1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
mod table;
use crate::compression::{mod_p, ByteVec};
use crate::error::usize_to_i32;
use crate::io::Data;
use crate::meta::attribute::ChannelList;
use crate::prelude::*;
use std::cmp::min;
use std::mem::size_of;
use table::{EXP_TABLE, LOG_TABLE};
use lebe::io::{ReadPrimitive, WriteEndian};
const BLOCK_SAMPLE_COUNT: usize = 4;
// As B44 compression is only use on f16 channels, we can have a conste for this value.
const BLOCK_X_BYTE_COUNT: usize = BLOCK_SAMPLE_COUNT * size_of::<u16>();
#[inline]
fn convert_from_linear(s: &mut [u16; 16]) {
for v in s {
*v = EXP_TABLE[*v as usize];
}
}
#[inline]
fn convert_to_linear(s: &mut [u16; 16]) {
for v in s {
*v = LOG_TABLE[*v as usize];
}
}
#[inline]
fn shift_and_round(x: i32, shift: i32) -> i32 {
let x = x << 1;
let a = (1 << shift) - 1;
let shift = shift 1;
let b = (x >> shift) & 1;
(x a b) >> shift
}
/// Pack a block of 4 by 4 16-bit pixels (32 bytes, the array `s`) into either 14 or 3 bytes.
fn pack(s: [u16; 16], b: &mut [u8], optimize_flat_fields: bool, exact_max: bool) -> usize {
let mut t = [0u16; 16];
for i in 0..16 {
if (s[i] & 0x7c00) == 0x7c00 {
t[i] = 0x8000;
} else if (s[i] & 0x8000) != 0 {
t[i] = !s[i];
} else {
t[i] = s[i] | 0x8000;
}
}
let t_max = t.iter().max().unwrap();
// Compute a set of running differences, r[0] ... r[14]:
// Find a shift value such that after rounding off the
// rightmost bits and shifting all differences are between
// -32 and 31. Then bias the differences so that they
// end up between 0 and 63.
let mut shift = -1;
let mut d = [0i32; 16];
let mut r = [0i32; 15];
let mut r_min: i32;
let mut r_max: i32;
const BIAS: i32 = 0x20;
loop {
shift = 1;
// Compute absolute differences, d[0] ... d[15],
// between t_max and t[0] ... t[15].
//
// Shift and round the absolute differences.
d.iter_mut()
.zip(&t)
.for_each(|(d_v, t_v)| *d_v = shift_and_round((t_max - t_v).into(), shift));
// Convert d[0] .. d[15] into running differences
r[0] = d[0] - d[4] BIAS;
r[1] = d[4] - d[8] BIAS;
r[2] = d[8] - d[12] BIAS;
r[3] = d[0] - d[1] BIAS;
r[4] = d[4] - d[5] BIAS;
r[5] = d[8] - d[9] BIAS;
r[6] = d[12] - d[13] BIAS;
r[7] = d[1] - d[2] BIAS;
r[8] = d[5] - d[6] BIAS;
r[9] = d[9] - d[10] BIAS;
r[10] = d[13] - d[14] BIAS;
r[11] = d[2] - d[3] BIAS;
r[12] = d[6] - d[7] BIAS;
r[13] = d[10] - d[11] BIAS;
r[14] = d[14] - d[15] BIAS;
r_min = r[0];
r_max = r[0];
r.iter().copied().for_each(|v| {
if r_min > v {
r_min = v;
}
if r_max < v {
r_max = v;
}
});
if !(r_min < 0 || r_max > 0x3f) {
break;
}
}
if r_min == BIAS && r_max == BIAS && optimize_flat_fields {
// Special case - all pixels have the same value.
