File: WasmSignalHandlers.cpp

package info (click to toggle)
mozjs115 115.18.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 938,568 kB
  • sloc: javascript: 2,020,266; cpp: 1,301,920; python: 724,262; ansic: 612,305; xml: 117,734; sh: 18,145; asm: 13,490; makefile: 11,730; yacc: 4,504; perl: 2,222; lex: 1,414; ruby: 1,072; exp: 756; java: 177; sql: 66; sed: 18
file content (1084 lines) | stat: -rw-r--r-- 37,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
/* -*- Mode: C  ; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 *
 * Copyright 2014 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmSignalHandlers.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/ThreadLocal.h"

#include "threading/Thread.h"
#include "vm/JitActivation.h"  // js::jit::JitActivation
#include "vm/Realm.h"
#include "vm/Runtime.h"
#include "wasm/WasmCode.h"
#include "wasm/WasmInstance.h"

#if defined(XP_WIN)
#  include <winternl.h>  // must include before util/WindowsWrapper.h's `#undef`s
#  include "util/WindowsWrapper.h"
#elif defined(XP_DARWIN)
#  include <mach/exc.h>
#  include <mach/mach.h>
#else
#  include <signal.h>
#endif

using namespace js;
using namespace js::wasm;

using mozilla::DebugOnly;

#if !defined(JS_CODEGEN_NONE)

// =============================================================================
// This following pile of macros and includes defines the ToRegisterState() and
// the ContextTo{PC,FP,SP,LR}() functions from the (highly) platform-specific
// CONTEXT struct which is provided to the signal handler.
// =============================================================================

#  if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#    include <sys/ucontext.h>  // for ucontext_t, mcontext_t
#  endif

#  if defined(__x86_64__)
#    if defined(__DragonFly__)
#      include <machine/npx.h>  // for union savefpu
#    elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || \
        defined(__NetBSD__) || defined(__OpenBSD__)
#      include <machine/fpu.h>  // for struct savefpu/fxsave64
#    endif
#  endif

