File: boids3d.c

package info (click to toggle)
pd-boids 1.1.1-10
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 344 kB
  • sloc: ansic: 2,834; makefile: 263
file content (956 lines) | stat: -rw-r--r-- 29,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*

	boids3d 2005 - 2006 a.sier / jasch 
	adapted from boids by eric singer  1995-2003 eric l. singer

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.
 
	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
 
	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include 	"m_pd.h"
#include	<stdlib.h>
#include	<math.h>

// constants
#define			kAssistInlet	1
#define			kAssistOutlet	2
#define			kMaxLong		0xFFFFFFFF
#define			kMaxNeighbors	4

// util
#define MAX(a,b) ((a)>(b)?(a):(b))
#define CLIP(x,a,b) (x)=(x)<(a)?(a):(x)>(b)?(b):(x)

// initial flight parameters
const short			kNumBoids		= 12;	// number of boids
const short			kNumNeighbors	= 2;	// must be <= kMaxNeighbors
const double 		kMinSpeed		= 0.15;	// boids' minimum speed
const double		kMaxSpeed		= 0.25;	// boids' maximum speed
const double		kCenterWeight	= 0.25;	// flock centering
const double		kAttractWeight	= 0.300;// attraction point seeking
const double		kMatchWeight	= 0.100;// neighbors velocity matching
const double		kAvoidWeight	= 0.10;	// neighbors avoidance
const double		kWallsWeight	= 0.500;// wall avoidance [210]
const double		kEdgeDist		= 0.5;	// vision distance to avoid wall edges [5]
const double		kSpeedupFactor	= 0.100;// alter animation speed
const double		kInertiaFactor	= 0.20;	// willingness to change speed & direction
const double		kAccelFactor	= 0.100;// neighbor avoidance accelerate or decelerate rate
const double		kPrefDist		= 0.25;	// preferred distance from neighbors
const double		kFlyRectTop		= 1.0;	// fly rect boundaries
const double		kFlyRectLeft	= -1.0;	
const double		kFlyRectBottom	= -1.0;	
const double		kFlyRectRight	= 1.0;	
const double		kFlyRectFront	= 1.0;	
const double		kFlyRectBack	= -1.0;	


// typedefs
typedef struct Velocity {
	double		x;
	double		y;
	double		z;
} Velocity;

typedef struct Point3d {
	double		x;
	double		y;
	double		z;
} Point3d;

typedef struct Box3D {
	double		left, right;
	double		top, bottom;
	double		front, back;
} Box3D;

typedef struct _Boid {
	Point3d		oldPos;
	Point3d		newPos;
	Velocity	oldDir;
	Velocity	newDir;
	double		speed;
	short		neighbor[kMaxNeighbors];
	double		neighborDistSqr[kMaxNeighbors];
} t_one_boid, *BoidPtr;

typedef struct _FlockObject {
	t_object	ob;
	void		*out1, *out2;
	short		mode;
	long		numBoids;
	long		numNeighbors;
	Box3D		flyRect;
	double 		minSpeed;
	double		maxSpeed;
	double		centerWeight;
	double		attractWeight;
	double		matchWeight;
	double		avoidWeight;
	double		wallsWeight;
	double		edgeDist;
	double		speedupFactor;
	double		inertiaFactor;
	double		accelFactor;
	double		prefDist;
	double		prefDistSqr;
	Point3d		centerPt;
	Point3d		attractPt;
	BoidPtr		boid;
	double 		d2r, r2d;
} t_boids, *FlockPtr;


t_symbol 	*ps_nothing;