// We encode this in 3 instead of 14 bytes by
// storing the value 0xfc in the third output byte,
// which cannot occur in the 14-byte encoding.
b[0] = (t[0] >> 8) as u8;
b[1] = t[0] as u8;
b[2] = 0xfc;
return 3;
}
if exact_max {
// Adjust t[0] so that the pixel whose value is equal
// to t_max gets represented as accurately as possible.
t[0] = t_max - (d[0] << shift) as u16;
}
// Pack t[0], shift and r[0] ... r[14] into 14 bytes:
b[0] = (t[0] >> 8) as u8;
b[1] = t[0] as u8;
b[2] = ((shift << 2) | (r[0] >> 4)) as u8;
b[3] = ((r[0] << 4) | (r[1] >> 2)) as u8;
b[4] = ((r[1] << 6) | r[2]) as u8;
b[5] = ((r[3] << 2) | (r[4] >> 4)) as u8;
b[6] = ((r[4] << 4) | (r[5] >> 2)) as u8;
b[7] = ((r[5] << 6) | r[6]) as u8;
b[8] = ((r[7] << 2) | (r[8] >> 4)) as u8;
b[9] = ((r[8] << 4) | (r[9] >> 2)) as u8;
b[10] = ((r[9] << 6) | r[10]) as u8;
b[11] = ((r[11] << 2) | (r[12] >> 4)) as u8;
b[12] = ((r[12] << 4) | (r[13] >> 2)) as u8;
b[13] = ((r[13] << 6) | r[14]) as u8;
return 14;
}
// Tiny macro to simply get block array value as a u32.
macro_rules! b32 {
($b:expr, $i:expr) => {
$b[$i] as u32
};
}
// 0011 1111
const SIX_BITS: u32 = 0x3f;
// Unpack a 14-byte block into 4 by 4 16-bit pixels.
fn unpack14(b: &[u8], s: &mut [u16; 16]) {
debug_assert_eq!(b.len(), 14);
debug_assert_ne!(b[2], 0xfc);
s[0] = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;
let shift = b32!(b, 2) >> 2;
let bias = 0x20 << shift;
s[4] = (s[0] as u32 ((((b32!(b, 2) << 4) | (b32!(b, 3) >> 4)) & SIX_BITS) << shift) - bias) as u16;
s[8] = (s[4] as u32 ((((b32!(b, 3) << 2) | (b32!(b, 4) >> 6)) & SIX_BITS) << shift) - bias) as u16;
s[12] = (s[8] as u32 ((b32!(b, 4) & SIX_BITS) << shift) - bias) as u16;
s[1] = (s[0] as u32 ((b32!(b, 5) >> 2) << shift) - bias) as u16;
s[5] = (s[4] as u32 ((((b32!(b, 5) << 4) | (b32!(b, 6) >> 4)) & SIX_BITS) << shift) - bias) as u16;
s[9] = (s[8] as u32 ((((b32!(b, 6) << 2) | (b32!(b, 7) >> 6)) & SIX_BITS) << shift) - bias) as u16;
s[13] = (s[12] as u32 ((b32!(b, 7) & SIX_BITS) << shift) - bias) as u16;
s[2] = (s[1] as u32 ((b32!(b, 8) >> 2) << shift) - bias) as u16;
s[6] = (s[5] as u32 ((((b32!(b, 8) << 4) | (b32!(b, 9) >> 4)) & SIX_BITS) << shift) - bias) as u16;
s[10] = (s[9] as u32 ((((b32!(b, 9) << 2) | (b32!(b, 10) >> 6)) & SIX_BITS) << shift) - bias) as u16;
s[14] = (s[13] as u32 ((b32!(b, 10) & SIX_BITS) << shift) - bias) as u16;
s[3] = (s[2] as u32 ((b32!(b, 11) >> 2) << shift) - bias) as u16;
s[7] = (s[6] as u32 ((((b32!(b, 11) << 4) | (b32!(b, 12) >> 4)) & SIX_BITS) << shift) - bias) as u16;
s[11] = (s[10] as u32 ((((b32!(b, 12) << 2) | (b32!(b, 13) >> 6)) & SIX_BITS) << shift) - bias) as u16;
s[15] = (s[14] as u32 ((b32!(b, 13) & SIX_BITS) << shift) - bias) as u16;
for i in 0..16 {
if (s[i] & 0x8000) != 0 {
s[i] &= 0x7fff;
} else {
s[i] = !s[i];
}
}
}
// Unpack a 3-byte block `b` into 4 by 4 identical 16-bit pixels in `s` array.
fn unpack3(b: &[u8], s: &mut [u16; 16]) {
// this assertion panics for fuzzed images.