#  if defined(XP_WIN)
#    define EIP_sig(p) ((p)->Eip)
#    define EBP_sig(p) ((p)->Ebp)
#    define ESP_sig(p) ((p)->Esp)
#    define RIP_sig(p) ((p)->Rip)
#    define RSP_sig(p) ((p)->Rsp)
#    define RBP_sig(p) ((p)->Rbp)
#    define R11_sig(p) ((p)->R11)
#    define R13_sig(p) ((p)->R13)
#    define R14_sig(p) ((p)->R14)
#    define R15_sig(p) ((p)->R15)
#    define EPC_sig(p) ((p)->Pc)
#    define RFP_sig(p) ((p)->Fp)
#    define R31_sig(p) ((p)->Sp)
#    define RLR_sig(p) ((p)->Lr)
#  elif defined(__OpenBSD__)
#    define EIP_sig(p) ((p)->sc_eip)
#    define EBP_sig(p) ((p)->sc_ebp)
#    define ESP_sig(p) ((p)->sc_esp)
#    define RIP_sig(p) ((p)->sc_rip)
#    define RSP_sig(p) ((p)->sc_rsp)
#    define RBP_sig(p) ((p)->sc_rbp)
#    define R11_sig(p) ((p)->sc_r11)
#    if defined(__arm__)
#      define R13_sig(p) ((p)->sc_usr_sp)
#      define R14_sig(p) ((p)->sc_usr_lr)
#      define R15_sig(p) ((p)->sc_pc)
#    else
#      define R13_sig(p) ((p)->sc_r13)
#      define R14_sig(p) ((p)->sc_r14)
#      define R15_sig(p) ((p)->sc_r15)
#    endif
#    if defined(__aarch64__)
#      define EPC_sig(p) ((p)->sc_elr)
#      define RFP_sig(p) ((p)->sc_x[29])
#      define RLR_sig(p) ((p)->sc_lr)
#      define R31_sig(p) ((p)->sc_sp)
#    endif
#    if defined(__mips__)
#      define EPC_sig(p) ((p)->sc_pc)
#      define RFP_sig(p) ((p)->sc_regs[30])
#    endif
#    if defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
        defined(__PPC64LE__)
#      define R01_sig(p) ((p)->sc_frame.fixreg[1])
#      define R32_sig(p) ((p)->sc_frame.srr0)
#    endif
#  elif defined(__linux__) || defined(__sun) || defined(__GNU__)
#    if defined(__linux__)
#      define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_EIP])
#      define EBP_sig(p) ((p)->uc_mcontext.gregs[REG_EBP])
#      define ESP_sig(p) ((p)->uc_mcontext.gregs[REG_ESP])
#    else
#      define EIP_sig(p) ((p)->uc_mcontext.gregs[REG_PC])
#      define EBP_sig(p) ((p)->uc_mcontext.gregs[REG_EBP])
#      define ESP_sig(p) ((p)->uc_mcontext.gregs[REG_ESP])
#    endif
#    define RIP_sig(p) ((p)->uc_mcontext.gregs[REG_RIP])
#    define RSP_sig(p) ((p)->uc_mcontext.gregs[REG_RSP])
#    define RBP_sig(p) ((p)->uc_mcontext.gregs[REG_RBP])
#    if defined(__linux__) && defined(__arm__)
#      define R11_sig(p) ((p)->uc_mcontext.arm_fp)
#      define R13_sig(p) ((p)->uc_mcontext.arm_sp)
#      define R14_sig(p) ((p)->uc_mcontext.arm_lr)
#      define R15_sig(p) ((p)->uc_mcontext.arm_pc)
#    else
#      define R11_sig(p) ((p)->uc_mcontext.gregs[REG_R11])
#      define R13_sig(p) ((p)->uc_mcontext.gregs[REG_R13])
#      define R14_sig(p) ((p)->uc_mcontext.gregs[REG_R14])
#      define R15_sig(p) ((p)->uc_mcontext.gregs[REG_R15])
#    endif
#    if defined(__linux__) && defined(__aarch64__)
#      define EPC_sig(p) ((p)->uc_mcontext.pc)
#      define RFP_sig(p) ((p)->uc_mcontext.regs[29])
#      define RLR_sig(p) ((p)->uc_mcontext.regs[30])
#      define R31_sig(p) ((p)->uc_mcontext.sp)
#    endif
#    if defined(__linux__) && defined(__mips__)
#      define EPC_sig(p) ((p)->uc_mcontext.pc)
#      define RFP_sig(p) ((p)->uc_mcontext.gregs[30])
#      define RSP_sig(p) ((p)->uc_mcontext.gregs[29])
#      define R31_sig(p) ((p)->uc_mcontext.gregs[31])
#    endif
#    if defined(__linux__) && (defined(__sparc__) && defined(__arch64__))
#      define PC_sig(p) ((p)->uc_mcontext.mc_gregs[MC_PC])
#      define FP_sig(p) ((p)->uc_mcontext.mc_fp)
#      define SP_sig(p) ((p)->uc_mcontext.mc_i7)
#    endif
#    if defined(__linux__) && (defined(__ppc64__) || defined(__PPC64__) || \
                               defined(__ppc64le__) || defined(__PPC64LE__))
