score_non_binary_class():
    # Test that roc_auc_score function returns an error when trying
    # to compute AUC for non-binary class values.
    rng = check_random_state(404)
    y_pred = rng.rand(10)
    # y_true contains only one class value
    y_true = np.zeros(10, dtype="int")
    err_msg = "ROC AUC score is not defined"
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)
    y_true = np.ones(10, dtype="int")
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)
    y_true = np.full(10, -1, dtype="int")
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)

    with warnings.catch_warnings(record=True):
        rng = check_random_state(404)
        y_pred = rng.rand(10)
        # y_true contains only one class value
        y_true = np.zeros(10, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)
        y_true = np.ones(10, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)
        y_true = np.full(10, -1, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)


def test_binary_clf_curve_multiclass_error():
    rng = check_random_state(404)
    y_true = rng.randint(0, 3, size=10)
    y_pred = rng.rand(10)
    msg = "multiclass format is not supported"

    with pytest.raises(ValueError, match=msg):
        precision_recall_curve(y_true, y_pred)

    with pytest.raises(ValueError, match=msg):
        roc_curve(y_true, y_pred)


@pytest.mark.parametrize("curve_func", [
    precision_recall_curve,
    roc_curve,
])
def test_binary_clf_curve_implicit_pos_label(curve_func):
    # Check that using string class labels raises an informative
    # error for any supported string dtype:
    msg = ("y_true takes value in {'a', 'b'} and pos_label is "
           "not specified: either make y_true take "
           "value in {0, 1} or {-1, 1} or pass pos_label "
           "explicitly.")
    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array(["a", "b"], dtype='<U1'), [0., 1.])

    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array(["a", "b"], dtype=object), [0., 1.])

    # The error message is slightly different for bytes-encoded
    # class labels, but otherwise the behavior is the same:
    msg = ("y_true takes value in {b'a', b'b'} and pos_label is "
           "not specified: either make y_true take "
           "value in {0, 1} or {-1, 1} or pass pos_label "
           "explicitly.")
    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array([b"a", b"b"], dtype='<S1'), [0., 1.])

    # Check that it is possible to use floating point class labels
    # that are interpreted similarly to integer class labels:
    y_pred = [0., 1., 0.2, 0.42]
    int_curve = roc_curve([0, 1, 1, 0], y_pred)
    float_curve = roc_curve([0., 1., 1., 0.], y_pred)
    for int_curve_part, float_curve_part in zip(int_curve, float_curve):
        np.testing.assert_allclose(int_curve_part, float_curve_part)


def test_precision_recall_curve():
    y_true, _, probas_pred = make_prediction(binary=True)
    _test_precision_recall_curve(y_true, probas_pred)

    # Use {-1, 1} for labels; make sure original labels aren't modified
    y_true[np.where(y_true == 0)] = -1
    y_true_copy = y_true.copy()
    _test_precision_recall_curve(y_true, probas_pred)
    assert_array_equal(y_true_copy, y_true)

    labels = [1, 0, 0, 1]
    predict_probas = [1, 2, 3, 4]
    p, r, t = precision_recall_curve(labels, predict_probas)
    assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.]))
    assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.]))
    assert_array_almost_equal(t, np.array([1, 2, 3, 4]))
    assert p.size == r.size
    assert p.size == t.size   1


def _test_precision_recall_curve(y_true, probas_pred):
    # Test Precision-Recall and aread under PR curve
    p, r, thresholds = precision_recall_curve(y_true, probas_pred)
    precision_recall_auc = _average_precision_slow(y_true, probas_pred)
    assert_array_almost_equal(precision_recall_auc, 0.859, 3)
    assert_array_almost_equal(precision_recall_auc,
                              average_precision_score(y_true, probas_pred))
    # `_average_precision` is not very precise in case of 0.5 ties: be tolerant
    assert_almost_equal(_average_precision(y_true, probas_pred),
                        precision_recall_auc, decimal=2)
    assert p.size == r.size
    assert p.size == thresholds.size   1
    # Smoke test in the case of proba having only one value
    p, r, thresholds = precision_recall_curve(y_true,
                                              np.zeros_like(probas_pred))
    assert p.size == r.size
    assert p.size == thresholds.size   1


def test_precision_recall_curve_errors():
    # Contains non-binary labels
    with pytest.raises(ValueError):
        precision_recall_curve([0, 1, 2], [[0.0], [1.0], [1.0]])