// assuming this debug assertion is an overly strict check to catch potential compression errors.
// disabling because it panics when fuzzed.
// when commenting out, it simply works (maybe it should return an error instead?).
// debug_assert_eq!(b[2], 0xfc);
// Get the 16-bit value from the block.
let mut value = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;
if (value & 0x8000) != 0 {
value &= 0x7fff;
} else {
value = !value;
}
s.fill(value); // All pixels have save value.
}
#[derive(Debug)]
struct ChannelData {
tmp_start_index: usize,
tmp_end_index: usize,
resolution: Vec2<usize>,
y_sampling: usize,
sample_type: SampleType,
quantize_linearly: bool,
samples_per_pixel: usize,
}
// TODO: Unsafe seems to be required to efficiently copy whole slice of u16 ot u8. For now, we use
// a less efficient, yet safe, implementation.
#[inline]
fn memcpy_u16_to_u8(src: &[u16], mut dst: &mut [u8]) {
use lebe::prelude::*;
dst.write_as_native_endian(src).expect("byte copy error");
}
#[inline]
fn memcpy_u8_to_u16(mut src: &[u8], dst: &mut [u16]) {
use lebe::prelude::*;
src.read_from_native_endian_into(dst).expect("byte copy error");
}
#[inline]
fn cpy_u8(src: &[u16], src_i: usize, dst: &mut [u8], dst_i: usize, n: usize) {
memcpy_u16_to_u8(&src[src_i..src_i n], &mut dst[dst_i..dst_i 2 * n]);
}
pub fn decompress(
channels: &ChannelList,
compressed: ByteVec,
rectangle: IntegerBounds,
expected_byte_size: usize,
_pedantic: bool,
) -> Result<ByteVec> {
debug_assert_eq!(
expected_byte_size,
rectangle.size.area() * channels.bytes_per_pixel,
"expected byte size does not match header" // TODO compute instead of passing argument?
);
debug_assert!(!channels.list.is_empty(), "no channels found");
if compressed.is_empty() {
return Ok(Vec::new());
}
// Extract channel information needed for decompression.
let mut channel_data: Vec<ChannelData> = Vec::with_capacity(channels.list.len());
let mut tmp_read_index = 0;
for channel in channels.list.iter() {
let channel = ChannelData {
tmp_start_index: tmp_read_index,
tmp_end_index: tmp_read_index,
resolution: channel.subsampled_resolution(rectangle.size),
y_sampling: channel.sampling.y(),
sample_type: channel.sample_type,
quantize_linearly: channel.quantize_linearly,
samples_per_pixel: channel.sampling.area(),
};
tmp_read_index = channel.resolution.area()
* channel.samples_per_pixel
* channel.sample_type.bytes_per_sample();
channel_data.push(channel);
}
// Temporary buffer is used to decompress B44 datas the way they are stored in the compressed
// buffer (channel by channel). We interleave the final result later.
let mut tmp = Vec::with_capacity(expected_byte_size);
// Index in the compressed buffer.
let mut in_i = 0usize;
let mut remaining = compressed.len();
for channel in &channel_data {
debug_assert_eq!(remaining, compressed.len()-in_i);
// Compute information for current channel.
let sample_count = channel.resolution.area() * channel.samples_per_pixel;
let byte_count = sample_count * channel.sample_type.bytes_per_sample();
// Sample types that does not support B44 compression (u32 and f32) are raw copied.