#      define R01_sig(p) ((p)->uc_mcontext.gp_regs[1])
#      define R32_sig(p) ((p)->uc_mcontext.gp_regs[32])
#    endif
#    if defined(__linux__) && defined(__loongarch__)
#      define EPC_sig(p) ((p)->uc_mcontext.__pc)
#      define RRA_sig(p) ((p)->uc_mcontext.__gregs[1])
#      define R03_sig(p) ((p)->uc_mcontext.__gregs[3])
#      define RFP_sig(p) ((p)->uc_mcontext.__gregs[22])
#    endif
#    if defined(__linux__) && defined(__riscv)
#      define RPC_sig(p) ((p)->uc_mcontext.__gregs[REG_PC])
#      define RRA_sig(p) ((p)->uc_mcontext.__gregs[REG_RA])
#      define RFP_sig(p) ((p)->uc_mcontext.__gregs[REG_S0])
#      define R02_sig(p) ((p)->uc_mcontext.__gregs[REG_SP])
#    endif
#    if defined(__sun__) && defined(__sparc__)
#      define PC_sig(p) ((p)->uc_mcontext.gregs[REG_PC])
#      define FP_sig(p) ((p)->uc_mcontext.gregs[REG_FPRS])
#      define SP_sig(p) ((p)->uc_mcontext.gregs[REG_SP])
#    endif
#  elif defined(__NetBSD__)
#    define EIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_EIP])
#    define EBP_sig(p) ((p)->uc_mcontext.__gregs[_REG_EBP])
#    define ESP_sig(p) ((p)->uc_mcontext.__gregs[_REG_ESP])
#    define RIP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RIP])
#    define RSP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RSP])
#    define RBP_sig(p) ((p)->uc_mcontext.__gregs[_REG_RBP])
#    define R11_sig(p) ((p)->uc_mcontext.__gregs[_REG_R11])
#    define R13_sig(p) ((p)->uc_mcontext.__gregs[_REG_R13])
#    define R14_sig(p) ((p)->uc_mcontext.__gregs[_REG_R14])
#    define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
#    if defined(__aarch64__)
#      define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_PC])
#      define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_X29])
#      define RLR_sig(p) ((p)->uc_mcontext.__gregs[_REG_X30])
#      define R31_sig(p) ((p)->uc_mcontext.__gregs[_REG_SP])
#    endif
#    if defined(__mips__)
#      define EPC_sig(p) ((p)->uc_mcontext.__gregs[_REG_EPC])
#      define RFP_sig(p) ((p)->uc_mcontext.__gregs[_REG_S8])
#    endif
#    if defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
        defined(__PPC64LE__)
#      define R01_sig(p) ((p)->uc_mcontext.__gregs[_REG_R1])
#      define R32_sig(p) ((p)->uc_mcontext.__gregs[_REG_PC])
#    endif
#  elif defined(__DragonFly__) || defined(__FreeBSD__) || \
      defined(__FreeBSD_kernel__)
#    define EIP_sig(p) ((p)->uc_mcontext.mc_eip)
#    define EBP_sig(p) ((p)->uc_mcontext.mc_ebp)
#    define ESP_sig(p) ((p)->uc_mcontext.mc_esp)
#    define RIP_sig(p) ((p)->uc_mcontext.mc_rip)
#    define RSP_sig(p) ((p)->uc_mcontext.mc_rsp)
#    define RBP_sig(p) ((p)->uc_mcontext.mc_rbp)
#    if defined(__FreeBSD__) && defined(__arm__)
#      define R11_sig(p) ((p)->uc_mcontext.__gregs[_REG_R11])
#      define R13_sig(p) ((p)->uc_mcontext.__gregs[_REG_R13])
#      define R14_sig(p) ((p)->uc_mcontext.__gregs[_REG_R14])
#      define R15_sig(p) ((p)->uc_mcontext.__gregs[_REG_R15])
#    else
#      define R11_sig(p) ((p)->uc_mcontext.mc_r11)
#      define R13_sig(p) ((p)->uc_mcontext.mc_r13)
#      define R14_sig(p) ((p)->uc_mcontext.mc_r14)
#      define R15_sig(p) ((p)->uc_mcontext.mc_r15)
#    endif
#    if defined(__FreeBSD__) && defined(__aarch64__)
#      define EPC_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_elr)
#      define RFP_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_x[29])
#      define RLR_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_lr)
#      define R31_sig(p) ((p)->uc_mcontext.mc_gpregs.gp_sp)
#    endif
#    if defined(__FreeBSD__) && defined(__mips__)
#      define EPC_sig(p) ((p)->uc_mcontext.mc_pc)
#      define RFP_sig(p) ((p)->uc_mcontext.mc_regs[30])
#    endif
#    if defined(__FreeBSD__) && (defined(__ppc64__) || defined(__PPC64__) || \
                                 defined(__ppc64le__) || defined(__PPC64LE__))
#      define R01_sig(p) ((p)->uc_mcontext.mc_gpr[1])
#      define R32_sig(p) ((p)->uc_mcontext.mc_srr0)
#    endif
#  elif defined(XP_DARWIN)
#    define EIP_sig(p) ((p)->thread.uts.ts32.__eip)
#    define EBP_sig(p) ((p)->thread.uts.ts32.__ebp)
#    define ESP_sig(p) ((p)->thread.uts.ts32.__esp)
#    define RIP_sig(p) ((p)->thread.__rip)
#    define RBP_sig(p) ((p)->thread.__rbp)
#    define RSP_sig(p) ((p)->thread.__rsp)
#    define R11_sig(p) ((p)->thread.__r[11])
#    define R13_sig(p) ((p)->thread.__sp)
#    define R14_sig(p) ((p)->thread.__lr)
#    define R15_sig(p) ((p)->thread.__pc)
#    define EPC_sig(p) ((p)->thread.__pc)
#    define RFP_sig(p) ((p)->thread.__fp)
#    define R31_sig(p) ((p)->thread.__sp)
#    define RLR_sig(p) ((p)->thread.__lr)
#  else
#    error \
        "Don't know how to read/write to the thread state via the mcontext_t."
#  endif