void *boids3d_class;
void *Flock_new(t_symbol *s, long argc, t_atom *argv);
void Flock_free(t_boids *x);
void Flock_bang(t_boids *x);
void Flock_dump(t_boids *x);
void Flock_mode(t_boids *x, t_float arg);
void Flock_numNeighbors(t_boids *x, t_float arg);
void Flock_numBoids(t_boids *x, t_float arg);
void Flock_minSpeed(t_boids *x, t_float arg);
void Flock_maxSpeed(t_boids *x, t_float arg);
void Flock_centerWeight(t_boids *x, t_float arg);
void Flock_attractWeight(t_boids *x, t_float arg);
void Flock_matchWeight(t_boids *x, t_float arg);
void Flock_avoidWeight(t_boids *x, t_float arg);
void Flock_wallsWeight(t_boids *x, t_float arg);
void Flock_edgeDist(t_boids *x, t_float arg);
void Flock_speedupFactor(t_boids *x, t_float arg);
void Flock_inertiaFactor(t_boids *x, t_float arg);
void Flock_accelFactor(t_boids *x, t_float arg);
void Flock_prefDist(t_boids *x, t_float arg);
void Flock_flyRect(t_boids *x, t_symbol *msg, short argc, t_atom *argv);
void Flock_attractPt(t_boids *x, t_symbol *msg, short argc, t_atom *argv);
void Flock_reset(t_boids *x);
void Flock_resetBoids(t_boids *x);
void InitFlock(t_boids *x);
void FlightStep(t_boids *x);
Point3d FindFlockCenter(t_boids *x);
float MatchAndAvoidNeighbors(t_boids *x, short theBoid, Velocity *matchNeighborVel, Velocity *avoidNeighborVel);
Velocity SeekPoint(t_boids *x, short theBoid, Point3d seekPt);
Velocity AvoidWalls(t_boids *x, short theBoid);
int InFront(BoidPtr theBoid, BoidPtr neighbor);
void NormalizeVelocity(Velocity *direction);
double RandomInt(double minRange, double maxRange);
double DistSqrToPt(Point3d firstPoint, Point3d secondPoint);

void boids3d_setup(void)
{
	boids3d_class = class_new(gensym("boids3d"), (t_newmethod)Flock_new, 
			(t_method)Flock_free, sizeof(t_boids), 0, A_GIMME, 0);
	class_addfloat(boids3d_class,  (t_method) Flock_numBoids);
	class_addbang(boids3d_class,   (t_method) Flock_bang);
	class_addmethod(boids3d_class, (t_method) Flock_numNeighbors,		gensym("neighbors"), 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_numBoids,			gensym("number"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_mode,				gensym("mode"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_minSpeed,			gensym("minspeed"), 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_maxSpeed,			gensym("maxspeed"), 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_centerWeight,		gensym("center"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_attractWeight,		gensym("attract"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_matchWeight,		gensym("match"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_avoidWeight,		gensym("avoid"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_wallsWeight,		gensym("repel"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_edgeDist,			gensym("edgedist"), 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_speedupFactor,		gensym("speed"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_inertiaFactor,		gensym("inertia"),	 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_accelFactor,		gensym("accel"), 		A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_prefDist,			gensym("prefdist"), 	A_FLOAT, 0);
	class_addmethod(boids3d_class, (t_method) Flock_flyRect,			gensym("flyrect"), 		A_GIMME, 0);
	class_addmethod(boids3d_class, (t_method) Flock_attractPt, 			gensym("attractpt"), 	A_GIMME, 0);
	class_addmethod(boids3d_class, (t_method) Flock_resetBoids, 		gensym("reset"), 		0);
	class_addmethod(boids3d_class, (t_method) Flock_reset, 				gensym("init"), 		0);
	class_addmethod(boids3d_class, (t_method) Flock_dump, 				gensym("dump"), 		0);
	
	post("boids3d 2005-2006 a.sier / jasch    1995-2003 eric l. singer   "__DATE__" "__TIME__);	
	ps_nothing = gensym("");
}


void *Flock_new(t_symbol *s, long argc, t_atom *argv)
{	
	t_boids *x = (t_boids *)pd_new(boids3d_class);
	x->out1 = outlet_new(&x->ob, NULL);
	x->out2 = outlet_new(&x->ob, NULL);
	
	x->numBoids = 16;
	if((argc >= 1) && (argv[0].a_type == A_FLOAT)){
		x->numBoids = argv[0].a_w.w_float;
	}
	x->boid = (t_one_boid *)malloc(sizeof(t_one_boid) * x->numBoids);
	
	InitFlock(x);
	
	x->mode = 0;
	if((argc >= 2) && (argv[1].a_type == A_FLOAT)){
		x->mode = (short)(CLIP(argv[1].a_w.w_float, 0, 2));
	}
	
	x->d2r = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068/180.0;
	x->r2d = 180.0/3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068;
	
	return(x);
}

void Flock_free(t_boids *x)
{
	free(x->boid);
}

void Flock_bang(t_boids *x)
{
	short	i;
	t_atom 	outlist[10];
	t_atom 	*out;
	
	double 	tempNew_x, tempNew_y, tempNew_z; 
	double 	tempOld_x, tempOld_y, tempOld_z;
	double	delta_x, delta_y, delta_z; 
	double 	azi, ele, speed;
	
	out = outlist;
		
