1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
/*
boids3d 2005 - 2006 a.sier / jasch
adapted from boids by eric singer 1995-2003 eric l. singer
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "m_pd.h"
#include <stdlib.h>
#include <math.h>
// constants
#define kAssistInlet 1
#define kAssistOutlet 2
#define kMaxLong 0xFFFFFFFF
#define kMaxNeighbors 4
// util
#define MAX(a,b) ((a)>(b)?(a):(b))
#define CLIP(x,a,b) (x)=(x)<(a)?(a):(x)>(b)?(b):(x)
// initial flight parameters
const short kNumBoids = 12; // number of boids
const short kNumNeighbors = 2; // must be <= kMaxNeighbors
const double kMinSpeed = 0.15; // boids' minimum speed
const double kMaxSpeed = 0.25; // boids' maximum speed
const double kCenterWeight = 0.25; // flock centering
const double kAttractWeight = 0.300;// attraction point seeking
const double kMatchWeight = 0.100;// neighbors velocity matching
const double kAvoidWeight = 0.10; // neighbors avoidance
const double kWallsWeight = 0.500;// wall avoidance [210]
const double kEdgeDist = 0.5; // vision distance to avoid wall edges [5]
const double kSpeedupFactor = 0.100;// alter animation speed
const double kInertiaFactor = 0.20; // willingness to change speed & direction
const double kAccelFactor = 0.100;// neighbor avoidance accelerate or decelerate rate
const double kPrefDist = 0.25; // preferred distance from neighbors
const double kFlyRectTop = 1.0; // fly rect boundaries
const double kFlyRectLeft = -1.0;
const double kFlyRectBottom = -1.0;
const double kFlyRectRight = 1.0;
const double kFlyRectFront = 1.0;
const double kFlyRectBack = -1.0;
// typedefs
typedef struct Velocity {
double x;
double y;
double z;
} Velocity;
typedef struct Point3d {
double x;
double y;
double z;
} Point3d;
typedef struct Box3D {
double left, right;
double top, bottom;
double front, back;
} Box3D;
typedef struct _Boid {
Point3d oldPos;
Point3d newPos;
Velocity oldDir;
Velocity newDir;
double speed;
short neighbor[kMaxNeighbors];
double neighborDistSqr[kMaxNeighbors];
} t_one_boid, *BoidPtr;
typedef struct _FlockObject {
t_object ob;
void *out1, *out2;
short mode;
long numBoids;
long numNeighbors;
Box3D flyRect;
double minSpeed;
double maxSpeed;
double centerWeight;
double attractWeight;
double matchWeight;
double avoidWeight;
double wallsWeight;
double edgeDist;
double speedupFactor;
double inertiaFactor;
double accelFactor;
double prefDist;
double prefDistSqr;
Point3d centerPt;
Point3d attractPt;
BoidPtr boid;
double d2r, r2d;
} t_boids, *FlockPtr;
t_symbol *ps_nothing;
void *boids3d_class;
void *Flock_new(t_symbol *s, long argc, t_atom *argv);
void Flock_free(t_boids *x);
void Flock_bang(t_boids *x);
void Flock_dump(t_boids *x);
void Flock_mode(t_boids *x, t_float arg);
void Flock_numNeighbors(t_boids *x, t_float arg);
void Flock_numBoids(t_boids *x, t_float arg);
void Flock_minSpeed(t_boids *x, t_float arg);
void Flock_maxSpeed(t_boids *x, t_float arg);
void Flock_centerWeight(t_boids *x, t_float arg);
void Flock_attractWeight(t_boids *x, t_float arg);
void Flock_matchWeight(t_boids *x, t_float arg);
void Flock_avoidWeight(t_boids *x, t_float arg);
void Flock_wallsWeight(t_boids *x, t_float arg);
void Flock_edgeDist(t_boids *x, t_float arg);
void Flock_speedupFactor(t_boids *x, t_float arg);
void Flock_inertiaFactor(t_boids *x, t_float arg);
void Flock_accelFactor(t_boids *x, t_float arg);