#  if defined(ANDROID)
// Not all versions of the Android NDK define ucontext_t or mcontext_t.
// Detect this and provide custom but compatible definitions. Note that these
// follow the GLibc naming convention to access register values from
// mcontext_t.
//
// See: https://chromiumcodereview.appspot.com/10829122/
// See: http://code.google.com/p/android/issues/detail?id=34784
#    if !defined(__BIONIC_HAVE_UCONTEXT_T)
#      if defined(__arm__)

// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
// Old versions of the C library <signal.h> didn't define the type.
#        if !defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
#          include <asm/sigcontext.h>
#        endif

typedef struct sigcontext mcontext_t;

typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used so don't define them here.
} ucontext_t;

#      elif defined(__mips__)

typedef struct {
  uint32_t regmask;
  uint32_t status;
  uint64_t pc;
  uint64_t gregs[32];
  uint64_t fpregs[32];
  uint32_t acx;
  uint32_t fpc_csr;
  uint32_t fpc_eir;
  uint32_t used_math;
  uint32_t dsp;
  uint64_t mdhi;
  uint64_t mdlo;
  uint32_t hi1;
  uint32_t lo1;
  uint32_t hi2;
  uint32_t lo2;
  uint32_t hi3;
  uint32_t lo3;
} mcontext_t;

typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used so don't define them here.
} ucontext_t;

#      elif defined(__loongarch64)

typedef struct {
  uint64_t pc;
  uint64_t gregs[32];
  uint64_t fpregs[32];
  uint32_t fpc_csr;
} mcontext_t;

typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used so don't define them here.
} ucontext_t;

#      elif defined(__i386__)
// x86 version for Android.
typedef struct {
  uint32_t gregs[19];
  void* fpregs;
  uint32_t oldmask;
  uint32_t cr2;
} mcontext_t;

typedef uint32_t kernel_sigset_t[2];  // x86 kernel uses 64-bit signal masks
typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_EIP = 14 };
#      endif  // defined(__i386__)
#    endif    // !defined(__BIONIC_HAVE_UCONTEXT_T)
#  endif      // defined(ANDROID)

#  if defined(XP_DARWIN)
#    if defined(__x86_64__)
struct macos_x64_context {
  x86_thread_state64_t thread;
  x86_float_state64_t float_;
};
#      define CONTEXT macos_x64_context
#    elif defined(__i386__)
struct macos_x86_context {
  x86_thread_state_t thread;
  x86_float_state_t float_;
};
#      define CONTEXT macos_x86_context
#    elif defined(__arm__)
struct macos_arm_context {
  arm_thread_state_t thread;
  arm_neon_state_t float_;
};
#      define CONTEXT macos_arm_context
#    elif defined(__aarch64__)
struct macos_aarch64_context {
  arm_thread_state64_t thread;
  arm_neon_state64_t float_;
};
#      define CONTEXT macos_aarch64_context
#    else
#      error Unsupported architecture
#    endif
#  elif !defined(XP_WIN)
#    define CONTEXT ucontext_t
#  endif

#  if defined(_M_X64) || defined(__x86_64__)
#    define PC_sig(p) RIP_sig(p)
#    define FP_sig(p) RBP_sig(p)
#    define SP_sig(p) RSP_sig(p)
#  elif defined(_M_IX86) || defined(__i386__)
#    define PC_sig(p) EIP_sig(p)
#    define FP_sig(p) EBP_sig(p)
#    define SP_sig(p) ESP_sig(p)
#  elif defined(__arm__)
#    define FP_sig(p) R11_sig(p)
#    define SP_sig(p) R13_sig(p)
#    define LR_sig(p) R14_sig(p)
#    define PC_sig(p) R15_sig(p)
#  elif defined(_M_ARM64) || defined(__aarch64__)
#    define PC_sig(p) EPC_sig(p)
#    define FP_sig(p) RFP_sig(p)
#    define SP_sig(p) R31_sig(p)
#    define LR_sig(p) RLR_sig(p)
#  elif defined(__mips__)
#    define PC_sig(p) EPC_sig(p)
#    define FP_sig(p) RFP_sig(p)
#    define SP_sig(p) RSP_sig(p)
#    define LR_sig(p) R31_sig(p)
#  elif defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
      defined(__PPC64LE__)
#    define PC_sig(p) R32_sig(p)
#    define SP_sig(p) R01_sig(p)
#    define FP_sig(p) R01_sig(p)
#  elif defined(__loongarch__)
#    define PC_sig(p) EPC_sig(p)
#    define FP_sig(p) RFP_sig(p)
#    define SP_sig(p) R03_sig(p)
#    define LR_sig(p) RRA_sig(p)
#  elif defined(__riscv)
#    define PC_sig(p) RPC_sig(p)
#    define FP_sig(p) RFP_sig(p)
#    define SP_sig(p) R02_sig(p)
#    define LR_sig(p) RRA_sig(p)
#  endif

static void SetContextPC(CONTEXT* context, uint8_t* pc) {
#  ifdef PC_sig
  *reinterpret_cast<uint8_t**>(&PC_sig(context)) = pc;
#  else
  MOZ_CRASH();
#  endif
}