	FlightStep(x);


	switch(x->mode) { // newpos
		case 0:
		for (i = 0; i < x->numBoids; i  ){
			SETFLOAT(out 0, i);
			SETFLOAT(out 1, x->boid[i].newPos.x);
			SETFLOAT(out 2, x->boid[i].newPos.y);
			SETFLOAT(out 3, x->boid[i].newPos.z);
			outlet_list(x->out1, 0L, 4, out);
		}
		break;
		case 1: //newpos   oldpos
		for (i = 0; i < x->numBoids; i  ){
			SETFLOAT(out 0, i);
			SETFLOAT(out 1, x->boid[i].newPos.x);
			SETFLOAT(out 2, x->boid[i].newPos.y);
			SETFLOAT(out 3, x->boid[i].newPos.z);
			SETFLOAT(out 4, x->boid[i].oldPos.x);
			SETFLOAT(out 5, x->boid[i].oldPos.y);
			SETFLOAT(out 6, x->boid[i].oldPos.z);
			outlet_list(x->out1, 0L, 7, out);
		}
		break;
		case 2:
		for (i = 0; i < x->numBoids; i  ){						
			tempNew_x = x->boid[i].newPos.x;
			tempNew_y = x->boid[i].newPos.y;
			tempNew_z = x->boid[i].newPos.z;
			tempOld_x = x->boid[i].oldPos.x;
			tempOld_y = x->boid[i].oldPos.y;
			tempOld_z = x->boid[i].oldPos.z;
			delta_x = tempNew_x - tempOld_x;
			delta_y = tempNew_y - tempOld_y;
			delta_z = tempNew_z - tempOld_z;
			azi = atan2(delta_y, delta_x) * x->r2d;
			ele = atan2(delta_y, delta_x) * x->r2d;
			speed = sqrt(delta_x * delta_x   delta_y * delta_y    delta_z * delta_z);
			SETFLOAT(out 0, i);
			SETFLOAT(out 1, tempNew_x);
			SETFLOAT(out 2, tempNew_y);
			SETFLOAT(out 3, tempNew_z);
			SETFLOAT(out 4, tempOld_x);
			SETFLOAT(out 5, tempOld_y);
			SETFLOAT(out 6, tempOld_z);
			SETFLOAT(out 7, speed);
			SETFLOAT(out 8, azi);
			SETFLOAT(out 9, ele);
			outlet_list(x->out1, 0L, 10, out);
		}
		break;	
	}
}

void Flock_dump(t_boids *x)
{
	t_atom	outList[6];
	
	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->numNeighbors;
	outlet_anything(x->out2, gensym("neighbors"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->minSpeed;
	outlet_anything(x->out2, gensym("minspeed"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->maxSpeed;
	outlet_anything(x->out2, gensym("maxspeed"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->centerWeight;
	outlet_anything(x->out2, gensym("center"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->attractWeight;
	outlet_anything(x->out2, gensym("attract"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->matchWeight;
	outlet_anything(x->out2, gensym("match"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->avoidWeight;
	outlet_anything(x->out2, gensym("avoid"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->wallsWeight;
	outlet_anything(x->out2, gensym("repel"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->edgeDist;
	outlet_anything(x->out2, gensym("edgedist"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->speedupFactor;
	outlet_anything(x->out2, gensym("speed"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->inertiaFactor;
	outlet_anything(x->out2, gensym("inertia"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->accelFactor;
	outlet_anything(x->out2, gensym("accel"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float = x->prefDist;
	outlet_anything(x->out2, gensym("prefdist"), 1, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->flyRect.left;
	outList[1].a_type = A_FLOAT;
	outList[1].a_w.w_float =  x->flyRect.top;
	outList[2].a_type = A_FLOAT;
	outList[2].a_w.w_float =  x->flyRect.right;
	outList[3].a_type = A_FLOAT;
	outList[3].a_w.w_float =  x->flyRect.bottom;
	outList[4].a_type = A_FLOAT;
	outList[4].a_w.w_float =  x->flyRect.front;
	outList[5].a_type = A_FLOAT;
	outList[5].a_w.w_float =  x->flyRect.back;
	outlet_anything(x->out2, gensym("flyrect"), 6, outList);

	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->attractPt.x;
	outList[1].a_type = A_FLOAT;
	outList[1].a_w.w_float =  x->attractPt.y;
	outList[2].a_type = A_FLOAT;
	outList[2].a_w.w_float =  x->attractPt.z;
	outlet_anything(x->out2, gensym("attractpt"), 3, outList);
	