@pytest.mark.skipif(numpy_lacks_div0_warning, reason='No div_by_zero warning')
def test_precision_recall_curve_toydata():
    with np.errstate(all="raise"):
        # Binary classification
        y_true = [0, 1]
        y_score = [0, 1]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [1, 1])
        assert_array_almost_equal(r, [1, 0])
        assert_almost_equal(auc_prc, 1.)

        y_true = [0, 1]
        y_score = [1, 0]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 0., 1.])
        assert_array_almost_equal(r, [1., 0.,  0.])
        # Here we are doing a terrible prediction: we are always getting
        # it wrong, hence the average_precision_score is the accuracy at
        # chance: 50%
        assert_almost_equal(auc_prc, 0.5)

        y_true = [1, 0]
        y_score = [1, 1]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 1])
        assert_array_almost_equal(r, [1., 0])
        assert_almost_equal(auc_prc, .5)

        y_true = [1, 0]
        y_score = [1, 0]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [1, 1])
        assert_array_almost_equal(r, [1, 0])
        assert_almost_equal(auc_prc, 1.)

        y_true = [1, 0]
        y_score = [0.5, 0.5]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 1])
        assert_array_almost_equal(r, [1, 0.])
        assert_almost_equal(auc_prc, .5)

        y_true = [0, 0]
        y_score = [0.25, 0.75]
        with pytest.raises(Exception):
            precision_recall_curve(y_true, y_score)
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score)

        y_true = [1, 1]
        y_score = [0.25, 0.75]
        p, r, _ = precision_recall_curve(y_true, y_score)
        assert_almost_equal(average_precision_score(y_true, y_score), 1.)
        assert_array_almost_equal(p, [1., 1., 1.])
        assert_array_almost_equal(r, [1, 0.5, 0.])

        # Multi-label classification task
        y_true = np.array([[0, 1], [0, 1]])
        y_score = np.array([[0, 1], [0, 1]])
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="macro")
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="weighted")
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 1.)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 1.)

        y_true = np.array([[0, 1], [0, 1]])
        y_score = np.array([[0, 1], [1, 0]])
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="macro")
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="weighted")
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.75)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

        y_true = np.array([[1, 0], [0, 1]])
        y_score = np.array([[0, 1], [1, 0]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="macro"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

        y_true = np.array([[1, 0], [0, 1]])
        y_score = np.array([[0.5, 0.5], [0.5, 0.5]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="macro"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

    with np.errstate(all="ignore"):
        # if one class is never present weighted should not be NaN
        y_true = np.array([[0, 0], [0, 1]])
        y_score = np.array([[0, 0], [0, 1]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 1)


def test_average_precision_constant_values():
    # Check the average_precision_score of a constant predictor is
    # the TPR

    # Generate a dataset with 25% of positives
    y_true = np.zeros(100, dtype=int)
    y_true[::4] = 1
    # And a constant score
    y_score = np.ones(100)
    # The precision is then the fraction of positive whatever the recall
    # is, as there is only one threshold:
    assert average_precision_score(y_true, y_score) == .25


def test_average_precision_score_pos_label_errors():
    # Raise an error when pos_label is not in binary y_true
    y_true = np.array([0, 1])
    y_pred = np.array([0, 1])
    error_message = ("pos_label=2 is invalid. Set it to a label in y_true.")
    with pytest.raises(ValueError, match=error_message):
        average_precision_score(y_true, y_pred, pos_label=2)
    # Raise an error for multilabel-indicator y_true with
    # pos_label other than 1
    y_true = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
    y_pred = np.array([[0.9, 0.1], [0.1, 0.9], [0.8, 0.2], [0.2, 0.8]])
    error_message = ("Parameter pos_label is fixed to 1 for multilabel"
                     "-indicator y_true. Do not set pos_label or set "
                     "pos_label to 1.")
    with pytest.raises(ValueError, match=error_message):
        average_precision_score(y_true, y_pred, pos_label=0)