static uint8_t* ContextToPC(CONTEXT* context) {
#  ifdef PC_sig
  return reinterpret_cast<uint8_t*>(PC_sig(context));
#  else
  MOZ_CRASH();
#  endif
}

static uint8_t* ContextToFP(CONTEXT* context) {
#  ifdef FP_sig
  return reinterpret_cast<uint8_t*>(FP_sig(context));
#  else
  MOZ_CRASH();
#  endif
}

static uint8_t* ContextToSP(CONTEXT* context) {
#  ifdef SP_sig
  return reinterpret_cast<uint8_t*>(SP_sig(context));
#  else
  MOZ_CRASH();
#  endif
}

#  if defined(__arm__) || defined(__aarch64__) || defined(__mips__) || \
      defined(__loongarch__) || defined(__riscv)
static uint8_t* ContextToLR(CONTEXT* context) {
#    ifdef LR_sig
  return reinterpret_cast<uint8_t*>(LR_sig(context));
#    else
  MOZ_CRASH();
#    endif
}
#  endif

static JS::ProfilingFrameIterator::RegisterState ToRegisterState(
    CONTEXT* context) {
  JS::ProfilingFrameIterator::RegisterState state;
  state.fp = ContextToFP(context);
  state.pc = ContextToPC(context);
  state.sp = ContextToSP(context);
#  if defined(__arm__) || defined(__aarch64__) || defined(__mips__) || \
      defined(__loongarch__) || defined(__riscv)
  state.lr = ContextToLR(context);
#  else
  state.lr = (void*)UINTPTR_MAX;
#  endif
  return state;
}

// =============================================================================
// All signals/exceptions funnel down to this one trap-handling function which
// tests whether the pc is in a wasm module and, if so, whether there is
// actually a trap expected at this pc. These tests both avoid real bugs being
// silently converted to wasm traps and provides the trapping wasm bytecode
// offset we need to report in the error.
//
// Crashing inside wasm trap handling (due to a bug in trap handling or exposed
// during trap handling) must be reported like a normal crash, not cause the
// crash report to be lost. On Windows and non-Mach Unix, a crash during the
// handler reenters the handler, possibly repeatedly until exhausting the stack,
// and so we prevent recursion with the thread-local sAlreadyHandlingTrap. On
// Mach, the wasm exception handler has its own thread and is installed only on
// the thread-level debugging ports of JSRuntime threads, so a crash on
// exception handler thread will not recurse; it will bubble up to the
// process-level debugging ports (where Breakpad is installed).
// =============================================================================

static MOZ_THREAD_LOCAL(bool) sAlreadyHandlingTrap;

struct AutoHandlingTrap {
  AutoHandlingTrap() {
    MOZ_ASSERT(!sAlreadyHandlingTrap.get());
    sAlreadyHandlingTrap.set(true);
  }

  ~AutoHandlingTrap() {
    MOZ_ASSERT(sAlreadyHandlingTrap.get());
    sAlreadyHandlingTrap.set(false);
  }
};

[[nodiscard]] static bool HandleTrap(CONTEXT* context,
                                     JSContext* assertCx = nullptr) {
  MOZ_ASSERT(sAlreadyHandlingTrap.get());

  uint8_t* pc = ContextToPC(context);
  const CodeSegment* codeSegment = LookupCodeSegment(pc);
  if (!codeSegment || !codeSegment->isModule()) {
    return false;
  }

  const ModuleSegment& segment = *codeSegment->asModule();

  Trap trap;
  BytecodeOffset bytecode;
  if (!segment.code().lookupTrap(pc, &trap, &bytecode)) {
    return false;
  }

  // We have a safe, expected wasm trap, so fp is well-defined to be a Frame*.
  // For the first sanity check, the Trap::IndirectCallBadSig special case is
  // due to this trap occurring in the indirect call prologue, while fp points
  // to the caller's Frame which can be in a different Module. In any case,
  // though, the containing JSContext is the same.

  auto* frame = reinterpret_cast<Frame*>(ContextToFP(context));
  Instance* instance = GetNearestEffectiveInstance(frame);
  MOZ_RELEASE_ASSERT(&instance->code() == &segment.code() ||
                     trap == Trap::IndirectCallBadSig);

  JSContext* cx =
      instance->realm()->runtimeFromAnyThread()->mainContextFromAnyThread();
  MOZ_RELEASE_ASSERT(!assertCx || cx == assertCx);