void Flock_prefDist(t_boids *x, t_float arg);
void Flock_flyRect(t_boids *x, t_symbol *msg, short argc, t_atom *argv);
void Flock_attractPt(t_boids *x, t_symbol *msg, short argc, t_atom *argv);
void Flock_reset(t_boids *x);
void Flock_resetBoids(t_boids *x);
void InitFlock(t_boids *x);
void FlightStep(t_boids *x);
Point3d FindFlockCenter(t_boids *x);
float MatchAndAvoidNeighbors(t_boids *x, short theBoid, Velocity *matchNeighborVel, Velocity *avoidNeighborVel);
Velocity SeekPoint(t_boids *x, short theBoid, Point3d seekPt);
Velocity AvoidWalls(t_boids *x, short theBoid);
int InFront(BoidPtr theBoid, BoidPtr neighbor);
void NormalizeVelocity(Velocity *direction);
double RandomInt(double minRange, double maxRange);
double DistSqrToPt(Point3d firstPoint, Point3d secondPoint);
void boids3d_setup(void)
{
boids3d_class = class_new(gensym("boids3d"), (t_newmethod)Flock_new,
(t_method)Flock_free, sizeof(t_boids), 0, A_GIMME, 0);
class_addfloat(boids3d_class, (t_method) Flock_numBoids);
class_addbang(boids3d_class, (t_method) Flock_bang);
class_addmethod(boids3d_class, (t_method) Flock_numNeighbors, gensym("neighbors"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_numBoids, gensym("number"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_mode, gensym("mode"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_minSpeed, gensym("minspeed"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_maxSpeed, gensym("maxspeed"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_centerWeight, gensym("center"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_attractWeight, gensym("attract"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_matchWeight, gensym("match"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_avoidWeight, gensym("avoid"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_wallsWeight, gensym("repel"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_edgeDist, gensym("edgedist"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_speedupFactor, gensym("speed"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_inertiaFactor, gensym("inertia"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_accelFactor, gensym("accel"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_prefDist, gensym("prefdist"), A_FLOAT, 0);
class_addmethod(boids3d_class, (t_method) Flock_flyRect, gensym("flyrect"), A_GIMME, 0);
class_addmethod(boids3d_class, (t_method) Flock_attractPt, gensym("attractpt"), A_GIMME, 0);
class_addmethod(boids3d_class, (t_method) Flock_resetBoids, gensym("reset"), 0);
class_addmethod(boids3d_class, (t_method) Flock_reset, gensym("init"), 0);
class_addmethod(boids3d_class, (t_method) Flock_dump, gensym("dump"), 0);
post("boids3d 2005-2006 a.sier / jasch 1995-2003 eric l. singer "__DATE__" "__TIME__);
ps_nothing = gensym("");
}
void *Flock_new(t_symbol *s, long argc, t_atom *argv)
{
t_boids *x = (t_boids *)pd_new(boids3d_class);
x->out1 = outlet_new(&x->ob, NULL);
x->out2 = outlet_new(&x->ob, NULL);
x->numBoids = 16;
if((argc >= 1) && (argv[0].a_type == A_FLOAT)){
x->numBoids = argv[0].a_w.w_float;
}
x->boid = (t_one_boid *)malloc(sizeof(t_one_boid) * x->numBoids);
InitFlock(x);
x->mode = 0;
if((argc >= 2) && (argv[1].a_type == A_FLOAT)){
x->mode = (short)(CLIP(argv[1].a_w.w_float, 0, 2));
}
x->d2r = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068/180.0;