def test_score_scale_invariance():
    # Test that average_precision_score and roc_auc_score are invariant by
    # the scaling or shifting of probabilities
    # This test was expanded (added scaled_down) in response to github
    # issue #3864 (and others), where overly aggressive rounding was causing
    # problems for users with very small y_score values
    y_true, _, probas_pred = make_prediction(binary=True)

    roc_auc = roc_auc_score(y_true, probas_pred)
    roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred)
    roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred)
    roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10)
    assert roc_auc == roc_auc_scaled_up
    assert roc_auc == roc_auc_scaled_down
    assert roc_auc == roc_auc_shifted

    pr_auc = average_precision_score(y_true, probas_pred)
    pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred)
    pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred)
    pr_auc_shifted = average_precision_score(y_true, probas_pred - 10)
    assert pr_auc == pr_auc_scaled_up
    assert pr_auc == pr_auc_scaled_down
    assert pr_auc == pr_auc_shifted


def check_lrap_toy(lrap_score):
    # Check on several small example that it works
    assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1)
    assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]),
                        (2 / 3   1 / 1) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]),
                        (2 / 3   1 / 2) / 2)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]),
                        (1 / 2   2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]),
                        (1   2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]),
                        (1   2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]),
                        (1 / 2   2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1)

    # Tie handling
    assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]),
                        (2 / 3   1 / 2) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]),
                        (2 / 3   1 / 2) / 2)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1)

    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3)

    assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]),
                        3 / 4)


def check_zero_or_all_relevant_labels(lrap_score):
    random_state = check_random_state(0)

    for n_labels in range(2, 5):
        y_score = random_state.uniform(size=(1, n_labels))
        y_score_ties = np.zeros_like(y_score)

        # No relevant labels
        y_true = np.zeros((1, n_labels))
        assert lrap_score(y_true, y_score) == 1.
        assert lrap_score(y_true, y_score_ties) == 1.

        # Only relevant labels
        y_true = np.ones((1, n_labels))
        assert lrap_score(y_true, y_score) == 1.
        assert lrap_score(y_true, y_score_ties) == 1.

    # Degenerate case: only one label
    assert_almost_equal(lrap_score([[1], [0], [1], [0]],
                                   [[0.5], [0.5], [0.5], [0.5]]), 1.)


def check_lrap_error_raised(lrap_score):
    # Raise value error if not appropriate format
    with pytest.raises(ValueError):
        lrap_score([0, 1, 0], [0.25, 0.3, 0.2])
    with pytest.raises(ValueError):
        lrap_score([0, 1, 2],
                   [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]])
    with pytest.raises(ValueError):
        lrap_score([(0), (1), (2)],
                   [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]])

    # Check that y_true.shape != y_score.shape raise the proper exception
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [0, 1])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0], [1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0], [1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0], [1]])


def check_lrap_only_ties(lrap_score):
    # Check tie handling in score
    # Basic check with only ties and increasing label space
    for n_labels in range(2, 10):
        y_score = np.ones((1, n_labels))

        # Check for growing number of consecutive relevant
        for n_relevant in range(1, n_labels):
            # Check for a bunch of positions
            for pos in range(n_labels - n_relevant):
                y_true = np.zeros((1, n_labels))
                y_true[0, pos:pos   n_relevant] = 1
                assert_almost_equal(lrap_score(y_true, y_score),
                                    n_relevant / n_labels)


def check_lrap_without_tie_and_increasing_score(lrap_score):
    # Check that Label ranking average precision works for various
    # Basic check with increasing label space size and decreasing score
    for n_labels in range(2, 10):
        y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels))   1)

        # First and last
        y_true = np.zeros((1, n_labels))
        y_true[0, 0] = 1
        y_true[0, -1] = 1
        assert_almost_equal(lrap_score(y_true, y_score),
                            (2 / n_labels   1) / 2)