  // JitActivation::startWasmTrap() stores enough register state from the
  // point of the trap to allow stack unwinding or resumption, both of which
  // will call finishWasmTrap().
  jit::JitActivation* activation = cx->activation()->asJit();
  activation->startWasmTrap(trap, bytecode.offset(), ToRegisterState(context));
  SetContextPC(context, segment.trapCode());
  return true;
}

// =============================================================================
// The following platform-specific handlers funnel all signals/exceptions into
// the shared HandleTrap() above.
// =============================================================================

#  if defined(XP_WIN)
// Obtained empirically from thread_local codegen on x86/x64/arm64.
// Compiled in all user binaries, so should be stable over time.
static const unsigned sThreadLocalArrayPointerIndex = 11;

static LONG WINAPI WasmTrapHandler(LPEXCEPTION_POINTERS exception) {
  // Make sure TLS is initialized before reading sAlreadyHandlingTrap.
  if (!NtCurrentTeb()->Reserved1[sThreadLocalArrayPointerIndex]) {
    return EXCEPTION_CONTINUE_SEARCH;
  }

  if (sAlreadyHandlingTrap.get()) {
    return EXCEPTION_CONTINUE_SEARCH;
  }
  AutoHandlingTrap aht;

  EXCEPTION_RECORD* record = exception->ExceptionRecord;
  if (record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION &&
      record->ExceptionCode != EXCEPTION_ILLEGAL_INSTRUCTION) {
    return EXCEPTION_CONTINUE_SEARCH;
  }

  JSContext* cx = TlsContext.get();  // Cold signal handling code
  if (!HandleTrap(exception->ContextRecord, cx)) {
    return EXCEPTION_CONTINUE_SEARCH;
  }

  return EXCEPTION_CONTINUE_EXECUTION;
}

#  elif defined(XP_DARWIN)
// On OSX we are forced to use the lower-level Mach exception mechanism instead
// of Unix signals because breakpad uses Mach exceptions and would otherwise
// report a crash before wasm gets a chance to handle the exception.

// This definition was generated by mig (the Mach Interface Generator) for the
// routine 'exception_raise' (exc.defs).
#    pragma pack(4)
typedef struct {
  mach_msg_header_t Head;
  /* start of the kernel processed data */
  mach_msg_body_t msgh_body;
  mach_msg_port_descriptor_t thread;
  mach_msg_port_descriptor_t task;
  /* end of the kernel processed data */
  NDR_record_t NDR;
  exception_type_t exception;
  mach_msg_type_number_t codeCnt;
  int64_t code[2];
} Request__mach_exception_raise_t;
#    pragma pack()

// The full Mach message also includes a trailer.
struct ExceptionRequest {
  Request__mach_exception_raise_t body;
  mach_msg_trailer_t trailer;
};

static bool HandleMachException(const ExceptionRequest& request) {
  // Get the port of the JSContext's thread from the message.
  mach_port_t cxThread = request.body.thread.name;

  // Read out the JSRuntime thread's register state.
  CONTEXT context;
#    if defined(__x86_64__)
  unsigned int thread_state_count = x86_THREAD_STATE64_COUNT;
  unsigned int float_state_count = x86_FLOAT_STATE64_COUNT;
  int thread_state = x86_THREAD_STATE64;
  int float_state = x86_FLOAT_STATE64;
#    elif defined(__i386__)
  unsigned int thread_state_count = x86_THREAD_STATE_COUNT;
  unsigned int float_state_count = x86_FLOAT_STATE_COUNT;
  int thread_state = x86_THREAD_STATE;
  int float_state = x86_FLOAT_STATE;
#    elif defined(__arm__)
  unsigned int thread_state_count = ARM_THREAD_STATE_COUNT;
  unsigned int float_state_count = ARM_NEON_STATE_COUNT;
  int thread_state = ARM_THREAD_STATE;
  int float_state = ARM_NEON_STATE;
#    elif defined(__aarch64__)
  unsigned int thread_state_count = ARM_THREAD_STATE64_COUNT;
  unsigned int float_state_count = ARM_NEON_STATE64_COUNT;
  int thread_state = ARM_THREAD_STATE64;
  int float_state = ARM_NEON_STATE64;
#    else
#      error Unsupported architecture
#    endif
  kern_return_t kret;
  kret = thread_get_state(cxThread, thread_state,
                          (thread_state_t)&context.thread, &thread_state_count);
  if (kret != KERN_SUCCESS) {
    return false;
  }
  kret = thread_get_state(cxThread, float_state,
                          (thread_state_t)&context.float_, &float_state_count);
  if (kret != KERN_SUCCESS) {
    return false;
  }

  if (request.body.exception != EXC_BAD_ACCESS &&
      request.body.exception != EXC_BAD_INSTRUCTION) {
    return false;
  }