// In this branch, "compressed" array is actually raw, uncompressed data.
if channel.sample_type != SampleType::F16 {
debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);
if remaining < byte_count {
return Err(Error::invalid("not enough data"));
}
tmp.extend_from_slice(&compressed[in_i..(in_i byte_count)]);
in_i = byte_count;
remaining -= byte_count;
continue;
}
// HALF channel
// The rest of the code assume we are manipulating u16 (2 bytes) values.
debug_assert_eq!(channel.sample_type, SampleType::F16);
debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());
// Increase buffer to get new uncompressed datas.
tmp.resize(tmp.len() byte_count, 0);
let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;
let bytes_per_sample = size_of::<u16>();
let x_byte_count = x_sample_count * bytes_per_sample;
let cd_start = channel.tmp_start_index;
for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
// Compute index in output (decompressed) buffer. We have 4 rows, because we will
// uncompress 4 by 4 data blocks.
let mut row0 = cd_start y * x_byte_count;
let mut row1 = row0 x_byte_count;
let mut row2 = row1 x_byte_count;
let mut row3 = row2 x_byte_count;
// Move in pixel x line, 4 by 4.
for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
// Extract the 4 by 4 block of 16-bit floats from the compressed buffer.
let mut s = [0u16; 16];
if remaining < 3 {
return Err(Error::invalid("not enough data"));
}
// If shift exponent is 63, call unpack14 (ignoring unused bits)
if compressed[in_i 2] >= (13 << 2) {
if remaining < 3 {
return Err(Error::invalid("not enough data"));
}
unpack3(&compressed[in_i..(in_i 3)], &mut s);
in_i = 3;
remaining -= 3;
} else {
if remaining < 14 {
return Err(Error::invalid("not enough data"));
}
unpack14(&compressed[in_i..(in_i 14)], &mut s);
in_i = 14;
remaining -= 14;
}
if channel.quantize_linearly {
convert_to_linear(&mut s);
}
// Get resting samples from the line to copy in temp buffer (without going outside channel).
let x_resting_sample_count = match x 3 < x_sample_count {
true => BLOCK_SAMPLE_COUNT,
false => x_sample_count - x,
};
debug_assert!(x_resting_sample_count > 0);
debug_assert!(x_resting_sample_count <= BLOCK_SAMPLE_COUNT);
// Copy rows (without going outside channel).
if y 3 < y_sample_count {
cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);
cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
cpy_u8(&s, 12, &mut tmp, row3, x_resting_sample_count);
} else {
debug_assert!(y < y_sample_count);
cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);
if y 1 < y_sample_count {
cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
}
if y 2 < y_sample_count {
cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
}
}
// Update row's array index to 4 next pixels.
row0 = BLOCK_X_BYTE_COUNT;
row1 = BLOCK_X_BYTE_COUNT;
row2 = BLOCK_X_BYTE_COUNT;
row3 = BLOCK_X_BYTE_COUNT;
}
}
}
debug_assert_eq!(tmp.len(), expected_byte_size);
// Interleave uncompressed channel data.
let mut out = Vec::with_capacity(expected_byte_size);
for y in rectangle.position.y()..rectangle.end().y() {
for channel in &mut channel_data {
if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
continue;
}
// Find data location in temporary buffer.
let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
let next_tmp_end_index = channel.tmp_end_index bytes_per_line;
let channel_bytes = &tmp[channel.tmp_end_index..next_tmp_end_index];
channel.tmp_end_index = next_tmp_end_index;
// TODO do not convert endianness for f16-only images
// see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
// We can support uncompressed data in the machine's native format
// if all image channels are of type HALF, and if the Xdr and the
// native representations of a half have the same size.