        # Check for growing number of consecutive relevant label
        for n_relevant in range(1, n_labels):
            # Check for a bunch of position
            for pos in range(n_labels - n_relevant):
                y_true = np.zeros((1, n_labels))
                y_true[0, pos:pos   n_relevant] = 1
                assert_almost_equal(lrap_score(y_true, y_score),
                                    sum((r   1) / ((pos   r   1) * n_relevant)
                                        for r in range(n_relevant)))


def _my_lrap(y_true, y_score):
    """Simple implementation of label ranking average precision"""
    check_consistent_length(y_true, y_score)
    y_true = check_array(y_true)
    y_score = check_array(y_score)
    n_samples, n_labels = y_true.shape
    score = np.empty((n_samples, ))
    for i in range(n_samples):
        # The best rank correspond to 1. Rank higher than 1 are worse.
        # The best inverse ranking correspond to n_labels.
        unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True)
        n_ranks = unique_rank.size
        rank = n_ranks - inv_rank

        # Rank need to be corrected to take into account ties
        # ex: rank 1 ex aequo means that both label are rank 2.
        corr_rank = np.bincount(rank, minlength=n_ranks   1).cumsum()
        rank = corr_rank[rank]

        relevant = y_true[i].nonzero()[0]
        if relevant.size == 0 or relevant.size == n_labels:
            score[i] = 1
            continue

        score[i] = 0.
        for label in relevant:
            # Let's count the number of relevant label with better rank
            # (smaller rank).
            n_ranked_above = sum(rank[r] <= rank[label] for r in relevant)

            # Weight by the rank of the actual label
            score[i]  = n_ranked_above / rank[label]

        score[i] /= relevant.size

    return score.mean()


def check_alternative_lrap_implementation(lrap_score, n_classes=5,
                                          n_samples=20, random_state=0):
    _, y_true = make_multilabel_classification(n_features=1,
                                               allow_unlabeled=False,
                                               random_state=random_state,
                                               n_classes=n_classes,
                                               n_samples=n_samples)

    # Score with ties
    y_score = _sparse_random_matrix(n_components=y_true.shape[0],
                                    n_features=y_true.shape[1],
                                    random_state=random_state)

    if hasattr(y_score, "toarray"):
        y_score = y_score.toarray()
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap)

    # Uniform score
    random_state = check_random_state(random_state)
    y_score = random_state.uniform(size=(n_samples, n_classes))
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap)


@pytest.mark.parametrize(
        'check',
        (check_lrap_toy,
         check_lrap_without_tie_and_increasing_score,
         check_lrap_only_ties,
         check_zero_or_all_relevant_labels))
@pytest.mark.parametrize(
        'func',
        (label_ranking_average_precision_score, _my_lrap))
def test_label_ranking_avp(check, func):
    check(func)


def test_lrap_error_raised():
    check_lrap_error_raised(label_ranking_average_precision_score)


@pytest.mark.parametrize('n_samples', (1, 2, 8, 20))
@pytest.mark.parametrize('n_classes', (2, 5, 10))
@pytest.mark.parametrize('random_state', range(1))
def test_alternative_lrap_implementation(n_samples, n_classes, random_state):

    check_alternative_lrap_implementation(
               label_ranking_average_precision_score,
               n_classes, n_samples, random_state)


def test_lrap_sample_weighting_zero_labels():
    # Degenerate sample labeling (e.g., zero labels for a sample) is a valid
    # special case for lrap (the sample is considered to achieve perfect
    # precision), but this case is not tested in test_common.
    # For these test samples, the APs are 0.5, 0.75, and 1.0 (default for zero
    # labels).
    y_true = np.array([[1, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0]],
                      dtype=np.bool)
    y_score = np.array([[0.3, 0.4, 0.2, 0.1], [0.1, 0.2, 0.3, 0.4],
                        [0.4, 0.3, 0.2, 0.1]])
    samplewise_lraps = np.array([0.5, 0.75, 1.0])
    sample_weight = np.array([1.0, 1.0, 0.0])

    assert_almost_equal(
        label_ranking_average_precision_score(y_true, y_score,
                                              sample_weight=sample_weight),
        np.sum(sample_weight * samplewise_lraps) / np.sum(sample_weight))


def test_coverage_error():
    # Toy case
    assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1)
    assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3)

    # Non trival case
    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]],
                                       [[0.1, 10., -3], [0, 1, 3]]),
                        (1   3) / 2.)