	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->mode;
	outlet_anything(x->out2, gensym("mode"), 1, outList);
	
	outList[0].a_type = A_FLOAT;
	outList[0].a_w.w_float =  x->numBoids;
	outlet_anything(x->out2, gensym("number"), 1, outList);
}


void Flock_mode(t_boids *x, t_float arg)
{
	long m = (long)arg;
	x->mode = CLIP(m, 0, 2);
}

void Flock_numNeighbors(t_boids *x, t_float arg)
{
	x->numNeighbors = (long)arg;
}

void Flock_numBoids(t_boids *x, t_float arg)
{
	x->boid = (t_one_boid *)realloc(x->boid, sizeof(t_one_boid) * (long)arg);
	x->numBoids = (long)arg;
	Flock_resetBoids(x);
}

void Flock_minSpeed(t_boids *x, t_float arg)
{
	x->minSpeed = MAX(arg, 0.000001);
}

void Flock_maxSpeed(t_boids *x, t_float arg)
{
	x->maxSpeed = (double)arg;
}

void Flock_centerWeight(t_boids *x, t_float arg)
{
	x->centerWeight = (double)arg;
}

void Flock_attractWeight(t_boids *x, t_float arg)
{
	x->attractWeight = (double)arg;
}

void Flock_matchWeight(t_boids *x, t_float arg)
{
	x->matchWeight = (double)arg;
}

void Flock_avoidWeight(t_boids *x, t_float arg)
{
	x->avoidWeight = (double)arg;
}

void Flock_wallsWeight(t_boids *x, t_float arg)
{
	x->wallsWeight = (double)arg;
}

void Flock_edgeDist(t_boids *x, t_float arg)
{
	x->edgeDist = (double)arg;
}

void Flock_speedupFactor(t_boids *x, t_float arg)
{
	x->speedupFactor = (double)arg;
}

void Flock_inertiaFactor(t_boids *x, t_float arg)
{
	if(arg == 0){
		x->inertiaFactor = 0.000001;
	}else{
		x->inertiaFactor = (double)arg;
	}
}

void Flock_accelFactor(t_boids *x, t_float arg)
{
	x->accelFactor = (double)arg;
}

void Flock_prefDist(t_boids *x, t_float arg)
{
	x->prefDist = (double)arg;
}

void Flock_flyRect(t_boids *x, t_symbol *msg, short argc, t_atom *argv)
{
	double temp[6];
	short i;
	if(argc == 6){
		for(i = 0; i < 6; i  ) {
			if(argv[i].a_type == A_FLOAT) {
				temp[i] = (double)argv[i].a_w.w_float;	
			}
		}
		x->flyRect.left 	= temp[0];
		x->flyRect.top 		= temp[1];
		x->flyRect.right 	= temp[2];
		x->flyRect.bottom 	= temp[3];
		x->flyRect.front 	= temp[4];
		x->flyRect.back 	= temp[5];
	}else{
		pd_error(x,"boids3d: flyrect needs 6 values");
	}
}

void Flock_attractPt(t_boids *x, t_symbol *msg, short argc, t_atom *argv)
{
	double temp[3];
	short i;
	if(argc == 3){
	for(i = 0; i < 3 ; i  ) {
		if(argv[i].a_type == A_FLOAT) {
			temp[i] = (double)argv[i].a_w.w_float;	
		}
	}
	x->attractPt.x = temp[0];
	x->attractPt.y = temp[1];
	x->attractPt.z = temp[2];
	}else{
		pd_error(x,"boids3d: attractPt needs 3 values");
	}
}

void Flock_reset(t_boids *x)
{
	InitFlock(x);
}

void Flock_resetBoids(t_boids *x)
{
	long i, j;
	double rndAngle;
	
	for (i = 0; i <  x->numBoids; i  ) { // init everything to 0.0
		x->boid[i].oldPos.x = 0.0;
		x->boid[i].oldPos.y = 0.0;
		x->boid[i].oldPos.z = 0.0;

		x->boid[i].newPos.x = 0.0;
		x->boid[i].newPos.y = 0.0;
		x->boid[i].newPos.z = 0.0;
		
		x->boid[i].oldDir.x = 0.0;
		x->boid[i].oldDir.y = 0.0;
		x->boid[i].oldDir.z = 0.0;
		
		x->boid[i].newDir.x = 0.0;
		x->boid[i].newDir.y = 0.0;
		x->boid[i].newDir.z = 0.0;
		
		x->boid[i].speed = 0.0;
		