x->r2d = 180.0/3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068;
return(x);
}
void Flock_free(t_boids *x)
{
free(x->boid);
}
void Flock_bang(t_boids *x)
{
short i;
t_atom outlist[10];
t_atom *out;
double tempNew_x, tempNew_y, tempNew_z;
double tempOld_x, tempOld_y, tempOld_z;
double delta_x, delta_y, delta_z;
double azi, ele, speed;
out = outlist;
FlightStep(x);
switch(x->mode) { // newpos
case 0:
for (i = 0; i < x->numBoids; i ){
SETFLOAT(out 0, i);
SETFLOAT(out 1, x->boid[i].newPos.x);
SETFLOAT(out 2, x->boid[i].newPos.y);
SETFLOAT(out 3, x->boid[i].newPos.z);
outlet_list(x->out1, 0L, 4, out);
}
break;
case 1: //newpos oldpos
for (i = 0; i < x->numBoids; i ){
SETFLOAT(out 0, i);
SETFLOAT(out 1, x->boid[i].newPos.x);
SETFLOAT(out 2, x->boid[i].newPos.y);
SETFLOAT(out 3, x->boid[i].newPos.z);
SETFLOAT(out 4, x->boid[i].oldPos.x);
SETFLOAT(out 5, x->boid[i].oldPos.y);
SETFLOAT(out 6, x->boid[i].oldPos.z);
outlet_list(x->out1, 0L, 7, out);
}
break;
case 2:
for (i = 0; i < x->numBoids; i ){
tempNew_x = x->boid[i].newPos.x;
tempNew_y = x->boid[i].newPos.y;
tempNew_z = x->boid[i].newPos.z;
tempOld_x = x->boid[i].oldPos.x;
tempOld_y = x->boid[i].oldPos.y;
tempOld_z = x->boid[i].oldPos.z;
delta_x = tempNew_x - tempOld_x;
delta_y = tempNew_y - tempOld_y;
delta_z = tempNew_z - tempOld_z;
azi = atan2(delta_y, delta_x) * x->r2d;
ele = atan2(delta_y, delta_x) * x->r2d;
speed = sqrt(delta_x * delta_x delta_y * delta_y delta_z * delta_z);
SETFLOAT(out 0, i);
SETFLOAT(out 1, tempNew_x);
SETFLOAT(out 2, tempNew_y);
SETFLOAT(out 3, tempNew_z);
SETFLOAT(out 4, tempOld_x);
SETFLOAT(out 5, tempOld_y);
SETFLOAT(out 6, tempOld_z);
SETFLOAT(out 7, speed);
SETFLOAT(out 8, azi);
SETFLOAT(out 9, ele);
outlet_list(x->out1, 0L, 10, out);
}
break;
}
}
void Flock_dump(t_boids *x)
{
t_atom outList[6];
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->numNeighbors;
outlet_anything(x->out2, gensym("neighbors"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->minSpeed;
outlet_anything(x->out2, gensym("minspeed"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->maxSpeed;
outlet_anything(x->out2, gensym("maxspeed"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->centerWeight;
outlet_anything(x->out2, gensym("center"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->attractWeight;
outlet_anything(x->out2, gensym("attract"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->matchWeight;
outlet_anything(x->out2, gensym("match"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->avoidWeight;
outlet_anything(x->out2, gensym("avoid"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->wallsWeight;
outlet_anything(x->out2, gensym("repel"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->edgeDist;
outlet_anything(x->out2, gensym("edgedist"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->speedupFactor;
outlet_anything(x->out2, gensym("speed"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->inertiaFactor;
outlet_anything(x->out2, gensym("inertia"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->accelFactor;
outlet_anything(x->out2, gensym("accel"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->prefDist;
outlet_anything(x->out2, gensym("prefdist"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->flyRect.left;
outList[1].a_type = A_FLOAT;
outList[1].a_w.w_float = x->flyRect.top;