    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]],
                                       [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]),
                        (1   3   3) / 3.)

    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]],
                                       [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]),
                        (1   3   3) / 3.)


def test_coverage_tie_handling():
    assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0)
    assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3)


def test_label_ranking_loss():
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0)
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1)

    assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]),
                        0)
    assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]),
                        2 / 2)
    assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]),
                        2 / 2)

    # Undefined metrics -  the ranking doesn't matter
    assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0)
    assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0)

    assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]),
                        0)
    assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0)

    # Non trival case
    assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]],
                                           [[0.1, 10., -3], [0, 1, 3]]),
                        (0   2 / 2) / 2.)

    assert_almost_equal(label_ranking_loss(
        [[0, 1, 0], [1, 1, 0], [0, 1, 1]],
        [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]),
        (0   2 / 2   1 / 2) / 3.)

    assert_almost_equal(label_ranking_loss(
        [[0, 1, 0], [1, 1, 0], [0, 1, 1]],
        [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]),
        (0   2 / 2   1 / 2) / 3.)

    # Sparse csr matrices
    assert_almost_equal(label_ranking_loss(
        csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])),
        [[0.1, 10, -3], [3, 1, 3]]),
        (0   2 / 2) / 2.)


def test_ranking_appropriate_input_shape():
    # Check that y_true.shape != y_score.shape raise the proper exception
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [0, 1])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0], [1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0], [1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0], [1]])


def test_ranking_loss_ties_handling():
    # Tie handling
    assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)


def test_dcg_score():
    _, y_true = make_multilabel_classification(random_state=0, n_classes=10)
    y_score = - y_true   1
    _test_dcg_score_for(y_true, y_score)
    y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10))
    _test_dcg_score_for(y_true, y_score)


def _test_dcg_score_for(y_true, y_score):
    discount = np.log2(np.arange(y_true.shape[1])   2)
    ideal = _dcg_sample_scores(y_true, y_true)
    score = _dcg_sample_scores(y_true, y_score)
    assert (score <= ideal).all()
    assert (_dcg_sample_scores(y_true, y_true, k=5) <= ideal).all()
    assert ideal.shape == (y_true.shape[0], )
    assert score.shape == (y_true.shape[0], )
    assert ideal == pytest.approx(
        (np.sort(y_true)[:, ::-1] / discount).sum(axis=1))


def test_dcg_ties():
    y_true = np.asarray([np.arange(5)])
    y_score = np.zeros(y_true.shape)
    dcg = _dcg_sample_scores(y_true, y_score)
    dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True)
    discounts = 1 / np.log2(np.arange(2, 7))
    assert dcg == pytest.approx([discounts.sum() * y_true.mean()])
    assert dcg_ignore_ties == pytest.approx(
        [(discounts * y_true[:, ::-1]).sum()])
    y_score[0, 3:] = 1
    dcg = _dcg_sample_scores(y_true, y_score)
    dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True)
    assert dcg_ignore_ties == pytest.approx(
        [(discounts * y_true[:, ::-1]).sum()])
    assert dcg == pytest.approx([
        discounts[:2].sum() * y_true[0, 3:].mean()  
        discounts[2:].sum() * y_true[0, :3].mean()
    ])


def test_ndcg_ignore_ties_with_k():
    a = np.arange(12).reshape((2, 6))
    assert ndcg_score(a, a, k=3, ignore_ties=True) == pytest.approx(
        ndcg_score(a, a, k=3, ignore_ties=True))


def test_ndcg_invariant():
    y_true = np.arange(70).reshape(7, 10)
    y_score = y_true   np.random.RandomState(0).uniform(
        -.2, .2, size=y_true.shape)
    ndcg = ndcg_score(y_true, y_score)
    ndcg_no_ties = ndcg_score(y_true, y_score, ignore_ties=True)
    assert ndcg == pytest.approx(ndcg_no_ties)
    assert ndcg == pytest.approx(1.)
    y_score  = 1000
    assert ndcg_score(y_true, y_score) == pytest.approx(1.)


