1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#![doc(html_root_url = "https://docs.rs/human_format")]
//! `human_format` provides facilitates creating a formatted string, converting between numbers that are beyond typical
//! needs for humans into a simpler string that conveys the gist of the meaning of the number.
//!
//! ## Setup
//!
//! Add the library to your dependencies listing
//!
//! ```toml
//! [dependencies]
//! human_format = "0.2"
//! ```
//!
//! Add the crate reference at your crate root
//!
//! ```rust
//! extern crate human_format;
//! ```
//!
//! Print some human readable strings
//!
//! ```rust
//! // "1.00 k"
//! let tmpStr = human_format::Formatter::new()
//! .format(1000.0);
//! # assert_eq!(tmpStr, "1.00 k");
//!
//! // "1.00 M"
//! let tmpStr2 = human_format::Formatter::new()
//! .format(1000000.0);
//! # assert_eq!(tmpStr2, "1.00 M");
//!
//! // "1.00 B"
//! let tmpStr3 = human_format::Formatter::new()
//! .format(1000000000.0);
//! # assert_eq!(tmpStr3, "1.00 B");
//! ```
//!
//! If you are so inspired you can even try playing with units and customizing your `Scales`
//!
//! For more examples you should review the examples on github: [tests/demo.rs](https://github.com/BobGneu/human-format-rs/blob/master/tests/demo.rs)
//!
#[derive(Debug)]
struct ScaledValue {
value: f32,
suffix: String,
}
/// Entry point to the lib. Use this to handle your formatting needs.
#[derive(Debug)]
pub struct Formatter {
decimals: usize,
separator: String,
scales: Scales,
forced_units: String,
forced_suffix: String,
}
/// Provide a customized scaling scheme for your own modeling.
#[derive(Debug)]
pub struct Scales {
base: u32,
suffixes: Vec<String>,
}
impl Formatter {
/// Initializes a new `Formatter` with default values.
pub fn new() -> Self {
Formatter {
decimals: 2,
separator: " ".to_owned(),
scales: Scales::SI(),
forced_units: "".to_owned(),
forced_suffix: "".to_owned(),
}
}
/// Sets the decimals value for formatting the string.
pub fn with_decimals(&mut self, decimals: usize) -> &mut Self {
self.decimals = decimals;
self
}
/// Sets the separator value for formatting the string.
pub fn with_separator(&mut self, separator: &str) -> &mut Self {
self.separator = separator.to_owned();
self
}
/// Sets the scales value.
pub fn with_scales(&mut self, scales: Scales) -> &mut Self {
self.scales = scales;
self
}
/// Sets the units value.
pub fn with_units(&mut self, units: &str) -> &mut Self {
self.forced_units = units.to_owned();
self
}
/// Sets the expected suffix value.
pub fn with_suffix(&mut self, suffix: &str) -> &mut Self {
self.forced_suffix = suffix.to_owned();
self
}
/// Formats the number into a string
pub fn format(&self, value: f64) -> String {
if value < 0.0 {
return format!("-{}", self.format(value * -1.0));
}
let scaled_value = self.scales.to_scaled_value(value);
format!(
"{:.width$}{}{}{}",
scaled_value.value,
self.separator,
scaled_value.suffix,
self.forced_units,
width = self.decimals
)
}
/// Parse a string back into a float value.
pub fn parse(&self, value: &str) -> f64 {
let v: Vec<&str> = value.split(&self.separator).collect();
let result = v.get(0).unwrap().parse::<f64>().unwrap();
let mut suffix = v.get(1).unwrap().to_string();
let new_len = suffix.len() - self.forced_units.len();
suffix.truncate(new_len);
let magnitude_multiplier = self.scales.get_magnitude_multipler(&suffix);
result * magnitude_multiplier
}
}
impl Scales {
/// Instantiates a new `Scales` with SI keys
pub fn new() -> Self {
Scales::SI()
}
/// Instantiates a new `Scales` with SI keys
pub fn SI() -> Self {
Scales {
base: 1000,
suffixes: vec![
"".to_owned(),
"k".to_owned(),
"M".to_owned(),
"B".to_owned(),
"T".to_owned(),
"P".to_owned(),
"E".to_owned(),
"Z".to_owned(),
"Y".to_owned(),
],
}
}
/// Instantiates a new `Scales` with Binary keys
pub fn Binary() -> Self {
Scales {
base: 1024,
suffixes: vec![
"".to_owned(),
"Ki".to_owned(),
"Mi".to_owned(),
"Gi".to_owned(),
"Ti".to_owned(),
"Pi".to_owned(),
"Ei".to_owned(),
"Zi".to_owned(),
"Yi".to_owned(),
],
}
}
/// Sets the base for the `Scales`
pub fn with_base(&mut self, base: u32) -> &mut Self {
self.base = base;
self
}
/// Sets the suffixes listing appropriately
pub fn with_suffixes(&mut self, suffixes: Vec<&str>) -> &mut Self {
self.suffixes = Vec::new();
for suffix in suffixes {
// This should be to_owned to be clear about intent.
// https://users.rust-lang.org/t/to-string-vs-to-owned-for-string-literals/1441/6
self.suffixes.push(suffix.to_owned());
}
self
}
fn get_magnitude_multipler(&self, value: &str) -> f64 {
for ndx in 0..self.suffixes.len() {
if value == self.suffixes[ndx] {
return self.base.pow(ndx as u32) as f64;
}
}
return 0.0;
}
fn to_scaled_value(&self, value: f64) -> ScaledValue {
let mut index: usize = 0;
let mut _value: f64 = value;
loop {
if _value < (self.base as f64) {
break;
}
_value /= self.base as f64;
index = 1;
}
ScaledValue {
value: (value / self.base.pow((index) as u32) as f64) as f32,
suffix: self.suffixes[index].to_owned(),
}
}
}
|