outList[2].a_type = A_FLOAT;
outList[2].a_w.w_float = x->flyRect.right;
outList[3].a_type = A_FLOAT;
outList[3].a_w.w_float = x->flyRect.bottom;
outList[4].a_type = A_FLOAT;
outList[4].a_w.w_float = x->flyRect.front;
outList[5].a_type = A_FLOAT;
outList[5].a_w.w_float = x->flyRect.back;
outlet_anything(x->out2, gensym("flyrect"), 6, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->attractPt.x;
outList[1].a_type = A_FLOAT;
outList[1].a_w.w_float = x->attractPt.y;
outList[2].a_type = A_FLOAT;
outList[2].a_w.w_float = x->attractPt.z;
outlet_anything(x->out2, gensym("attractpt"), 3, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->mode;
outlet_anything(x->out2, gensym("mode"), 1, outList);
outList[0].a_type = A_FLOAT;
outList[0].a_w.w_float = x->numBoids;
outlet_anything(x->out2, gensym("number"), 1, outList);
}
void Flock_mode(t_boids *x, t_float arg)
{
long m = (long)arg;
x->mode = CLIP(m, 0, 2);
}
void Flock_numNeighbors(t_boids *x, t_float arg)
{
x->numNeighbors = (long)arg;
}
void Flock_numBoids(t_boids *x, t_float arg)
{
x->boid = (t_one_boid *)realloc(x->boid, sizeof(t_one_boid) * (long)arg);
x->numBoids = (long)arg;
Flock_resetBoids(x);
}
void Flock_minSpeed(t_boids *x, t_float arg)
{
x->minSpeed = MAX(arg, 0.000001);
}
void Flock_maxSpeed(t_boids *x, t_float arg)
{
x->maxSpeed = (double)arg;
}
void Flock_centerWeight(t_boids *x, t_float arg)
{
x->centerWeight = (double)arg;
}
void Flock_attractWeight(t_boids *x, t_float arg)
{
x->attractWeight = (double)arg;
}
void Flock_matchWeight(t_boids *x, t_float arg)
{
x->matchWeight = (double)arg;
}
void Flock_avoidWeight(t_boids *x, t_float arg)
{
x->avoidWeight = (double)arg;
}
void Flock_wallsWeight(t_boids *x, t_float arg)
{
x->wallsWeight = (double)arg;
}
void Flock_edgeDist(t_boids *x, t_float arg)
{
x->edgeDist = (double)arg;
}
void Flock_speedupFactor(t_boids *x, t_float arg)
{
x->speedupFactor = (double)arg;
}
void Flock_inertiaFactor(t_boids *x, t_float arg)
{
if(arg == 0){
x->inertiaFactor = 0.000001;
}else{
x->inertiaFactor = (double)arg;
}
}
void Flock_accelFactor(t_boids *x, t_float arg)
{
x->accelFactor = (double)arg;
}
void Flock_prefDist(t_boids *x, t_float arg)
{
x->prefDist = (double)arg;
}
void Flock_flyRect(t_boids *x, t_symbol *msg, short argc, t_atom *argv)
{
double temp[6];
short i;
if(argc == 6){
for(i = 0; i < 6; i ) {
if(argv[i].a_type == A_FLOAT) {
temp[i] = (double)argv[i].a_w.w_float;
}
}
x->flyRect.left = temp[0];
x->flyRect.top = temp[1];
x->flyRect.right = temp[2];
x->flyRect.bottom = temp[3];
x->flyRect.front = temp[4];
x->flyRect.back = temp[5];
}else{
pd_error(x,"boids3d: flyrect needs 6 values");
}
}
void Flock_attractPt(t_boids *x, t_symbol *msg, short argc, t_atom *argv)
{
double temp[3];
short i;
if(argc == 3){
for(i = 0; i < 3 ; i ) {
if(argv[i].a_type == A_FLOAT) {
temp[i] = (double)argv[i].a_w.w_float;
}
}
x->attractPt.x = temp[0];
x->attractPt.y = temp[1];
x->attractPt.z = temp[2];
}else{
pd_error(x,"boids3d: attractPt needs 3 values");
}
}
void Flock_reset(t_boids *x)
{
InitFlock(x);
}
void Flock_resetBoids(t_boids *x)
{
long i, j;
double rndAngle;
for (i = 0; i < x->numBoids; i ) { // init everything to 0.0
x->boid[i].oldPos.x = 0.0;
x->boid[i].oldPos.y = 0.0;
x->boid[i].oldPos.z = 0.0;
x->boid[i].newPos.x = 0.0;
x->boid[i].newPos.y = 0.0;
x->boid[i].newPos.z = 0.0;
x->boid[i].oldDir.x = 0.0;