if channel.sample_type == SampleType::F16 {
// TODO simplify this and make it memcpy on little endian systems
// https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L943
for mut f16_bytes in channel_bytes.chunks(std::mem::size_of::<f16>()) {
let native_endian_f16_bits = u16::read_from_little_endian(&mut f16_bytes).expect("memory read failed");
out.write_as_native_endian(&native_endian_f16_bits).expect("memory write failed");
}
}
else {
u8::write_slice(&mut out, channel_bytes)
.expect("write to in-memory failed");
}
}
}
for index in 1..channel_data.len() {
debug_assert_eq!(
channel_data[index - 1].tmp_end_index,
channel_data[index].tmp_start_index
);
}
debug_assert_eq!(out.len(), expected_byte_size);
// TODO do not convert endianness for f16-only images
// see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
Ok(super::convert_little_endian_to_current(out, channels, rectangle))
}
pub fn compress(
channels: &ChannelList,
uncompressed: ByteVec,
rectangle: IntegerBounds,
optimize_flat_fields: bool,
) -> Result<ByteVec> {
if uncompressed.is_empty() {
return Ok(Vec::new());
}
// TODO do not convert endianness for f16-only images
// see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
let uncompressed = uncompressed.as_slice(); // TODO no alloc
let mut channel_data = Vec::new();
let mut tmp_end_index = 0;
for channel in &channels.list {
let number_samples = channel.subsampled_resolution(rectangle.size);
let sample_count = channel.subsampled_resolution(rectangle.size).area();
let byte_count = sample_count * channel.sample_type.bytes_per_sample();
let channel = ChannelData {
tmp_start_index: tmp_end_index,
tmp_end_index,
y_sampling: channel.sampling.y(),
resolution: number_samples,
sample_type: channel.sample_type,
quantize_linearly: channel.quantize_linearly,
samples_per_pixel: channel.sampling.area(),
};
tmp_end_index = byte_count;
channel_data.push(channel);
}
let mut tmp = vec![0_u8; uncompressed.len()];
debug_assert_eq!(tmp_end_index, tmp.len());
let mut remaining_uncompressed_bytes = uncompressed;
for y in rectangle.position.y()..rectangle.end().y() {
for channel in &mut channel_data {
if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
continue;
}
let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
let next_tmp_end_index = channel.tmp_end_index bytes_per_line;
let target = &mut tmp[channel.tmp_end_index..next_tmp_end_index];
channel.tmp_end_index = next_tmp_end_index;
// TODO do not convert endianness for f16-only images
// see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
// We can support uncompressed data in the machine's native format
// if all image channels are of type HALF, and if the Xdr and the
// native representations of a half have the same size.
if channel.sample_type == SampleType::F16 {
// TODO simplify this and make it memcpy on little endian systems
// https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L640
for mut out_f16_bytes in target.chunks_mut(2) {
let native_endian_f16_bits = u16::read_from_native_endian(&mut remaining_uncompressed_bytes).expect("memory read failed");
out_f16_bytes.write_as_little_endian(&native_endian_f16_bits).expect("memory write failed");
}
}
else {
u8::read_slice(&mut remaining_uncompressed_bytes, target)
.expect("in-memory read failed");
}
}
}
// Generate a whole buffer that we will crop to proper size once compression is done.
let mut b44_compressed = vec![0; std::cmp::max(2048, uncompressed.len())];
let mut b44_end = 0; // Buffer byte index for storing next compressed values.
for channel in &channel_data {
// U32 and F32 channels are raw copied.
if channel.sample_type != SampleType::F16 {
debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);
// Raw byte copy.
let slice = &tmp[channel.tmp_start_index..channel.tmp_end_index];
slice.iter().copied().for_each(|b| {
b44_compressed[b44_end] = b;
b44_end = 1;
});
continue;
}
// HALF channel
debug_assert_eq!(channel.sample_type, SampleType::F16);
debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());
let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;
let x_byte_count = x_sample_count * size_of::<u16>();
let cd_start = channel.tmp_start_index;
for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
//
// Copy the next 4x4 pixel block into array s.
// If the width, cd.nx, or the height, cd.ny, of
// the pixel data in _tmpBuffer is not divisible
// by 4, then pad the data by repeating the
// rightmost column and the bottom row.