		for(j=0; j<kMaxNeighbors;j  ){
			x->boid[i].neighbor[j] = 0;
			x->boid[i].neighborDistSqr[j] = 0.0;
		}
	}
	for (i = 0; i <  x->numBoids; i  ) {				// set the initial locations and velocities of the boids
		x->boid[i].newPos.x = x->boid[i].oldPos.x = RandomInt(x->flyRect.right,x->flyRect.left);		// set random location within flyRect
		x->boid[i].newPos.y = x->boid[i].oldPos.y = RandomInt(x->flyRect.bottom, x->flyRect.top);
		x->boid[i].newPos.z = x->boid[i].oldPos.z = RandomInt(x->flyRect.back, x->flyRect.front);
		rndAngle = RandomInt(0, 360) * x->d2r;		// set velocity from random angle
		x->boid[i].newDir.x = sin(rndAngle);
		x->boid[i].newDir.y = cos(rndAngle);
		x->boid[i].newDir.z = (cos(rndAngle)   sin(rndAngle)) * 0.5;
		x->boid[i].speed = (kMaxSpeed   kMinSpeed) * 0.5;
	}
}

void InitFlock(t_boids *x)
{
	x->numNeighbors		= kNumNeighbors;
	x->minSpeed			= kMinSpeed;
	x->maxSpeed			= kMaxSpeed;
	x->centerWeight		= kCenterWeight;
	x->attractWeight	= kAttractWeight;
	x->matchWeight		= kMatchWeight;
	x->avoidWeight		= kAvoidWeight;
	x->wallsWeight		= kWallsWeight;
	x->edgeDist			= kEdgeDist;
	x->speedupFactor	= kSpeedupFactor;
	x->inertiaFactor	= kInertiaFactor;
	x->accelFactor		= kAccelFactor;
	x->prefDist			= kPrefDist;
	x->prefDistSqr		= kPrefDist * kPrefDist;
	x->flyRect.top		= kFlyRectTop;
	x->flyRect.left		= kFlyRectLeft;
	x->flyRect.bottom	= kFlyRectBottom;
	x->flyRect.right	= kFlyRectRight;
	x->flyRect.front	= kFlyRectFront;
	x->flyRect.back		= kFlyRectBack;
	x->attractPt.x		= (kFlyRectLeft   kFlyRectRight) * 0.5;
	x->attractPt.y		= (kFlyRectTop   kFlyRectBottom) * 0.5;
	x->attractPt.z		= (kFlyRectFront   kFlyRectBack) * 0.5;
	Flock_resetBoids(x);
}

void FlightStep(t_boids *x)
{
	Velocity		goCenterVel;
	Velocity		goAttractVel;
	Velocity		matchNeighborVel;
	Velocity		avoidWallsVel;
	Velocity		avoidNeighborVel;
	float			avoidNeighborSpeed;
	const Velocity	zeroVel	= {0.0, 0.0, 0.0};
	short			i;

	x->centerPt = FindFlockCenter(x);
	for (i = 0; i <  x->numBoids; i  ) {						// save position and velocity
		x->boid[i].oldPos.x = x->boid[i].newPos.x;
		x->boid[i].oldPos.y = x->boid[i].newPos.y;
		x->boid[i].oldPos.z = x->boid[i].newPos.z;
		
		x->boid[i].oldDir.x = x->boid[i].newDir.x;
		x->boid[i].oldDir.y = x->boid[i].newDir.y;
		x->boid[i].oldDir.z = x->boid[i].newDir.z;
	}
	for (i = 0; i < x->numBoids; i  ) {
		if (x->numNeighbors > 0) {							// get all velocity components
			avoidNeighborSpeed = MatchAndAvoidNeighbors(x, i,&matchNeighborVel, &avoidNeighborVel);
		} else {
			matchNeighborVel = zeroVel;
			avoidNeighborVel = zeroVel;
			avoidNeighborSpeed = 0;
		}
		goCenterVel = SeekPoint(x, i, x->centerPt);			
		goAttractVel = SeekPoint(x, i, x->attractPt);
		avoidWallsVel = AvoidWalls(x, i);
	
		// compute resultant velocity using weights and inertia
		x->boid[i].newDir.x = x->inertiaFactor * (x->boid[i].oldDir.x)  
							(x->centerWeight * goCenterVel.x  
							 x->attractWeight * goAttractVel.x  
							 x->matchWeight * matchNeighborVel.x  
							 x->avoidWeight * avoidNeighborVel.x  
							 x->wallsWeight * avoidWallsVel.x) / x->inertiaFactor;
		x->boid[i].newDir.y = x->inertiaFactor * (x->boid[i].oldDir.y)  
							(x->centerWeight * goCenterVel.y  
							 x->attractWeight * goAttractVel.y  
							 x->matchWeight * matchNeighborVel.y  
							 x->avoidWeight * avoidNeighborVel.y  
							 x->wallsWeight * avoidWallsVel.y) / x->inertiaFactor;
		x->boid[i].newDir.z = x->inertiaFactor * (x->boid[i].oldDir.z)  
							(x->centerWeight * goCenterVel.z  
							 x->attractWeight * goAttractVel.z  
							 x->matchWeight * matchNeighborVel.z  
							 x->avoidWeight * avoidNeighborVel.z  
							 x->wallsWeight * avoidWallsVel.z) / x->inertiaFactor;
		NormalizeVelocity(&(x->boid[i].newDir));	// normalize velocity so its length is unity