x->boid[i].oldDir.y = 0.0;
x->boid[i].oldDir.z = 0.0;
x->boid[i].newDir.x = 0.0;
x->boid[i].newDir.y = 0.0;
x->boid[i].newDir.z = 0.0;
x->boid[i].speed = 0.0;
for(j=0; j<kMaxNeighbors;j ){
x->boid[i].neighbor[j] = 0;
x->boid[i].neighborDistSqr[j] = 0.0;
}
}
for (i = 0; i < x->numBoids; i ) { // set the initial locations and velocities of the boids
x->boid[i].newPos.x = x->boid[i].oldPos.x = RandomInt(x->flyRect.right,x->flyRect.left); // set random location within flyRect
x->boid[i].newPos.y = x->boid[i].oldPos.y = RandomInt(x->flyRect.bottom, x->flyRect.top);
x->boid[i].newPos.z = x->boid[i].oldPos.z = RandomInt(x->flyRect.back, x->flyRect.front);
rndAngle = RandomInt(0, 360) * x->d2r; // set velocity from random angle
x->boid[i].newDir.x = sin(rndAngle);
x->boid[i].newDir.y = cos(rndAngle);
x->boid[i].newDir.z = (cos(rndAngle) sin(rndAngle)) * 0.5;
x->boid[i].speed = (kMaxSpeed kMinSpeed) * 0.5;
}
}
void InitFlock(t_boids *x)
{
x->numNeighbors = kNumNeighbors;
x->minSpeed = kMinSpeed;
x->maxSpeed = kMaxSpeed;
x->centerWeight = kCenterWeight;
x->attractWeight = kAttractWeight;
x->matchWeight = kMatchWeight;
x->avoidWeight = kAvoidWeight;
x->wallsWeight = kWallsWeight;
x->edgeDist = kEdgeDist;
x->speedupFactor = kSpeedupFactor;
x->inertiaFactor = kInertiaFactor;
x->accelFactor = kAccelFactor;
x->prefDist = kPrefDist;
x->prefDistSqr = kPrefDist * kPrefDist;
x->flyRect.top = kFlyRectTop;
x->flyRect.left = kFlyRectLeft;
x->flyRect.bottom = kFlyRectBottom;
x->flyRect.right = kFlyRectRight;
x->flyRect.front = kFlyRectFront;
x->flyRect.back = kFlyRectBack;
x->attractPt.x = (kFlyRectLeft kFlyRectRight) * 0.5;
x->attractPt.y = (kFlyRectTop kFlyRectBottom) * 0.5;
x->attractPt.z = (kFlyRectFront kFlyRectBack) * 0.5;
Flock_resetBoids(x);
}
void FlightStep(t_boids *x)
{
Velocity goCenterVel;
Velocity goAttractVel;
Velocity matchNeighborVel;
Velocity avoidWallsVel;
Velocity avoidNeighborVel;
float avoidNeighborSpeed;
const Velocity zeroVel = {0.0, 0.0, 0.0};
short i;
x->centerPt = FindFlockCenter(x);
for (i = 0; i < x->numBoids; i ) { // save position and velocity
x->boid[i].oldPos.x = x->boid[i].newPos.x;
x->boid[i].oldPos.y = x->boid[i].newPos.y;
x->boid[i].oldPos.z = x->boid[i].newPos.z;
x->boid[i].oldDir.x = x->boid[i].newDir.x;
x->boid[i].oldDir.y = x->boid[i].newDir.y;
x->boid[i].oldDir.z = x->boid[i].newDir.z;
}
for (i = 0; i < x->numBoids; i ) {
if (x->numNeighbors > 0) { // get all velocity components
avoidNeighborSpeed = MatchAndAvoidNeighbors(x, i,&matchNeighborVel, &avoidNeighborVel);
} else {
matchNeighborVel = zeroVel;
avoidNeighborVel = zeroVel;
avoidNeighborSpeed = 0;
}
goCenterVel = SeekPoint(x, i, x->centerPt);
goAttractVel = SeekPoint(x, i, x->attractPt);
avoidWallsVel = AvoidWalls(x, i);
// compute resultant velocity using weights and inertia
x->boid[i].newDir.x = x->inertiaFactor * (x->boid[i].oldDir.x)
(x->centerWeight * goCenterVel.x
x->attractWeight * goAttractVel.x
x->matchWeight * matchNeighborVel.x
x->avoidWeight * avoidNeighborVel.x
x->wallsWeight * avoidWallsVel.x) / x->inertiaFactor;
x->boid[i].newDir.y = x->inertiaFactor * (x->boid[i].oldDir.y)
(x->centerWeight * goCenterVel.y
x->attractWeight * goAttractVel.y
x->matchWeight * matchNeighborVel.y
x->avoidWeight * avoidNeighborVel.y
x->wallsWeight * avoidWallsVel.y) / x->inertiaFactor;
x->boid[i].newDir.z = x->inertiaFactor * (x->boid[i].oldDir.z)