  {
    AutoNoteSingleThreadedRegion anstr;
    AutoHandlingTrap aht;
    if (!HandleTrap(&context)) {
      return false;
    }
  }

  // Update the thread state with the new pc and register values.
  kret = thread_set_state(cxThread, float_state,
                          (thread_state_t)&context.float_, float_state_count);
  if (kret != KERN_SUCCESS) {
    return false;
  }
  kret = thread_set_state(cxThread, thread_state,
                          (thread_state_t)&context.thread, thread_state_count);
  if (kret != KERN_SUCCESS) {
    return false;
  }

  return true;
}

static mach_port_t sMachDebugPort = MACH_PORT_NULL;

static void MachExceptionHandlerThread() {
  ThisThread::SetName("JS Wasm MachExceptionHandler");

  // Taken from mach_exc in /usr/include/mach/mach_exc.defs.
  static const unsigned EXCEPTION_MSG_ID = 2405;

  while (true) {
    ExceptionRequest request;
    kern_return_t kret =
        mach_msg(&request.body.Head, MACH_RCV_MSG, 0, sizeof(request),
                 sMachDebugPort, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

    // If we fail even receiving the message, we can't even send a reply!
    // Rather than hanging the faulting thread (hanging the browser), crash.
    if (kret != KERN_SUCCESS) {
      fprintf(stderr, "MachExceptionHandlerThread: mach_msg failed with %d\n",
              (int)kret);
      MOZ_CRASH();
    }

    if (request.body.Head.msgh_id != EXCEPTION_MSG_ID) {
      fprintf(stderr, "Unexpected msg header id %d\n",
              (int)request.body.Head.msgh_bits);
      MOZ_CRASH();
    }

    // Some thread just commited an EXC_BAD_ACCESS and has been suspended by
    // the kernel. The kernel is waiting for us to reply with instructions.
    // Our default is the "not handled" reply (by setting the RetCode field
    // of the reply to KERN_FAILURE) which tells the kernel to continue
    // searching at the process and system level. If this is an asm.js
    // expected exception, we handle it and return KERN_SUCCESS.
    bool handled = HandleMachException(request);
    kern_return_t replyCode = handled ? KERN_SUCCESS : KERN_FAILURE;

    // This magic incantation to send a reply back to the kernel was
    // derived from the exc_server generated by
    // 'mig -v /usr/include/mach/mach_exc.defs'.
    __Reply__exception_raise_t reply;
    reply.Head.msgh_bits =
        MACH_MSGH_BITS(MACH_MSGH_BITS_REMOTE(request.body.Head.msgh_bits), 0);
    reply.Head.msgh_size = sizeof(reply);
    reply.Head.msgh_remote_port = request.body.Head.msgh_remote_port;
    reply.Head.msgh_local_port = MACH_PORT_NULL;
    reply.Head.msgh_id = request.body.Head.msgh_id   100;
    reply.NDR = NDR_record;
    reply.RetCode = replyCode;
    mach_msg(&reply.Head, MACH_SEND_MSG, sizeof(reply), 0, MACH_PORT_NULL,
             MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);
  }
}

#  else  // If not Windows or Mac, assume Unix

#    if defined(__mips__) || defined(__loongarch__)
static const uint32_t kWasmTrapSignal = SIGFPE;
#    else
static const uint32_t kWasmTrapSignal = SIGILL;
#    endif

static struct sigaction sPrevSEGVHandler;
static struct sigaction sPrevSIGBUSHandler;
static struct sigaction sPrevWasmTrapHandler;

static void WasmTrapHandler(int signum, siginfo_t* info, void* context) {
  if (!sAlreadyHandlingTrap.get()) {
    AutoHandlingTrap aht;
    MOZ_RELEASE_ASSERT(signum == SIGSEGV || signum == SIGBUS ||
                       signum == kWasmTrapSignal);
    JSContext* cx = TlsContext.get();  // Cold signal handling code
    if (HandleTrap((CONTEXT*)context, cx)) {
      return;
    }
  }

  struct sigaction* previousSignal = nullptr;
  switch (signum) {
    case SIGSEGV:
      previousSignal = &sPrevSEGVHandler;
      break;
    case SIGBUS:
      previousSignal = &sPrevSIGBUSHandler;
      break;
    case kWasmTrapSignal:
      previousSignal = &sPrevWasmTrapHandler;
      break;
  }
  MOZ_ASSERT(previousSignal);

