1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#![no_std]
pub use generic_array;
pub use block_padding;
use core::{slice, convert::TryInto};
use generic_array::{GenericArray, ArrayLength};
use block_padding::{Padding, PadError};
/// Buffer for block processing of data
#[derive(Clone, Default)]
pub struct BlockBuffer<BlockSize: ArrayLength<u8>> {
buffer: GenericArray<u8, BlockSize>,
pos: usize,
}
impl<BlockSize: ArrayLength<u8>> BlockBuffer<BlockSize> {
/// Process data in `input` in blocks of size `BlockSize` using function `f`.
#[inline]
pub fn input_block(
&mut self, mut input: &[u8], mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
let r = self.remaining();
if input.len() < r {
let n = input.len();
self.buffer[self.pos..self.pos n].copy_from_slice(input);
self.pos = n;
return;
}
if self.pos != 0 && input.len() >= r {
let (l, r) = input.split_at(r);
input = r;
self.buffer[self.pos..].copy_from_slice(l);
f(&self.buffer);
}
let mut chunks_iter = input.chunks_exact(self.size());
for chunk in &mut chunks_iter {
f(chunk.try_into().unwrap());
}
let rem = chunks_iter.remainder();
// Copy any remaining data into the buffer.
self.buffer[..rem.len()].copy_from_slice(rem);
self.pos = rem.len();
}
/// Process data in `input` in blocks of size `BlockSize` using function `f`, which accepts
/// slice of blocks.
#[inline]
pub fn input_blocks(
&mut self, mut input: &[u8], mut f: impl FnMut(&[GenericArray<u8, BlockSize>]),
) {
let r = self.remaining();
if input.len() < r {
let n = input.len();
self.buffer[self.pos..self.pos n].copy_from_slice(input);
self.pos = n;
return;
}
if self.pos != 0 && input.len() >= r {
let (l, r) = input.split_at(r);
input = r;
self.buffer[self.pos..].copy_from_slice(l);
self.pos = 0;
f(slice::from_ref(&self.buffer));
}
// While we have at least a full buffer size chunks's worth of data,
// process its data without copying into the buffer
let n_blocks = input.len()/self.size();
let (left, right) = input.split_at(n_blocks*self.size());
// SAFETY: we guarantee that `blocks` does not point outside of `input`
let blocks = unsafe {
slice::from_raw_parts(
left.as_ptr() as *const GenericArray<u8, BlockSize>,
n_blocks,
)
};
f(blocks);
// Copy remaining data into the buffer.
let n = right.len();
self.buffer[..n].copy_from_slice(right);
self.pos = n;
}
/// Variant that doesn't flush the buffer until there's additional
/// data to be processed. Suitable for tweakable block ciphers
/// like Threefish that need to know whether a block is the *last*
/// data block before processing it.
#[inline]
pub fn input_lazy(
&mut self, mut input: &[u8], mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
let r = self.remaining();
if input.len() <= r {
let n = input.len();
self.buffer[self.pos..self.pos n].copy_from_slice(input);
self.pos = n;
return;
}
if self.pos != 0 && input.len() > r {
let (l, r) = input.split_at(r);
input = r;
self.buffer[self.pos..].copy_from_slice(l);
f(&self.buffer);
}
while input.len() > self.size() {
let (block, r) = input.split_at(self.size());
input = r;
f(block.try_into().unwrap());
}
self.buffer[..input.len()].copy_from_slice(input);
self.pos = input.len();
}
/// Pad buffer with `prefix` and make sure that internall buffer
/// has at least `up_to` free bytes. All remaining bytes get
/// zeroed-out.
#[inline]
fn digest_pad(
&mut self, up_to: usize, mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
if self.pos == self.size() {
f(&self.buffer);
self.pos = 0;
}
self.buffer[self.pos] = 0x80;
self.pos = 1;
set_zero(&mut self.buffer[self.pos..]);
if self.remaining() < up_to {
f(&self.buffer);
set_zero(&mut self.buffer[..self.pos]);
}
}
/// Pad message with 0x80, zeros and 64-bit message length
/// using big-endian byte order
#[inline]
pub fn len64_padding_be(
&mut self, data_len: u64, mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
self.digest_pad(8, &mut f);
let b = data_len.to_be_bytes();
let n = self.buffer.len() - b.len();
self.buffer[n..].copy_from_slice(&b);
f(&self.buffer);
self.pos = 0;
}
/// Pad message with 0x80, zeros and 64-bit message length
/// using little-endian byte order
#[inline]
pub fn len64_padding_le(
&mut self, data_len: u64, mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
self.digest_pad(8, &mut f);
let b = data_len.to_le_bytes();
let n = self.buffer.len() - b.len();
self.buffer[n..].copy_from_slice(&b);
f(&self.buffer);
self.pos = 0;
}
/// Pad message with 0x80, zeros and 128-bit message length
/// using big-endian byte order
#[inline]
pub fn len128_padding_be(
&mut self, data_len: u128, mut f: impl FnMut(&GenericArray<u8, BlockSize>),
) {
self.digest_pad(16, &mut f);
let b = data_len.to_be_bytes();
let n = self.buffer.len() - b.len();
self.buffer[n..].copy_from_slice(&b);
f(&self.buffer);
self.pos = 0;
}
/// Pad message with a given padding `P`
///
/// Returns `PadError` if internall buffer is full, which can only happen if
/// `input_lazy` was used.
#[inline]
pub fn pad_with<P: Padding>(&mut self)
-> Result<&mut GenericArray<u8, BlockSize>, PadError>
{
P::pad_block(&mut self.buffer[..], self.pos)?;
self.pos = 0;
Ok(&mut self.buffer)
}
/// Return size of the internall buffer in bytes
#[inline]
pub fn size(&self) -> usize {
BlockSize::to_usize()
}
/// Return current cursor position
#[inline]
pub fn position(&self) -> usize {
self.pos
}
/// Return number of remaining bytes in the internall buffer
#[inline]
pub fn remaining(&self) -> usize {
self.size() - self.pos
}
/// Reset buffer by setting cursor position to zero
#[inline]
pub fn reset(&mut self) {
self.pos = 0
}
}
/// Sets all bytes in `dst` to zero
#[inline(always)]
fn set_zero(dst: &mut [u8]) {
// SAFETY: we overwrite valid memory behind `dst`
// note: loop is not used here because it produces
// unnecessary branch which tests for zero-length slices
unsafe {
core::ptr::write_bytes(dst.as_mut_ptr(), 0, dst.len());
}
}
|