(x->centerWeight * goCenterVel.z
x->attractWeight * goAttractVel.z
x->matchWeight * matchNeighborVel.z
x->avoidWeight * avoidNeighborVel.z
x->wallsWeight * avoidWallsVel.z) / x->inertiaFactor;
NormalizeVelocity(&(x->boid[i].newDir)); // normalize velocity so its length is unity
// set to avoidNeighborSpeed bounded by minSpeed and maxSpeed
if ((avoidNeighborSpeed >= x->minSpeed) &&
(avoidNeighborSpeed <= x->maxSpeed))
x->boid[i].speed = avoidNeighborSpeed;
else if (avoidNeighborSpeed > x->maxSpeed)
x->boid[i].speed = x->maxSpeed;
else
x->boid[i].speed = x->minSpeed;
// calculate new position, applying speedupFactor
x->boid[i].newPos.x = x->boid[i].newDir.x * x->boid[i].speed * (x->speedupFactor / 100.0);
x->boid[i].newPos.y = x->boid[i].newDir.y * x->boid[i].speed * (x->speedupFactor / 100.0);
x->boid[i].newPos.z = x->boid[i].newDir.z * x->boid[i].speed * (x->speedupFactor / 100.0);
}
}
Point3d FindFlockCenter(t_boids *x)
{
double totalH = 0, totalV = 0, totalD = 0;
Point3d centerPoint;
register short i;
for (i = 0 ; i < x->numBoids; i )
{
totalH = x->boid[i].oldPos.x;
totalV = x->boid[i].oldPos.y;
totalD = x->boid[i].oldPos.z;
}
centerPoint.x = (double) (totalH / x->numBoids);
centerPoint.y = (double) (totalV / x->numBoids);
centerPoint.z = (double) (totalD / x->numBoids);
return(centerPoint);
}
float MatchAndAvoidNeighbors(t_boids *x, short theBoid, Velocity *matchNeighborVel, Velocity *avoidNeighborVel)
{
short i, j, neighbor;
double distSqr;
double dist, distH, distV,distD;
double tempSpeed;
short numClose = 0;
Velocity totalVel = {0.0, 0.0, 0.0};
/**********************/
/* Find the neighbors */
/**********************/
/* special case of one neighbor */
if (x->numNeighbors == 1) {
x->boid[theBoid].neighborDistSqr[0] = kMaxLong;
for (i = 0; i < x->numBoids; i ) {
if (i != theBoid) {
distSqr = DistSqrToPt(x->boid[theBoid].oldPos, x->boid[i].oldPos);
/* if this one is closer than the closest so far, then remember it */
if (x->boid[theBoid].neighborDistSqr[0] > distSqr) {
x->boid[theBoid].neighborDistSqr[0] = distSqr;
x->boid[theBoid].neighbor[0] = i;
}
}
}
}
/* more than one neighbor */
else {
for (j = 0; j < x->numNeighbors; j )
x->boid[theBoid].neighborDistSqr[j] = kMaxLong;
for (i = 0 ; i < x->numBoids; i ) {
/* if this one is not me... */
if (i != theBoid) {
distSqr = DistSqrToPt(x->boid[theBoid].oldPos, x->boid[i].oldPos);
/* if distSqr is less than the distance at the bottom of the array, sort into array */
if (distSqr < x->boid[theBoid].neighborDistSqr[x->numNeighbors-1]) {
j = x->numNeighbors - 1;
/* sort distSqr in to keep array in size order, smallest first */
while ((distSqr < x->boid[theBoid].neighborDistSqr[j-1]) && (j > 0)) {
x->boid[theBoid].neighborDistSqr[j] = x->boid[theBoid].neighborDistSqr[j - 1];
x->boid[theBoid].neighbor[j] = x->boid[theBoid].neighbor[j - 1];
j--;
}
x->boid[theBoid].neighborDistSqr[j] = distSqr;
x->boid[theBoid].neighbor[j] = i;
}
}
}
}
/*********************************/
/* Match and avoid the neighbors */
/*********************************/
matchNeighborVel->x = 0;
matchNeighborVel->y = 0;
matchNeighborVel->z = 0;
// set tempSpeed to old speed
tempSpeed = x->boid[theBoid].speed;
for (i = 0; i < x->numNeighbors; i ) {
neighbor = x->boid[theBoid].neighbor[i];
// calculate matchNeighborVel by averaging the neighbor velocities
matchNeighborVel->x = x->boid[neighbor].oldDir.x;