		// set to avoidNeighborSpeed bounded by minSpeed and maxSpeed
		if ((avoidNeighborSpeed >= x->minSpeed) &&
				(avoidNeighborSpeed <= x->maxSpeed))
			x->boid[i].speed = avoidNeighborSpeed;
		else if (avoidNeighborSpeed > x->maxSpeed)
			x->boid[i].speed = x->maxSpeed;
		else
			x->boid[i].speed = x->minSpeed;

		// calculate new position, applying speedupFactor
		x->boid[i].newPos.x  = x->boid[i].newDir.x * x->boid[i].speed * (x->speedupFactor / 100.0);
		x->boid[i].newPos.y  = x->boid[i].newDir.y * x->boid[i].speed * (x->speedupFactor / 100.0);
		x->boid[i].newPos.z  = x->boid[i].newDir.z * x->boid[i].speed * (x->speedupFactor / 100.0);

	}
}

Point3d FindFlockCenter(t_boids *x)
{
	double			totalH = 0, totalV = 0, totalD = 0;
	Point3d			centerPoint;
	register short	i;

	for (i = 0 ; i <  x->numBoids; i  )
	{
		totalH  = x->boid[i].oldPos.x;
		totalV  = x->boid[i].oldPos.y;
		totalD  = x->boid[i].oldPos.z;
	}
	centerPoint.x = (double)	(totalH / x->numBoids);
	centerPoint.y = (double)	(totalV / x->numBoids);
	centerPoint.z = (double)	(totalD / x->numBoids);
		
	return(centerPoint);
}

float MatchAndAvoidNeighbors(t_boids *x, short theBoid, Velocity *matchNeighborVel, Velocity *avoidNeighborVel)
{
	short			i, j, neighbor;
	double			distSqr;
	double			dist, distH, distV,distD;
	double			tempSpeed;
	short			numClose = 0;
	Velocity		totalVel = {0.0, 0.0, 0.0};

	/**********************/
	/* Find the neighbors */	
	/**********************/

	/* special case of one neighbor */
	if (x->numNeighbors == 1) {
		x->boid[theBoid].neighborDistSqr[0] = kMaxLong;
	
		for (i = 0; i < x->numBoids; i  ) {
			if (i != theBoid) {
				distSqr = DistSqrToPt(x->boid[theBoid].oldPos, x->boid[i].oldPos);
				
				/* if this one is closer than the closest so far, then remember it */
				if (x->boid[theBoid].neighborDistSqr[0] > distSqr) {
					x->boid[theBoid].neighborDistSqr[0] = distSqr;
					x->boid[theBoid].neighbor[0] = i;
				}
			}
		}
	}
	/* more than one neighbor */
	else {
		for (j = 0; j < x->numNeighbors; j  )
			x->boid[theBoid].neighborDistSqr[j] = kMaxLong;
		
		for (i = 0 ; i < x->numBoids; i  ) {
			/* if this one is not me... */
			if (i != theBoid) {
				distSqr = DistSqrToPt(x->boid[theBoid].oldPos, x->boid[i].oldPos);
	
				/* if distSqr is less than the distance at the bottom of the array, sort into array */
				if (distSqr < x->boid[theBoid].neighborDistSqr[x->numNeighbors-1]) {
					j = x->numNeighbors - 1;
				
					/* sort distSqr in to keep array in size order, smallest first */
					while ((distSqr < x->boid[theBoid].neighborDistSqr[j-1]) && (j > 0)) {
						x->boid[theBoid].neighborDistSqr[j] = x->boid[theBoid].neighborDistSqr[j - 1];
						x->boid[theBoid].neighbor[j] = x->boid[theBoid].neighbor[j - 1];
						j--;
					}
					x->boid[theBoid].neighborDistSqr[j] = distSqr;
					x->boid[theBoid].neighbor[j] = i;					
				}
			}
		}
	}