//
// Compute row index in temp buffer.
let mut row0 = cd_start y * x_byte_count;
let mut row1 = row0 x_byte_count;
let mut row2 = row1 x_byte_count;
let mut row3 = row2 x_byte_count;
if y 3 >= y_sample_count {
if y 1 >= y_sample_count {
row1 = row0;
}
if y 2 >= y_sample_count {
row2 = row1;
}
row3 = row2;
}
for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
let mut s = [0u16; 16];
if x 3 >= x_sample_count {
let n = x_sample_count - x;
for i in 0..BLOCK_SAMPLE_COUNT {
let j = min(i, n - 1) * 2;
// TODO: Make [u8; 2] to u16 fast.
s[i 0] = u16::from_ne_bytes([tmp[row0 j], tmp[row0 j 1]]);
s[i 4] = u16::from_ne_bytes([tmp[row1 j], tmp[row1 j 1]]);
s[i 8] = u16::from_ne_bytes([tmp[row2 j], tmp[row2 j 1]]);
s[i 12] = u16::from_ne_bytes([tmp[row3 j], tmp[row3 j 1]]);
}
} else {
memcpy_u8_to_u16(&tmp[row0..(row0 BLOCK_X_BYTE_COUNT)], &mut s[0..4]);
memcpy_u8_to_u16(&tmp[row1..(row1 BLOCK_X_BYTE_COUNT)], &mut s[4..8]);
memcpy_u8_to_u16(&tmp[row2..(row2 BLOCK_X_BYTE_COUNT)], &mut s[8..12]);
memcpy_u8_to_u16(&tmp[row3..(row3 BLOCK_X_BYTE_COUNT)], &mut s[12..16]);
}
// Move to next block.
row0 = BLOCK_X_BYTE_COUNT;
row1 = BLOCK_X_BYTE_COUNT;
row2 = BLOCK_X_BYTE_COUNT;
row3 = BLOCK_X_BYTE_COUNT;
// Compress the contents of array `s` and append the results to the output buffer.
if channel.quantize_linearly {
convert_from_linear(&mut s);
}
b44_end = pack(
s,
&mut b44_compressed[b44_end..(b44_end 14)],
optimize_flat_fields,
!channel.quantize_linearly,
);
}
}
}
b44_compressed.resize(b44_end, 0);
Ok(b44_compressed)
}
#[cfg(test)]
mod test {
use crate::compression::b44;
use crate::compression::b44::{convert_from_linear, convert_to_linear};
use crate::compression::ByteVec;
use crate::image::validate_results::ValidateResult;
use crate::meta::attribute::ChannelList;
use crate::prelude::f16;
use crate::prelude::*;
#[test]
fn test_convert_from_to_linear() {
// Create two identical arrays with random floats.
let mut s1 = [0u16; 16];
for i in 0..16 {
s1[i] = f16::from_f32(rand::random::<f32>()).to_bits();
}
let s2 = s1.clone();
// Apply two reversible conversion.
convert_from_linear(&mut s1);
convert_to_linear(&mut s1);
// And check.
for (u1, u2) in s1.iter().zip(&s2) {
let f1 = f16::from_bits(*u1).to_f64();
let f2 = f16::from_bits(*u2).to_f64();
assert!((f1 - f2).abs() < 0.01);
}
}
fn test_roundtrip_noise_with(
channels: ChannelList,
rectangle: IntegerBounds,
) -> (ByteVec, ByteVec, ByteVec) {
let byte_count = channels
.list
.iter()
.map(|c| {
c.subsampled_resolution(rectangle.size).area() * c.sample_type.bytes_per_sample()
})
.sum();
assert!(byte_count > 0);
let pixel_bytes: ByteVec = (0..byte_count).map(|_| rand::random()).collect();
assert_eq!(pixel_bytes.len(), byte_count);
let compressed = b44::compress(&channels, pixel_bytes.clone(), rectangle, true).unwrap();
let decompressed =
b44::decompress(&channels, compressed.clone(), rectangle, pixel_bytes.len(), true).unwrap();
assert_eq!(decompressed.len(), pixel_bytes.len());
(pixel_bytes, compressed, decompressed)
}
#[test]
fn roundtrip_noise_f16() {
let channel = ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(-30, 100),
size: Vec2(322, 731),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
// On my tests, B44 give a size of 44.08% the original data (this assert implies enough
// pixels to be relevant).