matchNeighborVel->y = x->boid[neighbor].oldDir.y;
matchNeighborVel->z = x->boid[neighbor].oldDir.z;
// if distance is less than preferred distance, then neighbor influences boid
distSqr = x->boid[theBoid].neighborDistSqr[i];
if (distSqr < x->prefDistSqr) {
dist = sqrt(distSqr);
distH = x->boid[neighbor].oldPos.x - x->boid[theBoid].oldPos.x;
distV = x->boid[neighbor].oldPos.y - x->boid[theBoid].oldPos.y;
distD = x->boid[neighbor].oldPos.z - x->boid[theBoid].oldPos.z;
if(dist == 0.0) dist = 0.0000001;
totalVel.x = totalVel.x - distH - (distH * ((float) x->prefDist / (dist)));
totalVel.y = totalVel.y - distV - (distV * ((float) x->prefDist / (dist)));
totalVel.z = totalVel.z - distD - (distV * ((float) x->prefDist / (dist)));
numClose ;
}
if (InFront(&(x->boid[theBoid]), &(x->boid[neighbor]))) { // adjust speed
if (distSqr < x->prefDistSqr)
tempSpeed /= (x->accelFactor / 100.0);
else
tempSpeed *= (x->accelFactor / 100.0);
}
else {
if (distSqr < x->prefDistSqr)
tempSpeed *= (x->accelFactor / 100.0);
else
tempSpeed /= (x->accelFactor / 100.0);
}
}
if (numClose) {
avoidNeighborVel->x = totalVel.x / numClose;
avoidNeighborVel->y = totalVel.y / numClose;
avoidNeighborVel->z = totalVel.z / numClose;
NormalizeVelocity(matchNeighborVel);
}
else {
avoidNeighborVel->x = 0;
avoidNeighborVel->y = 0;
avoidNeighborVel->z = 0;
}
return(tempSpeed);
}
Velocity SeekPoint(t_boids *x, short theBoid, Point3d seekPt)
{
Velocity tempDir;
tempDir.x = seekPt.x - x->boid[theBoid].oldPos.x;
tempDir.y = seekPt.y - x->boid[theBoid].oldPos.y;
tempDir.z = seekPt.z - x->boid[theBoid].oldPos.z;
NormalizeVelocity(&tempDir);
return(tempDir);
}
Velocity AvoidWalls(t_boids *x, short theBoid)
{
Point3d testPoint;
Velocity tempVel = {0.0, 0.0, 0.0};
/* calculate test point in front of the nose of the boid */
/* distance depends on the boid's speed and the avoid edge constant */
testPoint.x = x->boid[theBoid].oldPos.x x->boid[theBoid].oldDir.x * x->boid[theBoid].speed * x->edgeDist;
testPoint.y = x->boid[theBoid].oldPos.y x->boid[theBoid].oldDir.y * x->boid[theBoid].speed * x->edgeDist;
testPoint.z = x->boid[theBoid].oldPos.z x->boid[theBoid].oldDir.z * x->boid[theBoid].speed * x->edgeDist;
/* if test point is out of the left (right) side of x->flyRect, */
/* return a positive (negative) horizontal velocity component */
if (testPoint.x < x->flyRect.left)
tempVel.x = fabs(x->boid[theBoid].oldDir.x);
else if (testPoint.x > x->flyRect.right)
tempVel.x = - fabs(x->boid[theBoid].oldDir.x);
/* same with top and bottom */
if (testPoint.y < x->flyRect.top)
tempVel.y = fabs(x->boid[theBoid].oldDir.y);
else if (testPoint.y > x->flyRect.bottom)
tempVel.y = - fabs(x->boid[theBoid].oldDir.y);
/* same with front and back */
if (testPoint.z < x->flyRect.front)
tempVel.z = fabs(x->boid[theBoid].oldDir.z);
else if (testPoint.z > x->flyRect.back)
tempVel.z = - fabs(x->boid[theBoid].oldDir.z);
return(tempVel);
}
int InFront(BoidPtr theBoid, BoidPtr neighbor)
{
float grad, intercept;
int result;
/*
Find the gradient and y-intercept of a line passing through theBoid's oldPos
perpendicular to its direction of motion. Another boid is in front of theBoid
if it is to the right or left of this linedepending on whether theBoid is moving
right or left. However, if theBoid is travelling vertically then just compare
their vertical coordinates.