	/*********************************/
	/* Match and avoid the neighbors */	
	/*********************************/

	matchNeighborVel->x = 0;
	matchNeighborVel->y = 0;
	matchNeighborVel->z = 0;
	
	// set tempSpeed to old speed
	tempSpeed = x->boid[theBoid].speed;
	
	for (i = 0; i < x->numNeighbors; i  ) {
		neighbor = x->boid[theBoid].neighbor[i];
		
		// calculate matchNeighborVel by averaging the neighbor velocities
		matchNeighborVel->x  = x->boid[neighbor].oldDir.x;
		matchNeighborVel->y  = x->boid[neighbor].oldDir.y;
		matchNeighborVel->z  = x->boid[neighbor].oldDir.z;
			
		// if distance is less than preferred distance, then neighbor influences boid
		distSqr = x->boid[theBoid].neighborDistSqr[i];
		if (distSqr < x->prefDistSqr) {
			dist = sqrt(distSqr);

			distH = x->boid[neighbor].oldPos.x - x->boid[theBoid].oldPos.x;
			distV = x->boid[neighbor].oldPos.y - x->boid[theBoid].oldPos.y;
			distD = x->boid[neighbor].oldPos.z - x->boid[theBoid].oldPos.z;
			
			if(dist == 0.0) dist = 0.0000001;
			totalVel.x = totalVel.x - distH - (distH * ((float) x->prefDist / (dist)));
			totalVel.y = totalVel.y - distV - (distV * ((float) x->prefDist / (dist)));
			totalVel.z = totalVel.z - distD - (distV * ((float) x->prefDist / (dist)));
		
			numClose  ;
		}
		if (InFront(&(x->boid[theBoid]), &(x->boid[neighbor]))) {	// adjust speed
			if (distSqr < x->prefDistSqr) 
				tempSpeed /= (x->accelFactor / 100.0);
			else
				tempSpeed *= (x->accelFactor / 100.0);
		}
		else {
			if (distSqr < x->prefDistSqr)
				tempSpeed *= (x->accelFactor / 100.0);
			else
				tempSpeed /= (x->accelFactor / 100.0);
		}
	}
	if (numClose) {
		avoidNeighborVel->x = totalVel.x / numClose;
		avoidNeighborVel->y = totalVel.y / numClose;
		avoidNeighborVel->z = totalVel.z / numClose;
		NormalizeVelocity(matchNeighborVel);
	}
	else {
		avoidNeighborVel->x = 0;
		avoidNeighborVel->y = 0;
		avoidNeighborVel->z = 0;
	}
	return(tempSpeed);
}


Velocity SeekPoint(t_boids *x, short theBoid, Point3d seekPt)
{
	Velocity	tempDir;
	tempDir.x = seekPt.x - x->boid[theBoid].oldPos.x;	
	tempDir.y = seekPt.y - x->boid[theBoid].oldPos.y;
	tempDir.z = seekPt.z - x->boid[theBoid].oldPos.z;
	NormalizeVelocity(&tempDir);
	return(tempDir);
}


Velocity AvoidWalls(t_boids *x, short theBoid)
{
	Point3d		testPoint;
	Velocity	tempVel = {0.0, 0.0, 0.0};
		
	/* calculate test point in front of the nose of the boid */
	/* distance depends on the boid's speed and the avoid edge constant */
	testPoint.x = x->boid[theBoid].oldPos.x   x->boid[theBoid].oldDir.x * x->boid[theBoid].speed * x->edgeDist;
	testPoint.y = x->boid[theBoid].oldPos.y   x->boid[theBoid].oldDir.y * x->boid[theBoid].speed * x->edgeDist;
	testPoint.z = x->boid[theBoid].oldPos.z   x->boid[theBoid].oldDir.z * x->boid[theBoid].speed * x->edgeDist;

	/* if test point is out of the left (right) side of x->flyRect, */
	/* return a positive (negative) horizontal velocity component */
	if (testPoint.x < x->flyRect.left)
		tempVel.x = fabs(x->boid[theBoid].oldDir.x);
	else if (testPoint.x > x->flyRect.right)
		tempVel.x = - fabs(x->boid[theBoid].oldDir.x);

	/* same with top and bottom */
	if (testPoint.y < x->flyRect.top)
		tempVel.y = fabs(x->boid[theBoid].oldDir.y);
	else if (testPoint.y > x->flyRect.bottom)
		tempVel.y = - fabs(x->boid[theBoid].oldDir.y);

	/* same with front and back */
	if (testPoint.z < x->flyRect.front)
		tempVel.z = fabs(x->boid[theBoid].oldDir.z);
	else if (testPoint.z > x->flyRect.back)
		tempVel.z = - fabs(x->boid[theBoid].oldDir.z);
		
	return(tempVel);
}


int InFront(BoidPtr theBoid, BoidPtr neighbor)
{
	float	grad, intercept;
	int result;
	
/* 

Find the gradient and y-intercept of a line passing through theBoid's oldPos
perpendicular to its direction of motion.  Another boid is in front of theBoid
if it is to the right or left of this linedepending on whether theBoid is moving
right or left.  However, if theBoid is travelling vertically then just compare
their vertical coordinates.	