assert_eq!(pixel_bytes.len(), 941528);
assert_eq!(compressed.len(), 415044);
assert_eq!(decompressed.len(), 941528);
}
#[test]
fn roundtrip_noise_f16_tiny() {
let channel = ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(0, 0),
size: Vec2(3, 2),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
// B44 being 4 by 4 block, compression is less efficient for tiny images.
assert_eq!(pixel_bytes.len(), 24);
assert_eq!(compressed.len(), 28);
assert_eq!(decompressed.len(), 24);
}
#[test]
fn roundtrip_noise_f32() {
let channel = ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(-30, 100),
size: Vec2(322, 731),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 1883056);
assert_eq!(compressed.len(), 1883056);
assert_eq!(decompressed.len(), 1883056);
assert_eq!(pixel_bytes, decompressed);
}
#[test]
fn roundtrip_noise_f32_tiny() {
let channel = ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(0, 0),
size: Vec2(3, 2),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 48);
assert_eq!(compressed.len(), 48);
assert_eq!(decompressed.len(), 48);
assert_eq!(pixel_bytes, decompressed);
}
#[test]
fn roundtrip_noise_u32() {
let channel = ChannelDescription {
sample_type: SampleType::U32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(-30, 100),
size: Vec2(322, 731),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 1883056);
assert_eq!(compressed.len(), 1883056);
assert_eq!(decompressed.len(), 1883056);
assert_eq!(pixel_bytes, decompressed);
}
#[test]
fn roundtrip_noise_u32_tiny() {
let channel = ChannelDescription {
sample_type: SampleType::U32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
};
// Two similar channels.
let channels = ChannelList::new(smallvec![channel.clone(), channel]);
let rectangle = IntegerBounds {
position: Vec2(0, 0),
size: Vec2(3, 2),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 48);
assert_eq!(compressed.len(), 48);
assert_eq!(decompressed.len(), 48);
assert_eq!(pixel_bytes, decompressed);
}
#[test]
fn roundtrip_noise_mix_f32_f16_u32() {
let channels = ChannelList::new(smallvec![
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
},
ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
},
ChannelDescription {
sample_type: SampleType::U32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
}
]);
let rectangle = IntegerBounds {
position: Vec2(-30, 100),
size: Vec2(322, 731),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 2353820);
assert_eq!(compressed.len(), 2090578);
assert_eq!(decompressed.len(), 2353820);
}
#[test]
fn roundtrip_noise_mix_f32_f16_u32_tiny() {
let channels = ChannelList::new(smallvec![
ChannelDescription {
sample_type: SampleType::F32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
},
ChannelDescription {
sample_type: SampleType::F16,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
},
ChannelDescription {
sample_type: SampleType::U32,
name: Default::default(),
quantize_linearly: false,
sampling: Vec2(1, 1),
}
]);
let rectangle = IntegerBounds {
position: Vec2(0, 0),
size: Vec2(3, 2),
};
let (pixel_bytes, compressed, decompressed) =
test_roundtrip_noise_with(channels, rectangle);
assert_eq!(pixel_bytes.len(), 60);
assert_eq!(compressed.len(), 62);
assert_eq!(decompressed.len(), 60);
}
#[ignore]
#[test]
fn border_on_multiview() {
// This test is hard to reproduce, so we use the direct image.
let path = "tests/images/valid/openexr/MultiView/Adjuster.exr";
let read_image = read()
.no_deep_data()
.all_resolution_levels()
.all_channels()
.all_layers()
.all_attributes()
.non_parallel();
let image = read_image.clone().from_file(path).unwrap();
let mut tmp_bytes = Vec::new();
image
.write()
.non_parallel()
.to_buffered(std::io::Cursor::new(&mut tmp_bytes))
.unwrap();
let image2 = read_image
.from_buffered(std::io::Cursor::new(tmp_bytes))
.unwrap();
image.assert_equals_result(&image2);
}
}
|