*/
// xy plane
// if theBoid is not travelling vertically...
if (theBoid->oldDir.x != 0) {
// calculate gradient of a line _perpendicular_ to its direction (hence the minus)
grad = -theBoid->oldDir.y / theBoid->oldDir.x;
// calculate where this line hits the y axis (from y = mx c)
intercept = theBoid->oldPos.y - (grad * theBoid->oldPos.x);
/* compare the horizontal position of the neighbor boid with */
/* the point on the line that has its vertical coordinate */
if (neighbor->oldPos.x >= ((neighbor->oldPos.y - intercept) / grad)) {
/* return true if the first boid's horizontal movement is ve */
result = (theBoid->oldDir.x > 0);
if (result==0) return 0;
else goto next;
} else {
/* return true if the first boid's horizontal movement is ve */
result = (theBoid->oldDir.x < 0);
if (result==0) return 0;
else goto next;
}
}
/* else theBoid is travelling vertically, so just compare vertical coordinates */
else if (theBoid->oldDir.y > 0) {
result = (neighbor->oldPos.y > theBoid->oldPos.y);
if (result==0){
return 0;
}else{
goto next;
}
}else{
result = (neighbor->oldPos.y < theBoid->oldPos.y);
if (result==0){
return 0;
} else {
goto next;
}
}
next:
// yz plane
// if theBoid is not travelling vertically...
if (theBoid->oldDir.y != 0) {
// calculate gradient of a line _perpendicular_ to its direction (hence the minus)
grad = -theBoid->oldDir.z / theBoid->oldDir.y;
// calculate where this line hits the y axis (from y = mx c)
intercept = theBoid->oldPos.z - (grad * theBoid->oldPos.y);
// compare the horizontal position of the neighbor boid with
// the point on the line that has its vertical coordinate
if (neighbor->oldPos.y >= ((neighbor->oldPos.z - intercept) / grad)) {
// return true if the first boid's horizontal movement is ve
result = (theBoid->oldDir.y > 0);
if (result==0){
return 0;
}else{
goto next2;
}
} else {
// return true if the first boid's horizontal movement is ve
result = (theBoid->oldDir.y < 0);
if (result==0){
return 0;
}else{
goto next2;
}
}
}
// else theBoid is travelling vertically, so just compare vertical coordinates
else if (theBoid->oldDir.z > 0) {
result = (neighbor->oldPos.z > theBoid->oldPos.z);
if (result==0){
return 0;
}else{
goto next2;
}
}else{
result = (neighbor->oldPos.z < theBoid->oldPos.z);
if (result==0){
return 0;
}else{
goto next2;
}
}
next2:
return 1;
}
void NormalizeVelocity(Velocity *direction)
{
float my_hypot;
my_hypot = sqrt(direction->x * direction->x direction->y * direction->y direction->z * direction->z );
if (my_hypot != 0.0) {
direction->x = direction->x / my_hypot;
direction->y = direction->y / my_hypot;
direction->z = direction->z / my_hypot;
}
}
double RandomInt(double minRange, double maxRange)
{
unsigned short qdRdm;
double t, result;
qdRdm = rand();
t = (double)qdRdm / 65536.0; // now 0 <= t <= 1
result = (t * (maxRange - minRange)) minRange;
return(result);
}
double DistSqrToPt(Point3d firstPoint, Point3d secondPoint)
{
double a, b,c;
a = firstPoint.x - secondPoint.x;
b = firstPoint.y - secondPoint.y;
c = firstPoint.z - secondPoint.z;
return(a * a b * b c * c);
}
|