*/
	// xy plane
	
	// if theBoid is not travelling vertically...
	if (theBoid->oldDir.x != 0) {
		// calculate gradient of a line _perpendicular_ to its direction (hence the minus)
		grad = -theBoid->oldDir.y / theBoid->oldDir.x;
		
		// calculate where this line hits the y axis (from y = mx   c)
		intercept = theBoid->oldPos.y - (grad * theBoid->oldPos.x);

		/* compare the horizontal position of the neighbor boid with */
		/* the point on the line that has its vertical coordinate */
		if (neighbor->oldPos.x >= ((neighbor->oldPos.y - intercept) / grad)) {
			/* return true if the first boid's horizontal movement is  ve */
			result = (theBoid->oldDir.x > 0);

			if (result==0) return 0;
			else goto next;
			
		} else {
			/* return true if the first boid's horizontal movement is  ve */
			result = (theBoid->oldDir.x < 0);
			if (result==0) return 0;
			else goto next;
		}
	}
	/* else theBoid is travelling vertically, so just compare vertical coordinates */
	else if (theBoid->oldDir.y > 0) {
		result = (neighbor->oldPos.y > theBoid->oldPos.y);
		if (result==0){ 
			return 0;
		}else{
			goto next;
		}
	}else{
		result = (neighbor->oldPos.y < theBoid->oldPos.y);
		if (result==0){
			return 0;
		} else {
			goto next;
		}
	}
next:
	// yz plane
	
	// if theBoid is not travelling vertically... 
	if (theBoid->oldDir.y != 0) {
		// calculate gradient of a line _perpendicular_ to its direction (hence the minus) 
		grad = -theBoid->oldDir.z / theBoid->oldDir.y;
		
		// calculate where this line hits the y axis (from y = mx   c) 
		intercept = theBoid->oldPos.z - (grad * theBoid->oldPos.y);

		// compare the horizontal position of the neighbor boid with 
		// the point on the line that has its vertical coordinate 
		if (neighbor->oldPos.y >= ((neighbor->oldPos.z - intercept) / grad)) {
			// return true if the first boid's horizontal movement is  ve 
			result = (theBoid->oldDir.y > 0);
			if (result==0){ 
				return 0;
			}else{
				goto next2;
			}
		} else {
			// return true if the first boid's horizontal movement is  ve 
			result = (theBoid->oldDir.y < 0);
			if (result==0){
				return 0;
			}else{
				goto next2;
			}
		}
	}
	// else theBoid is travelling vertically, so just compare vertical coordinates 
	else if (theBoid->oldDir.z > 0) {
		result = (neighbor->oldPos.z > theBoid->oldPos.z);
		if (result==0){ 
			return 0;
		}else{
			goto next2;
		}
	}else{
		result = (neighbor->oldPos.z < theBoid->oldPos.z);
		if (result==0){
			return 0;
		}else{
			goto next2;
		}
	}
next2:
	return 1;
}

void NormalizeVelocity(Velocity *direction)
{
	float	my_hypot;
	
	my_hypot = sqrt(direction->x * direction->x   direction->y * direction->y   direction->z * direction->z );

	if (my_hypot != 0.0) {
		direction->x = direction->x / my_hypot;
		direction->y = direction->y / my_hypot;
		direction->z = direction->z / my_hypot;
	}
}

double RandomInt(double minRange, double maxRange)
{
	unsigned short	qdRdm;
	double			t, result;
	
	qdRdm = rand();
	t = (double)qdRdm / 65536.0; 	// now 0 <= t <= 1
	result = (t * (maxRange - minRange))   minRange;
	return(result);
}

double DistSqrToPt(Point3d firstPoint, Point3d secondPoint)
{
	double	a, b,c;
	a = firstPoint.x - secondPoint.x;
	b = firstPoint.y - secondPoint.y;	
	c = firstPoint.z - secondPoint.z;	
	return(a * a   b * b   c * c);
}