@pytest.mark.parametrize('ignore_ties', [True, False])
def test_ndcg_toy_examples(ignore_ties):
    y_true = 3 * np.eye(7)[:5]
    y_score = np.tile(np.arange(6, -1, -1), (5, 1))
    y_score_noisy = y_score   np.random.RandomState(0).uniform(
        -.2, .2, size=y_score.shape)
    assert _dcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            3 / np.log2(np.arange(2, 7)))
    assert _dcg_sample_scores(
        y_true, y_score_noisy, ignore_ties=ignore_ties) == pytest.approx(
            3 / np.log2(np.arange(2, 7)))
    assert _ndcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            1 / np.log2(np.arange(2, 7)))
    assert _dcg_sample_scores(y_true, y_score, log_base=10,
                              ignore_ties=ignore_ties) == pytest.approx(
                                  3 / np.log10(np.arange(2, 7)))
    assert ndcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            (1 / np.log2(np.arange(2, 7))).mean())
    assert dcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            (3 / np.log2(np.arange(2, 7))).mean())
    y_true = 3 * np.ones((5, 7))
    expected_dcg_score = (3 / np.log2(np.arange(2, 9))).sum()
    assert _dcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            expected_dcg_score * np.ones(5))
    assert _ndcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(np.ones(5))
    assert dcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            expected_dcg_score)
    assert ndcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(1.)


def test_ndcg_score():
    _, y_true = make_multilabel_classification(random_state=0, n_classes=10)
    y_score = - y_true   1
    _test_ndcg_score_for(y_true, y_score)
    y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10))
    _test_ndcg_score_for(y_true, y_score)


def _test_ndcg_score_for(y_true, y_score):
    ideal = _ndcg_sample_scores(y_true, y_true)
    score = _ndcg_sample_scores(y_true, y_score)
    assert (score <= ideal).all()
    all_zero = (y_true == 0).all(axis=1)
    assert ideal[~all_zero] == pytest.approx(np.ones((~all_zero).sum()))
    assert ideal[all_zero] == pytest.approx(np.zeros(all_zero.sum()))
    assert score[~all_zero] == pytest.approx(
        _dcg_sample_scores(y_true, y_score)[~all_zero] /
        _dcg_sample_scores(y_true, y_true)[~all_zero])
    assert score[all_zero] == pytest.approx(np.zeros(all_zero.sum()))
    assert ideal.shape == (y_true.shape[0], )
    assert score.shape == (y_true.shape[0], )


def test_partial_roc_auc_score():
    # Check `roc_auc_score` for max_fpr != `None`
    y_true = np.array([0, 0, 1, 1])
    assert roc_auc_score(y_true, y_true, max_fpr=1) == 1
    assert roc_auc_score(y_true, y_true, max_fpr=0.001) == 1
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=-0.1)
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=1.1)
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=0)

    y_scores = np.array([0.1,  0,  0.1, 0.01])
    roc_auc_with_max_fpr_one = roc_auc_score(y_true, y_scores, max_fpr=1)
    unconstrained_roc_auc = roc_auc_score(y_true, y_scores)
    assert roc_auc_with_max_fpr_one == unconstrained_roc_auc
    assert roc_auc_score(y_true, y_scores, max_fpr=0.3) == 0.5

    y_true, y_pred, _ = make_prediction(binary=True)
    for max_fpr in np.linspace(1e-4, 1, 5):
        assert_almost_equal(
            roc_auc_score(y_true, y_pred, max_fpr=max_fpr),
            _partial_roc_auc_score(y_true, y_pred, max_fpr))