  // This signal is not for any asm.js code we expect, so we need to forward
  // the signal to the next handler. If there is no next handler (SIG_IGN or
  // SIG_DFL), then it's time to crash. To do this, we set the signal back to
  // its original disposition and return. This will cause the faulting op to
  // be re-executed which will crash in the normal way. The advantage of
  // doing this to calling _exit() is that we remove ourselves from the crash
  // stack which improves crash reports. If there is a next handler, call it.
  // It will either crash synchronously, fix up the instruction so that
  // execution can continue and return, or trigger a crash by returning the
  // signal to it's original disposition and returning.
  //
  // Note: the order of these tests matter.
  if (previousSignal->sa_flags & SA_SIGINFO) {
    previousSignal->sa_sigaction(signum, info, context);
  } else if (previousSignal->sa_handler == SIG_DFL ||
             previousSignal->sa_handler == SIG_IGN) {
    sigaction(signum, previousSignal, nullptr);
  } else {
    previousSignal->sa_handler(signum);
  }
}
#  endif  // XP_WIN || XP_DARWIN || assume unix

#  if defined(ANDROID) && defined(MOZ_LINKER)
extern "C" MFBT_API bool IsSignalHandlingBroken();
#  endif

struct InstallState {
  bool tried;
  bool success;
  InstallState() : tried(false), success(false) {}
};

static ExclusiveData<InstallState> sEagerInstallState(
    mutexid::WasmSignalInstallState);

#endif  // !(JS_CODEGEN_NONE)

void wasm::EnsureEagerProcessSignalHandlers() {
#ifdef JS_CODEGEN_NONE
  // If there is no JIT, then there should be no Wasm signal handlers.
  return;
#else
  auto eagerInstallState = sEagerInstallState.lock();
  if (eagerInstallState->tried) {
    return;
  }

  eagerInstallState->tried = true;
  MOZ_RELEASE_ASSERT(eagerInstallState->success == false);

#  if defined(ANDROID) && defined(MOZ_LINKER)
  // Signal handling is broken on some android systems.
  if (IsSignalHandlingBroken()) {
    return;
  }
#  endif

  sAlreadyHandlingTrap.infallibleInit();

  // Install whatever exception/signal handler is appropriate for the OS.
#  if defined(XP_WIN)

#    if defined(MOZ_ASAN)
  // Under ASan we need to let the ASan runtime's ShadowExceptionHandler stay
  // in the first handler position.
  const bool firstHandler = false;
#    else
  // Otherwise, WasmTrapHandler needs to go first, so that we can recover
  // from wasm faults and continue execution without triggering handlers
  // such as Breakpad that assume we are crashing.
  const bool firstHandler = true;
#    endif
  if (!AddVectoredExceptionHandler(firstHandler, WasmTrapHandler)) {
    // Windows has all sorts of random security knobs for disabling things
    // so make this a dynamic failure that disables wasm, not a MOZ_CRASH().
    return;
  }

#  elif defined(XP_DARWIN)
  // All the Mach setup in EnsureLazyProcessSignalHandlers.
#  else
  // SA_NODEFER allows us to reenter the signal handler if we crash while
  // handling the signal, and fall through to the Breakpad handler by testing
  // handlingSegFault.

  // Allow handling OOB with signals on all architectures
  struct sigaction faultHandler;
  faultHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
  faultHandler.sa_sigaction = WasmTrapHandler;
  sigemptyset(&faultHandler.sa_mask);
  if (sigaction(SIGSEGV, &faultHandler, &sPrevSEGVHandler)) {
    MOZ_CRASH("unable to install segv handler");
  }

#    if defined(JS_CODEGEN_ARM)
  // On Arm Handle Unaligned Accesses
  struct sigaction busHandler;
  busHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
  busHandler.sa_sigaction = WasmTrapHandler;
  sigemptyset(&busHandler.sa_mask);
  if (sigaction(SIGBUS, &busHandler, &sPrevSIGBUSHandler)) {
    MOZ_CRASH("unable to install sigbus handler");
  }
#    endif

  // Install a handler to handle the instructions that are emitted to implement
  // wasm traps.
  struct sigaction wasmTrapHandler;
  wasmTrapHandler.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK;
  wasmTrapHandler.sa_sigaction = WasmTrapHandler;
  sigemptyset(&wasmTrapHandler.sa_mask);
  if (sigaction(kWasmTrapSignal, &wasmTrapHandler, &sPrevWasmTrapHandler)) {
    MOZ_CRASH("unable to install wasm trap handler");
  }
#  endif

  eagerInstallState->success = true;
#endif
}

#ifndef JS_CODEGEN_NONE
static ExclusiveData<InstallState> sLazyInstallState(
    mutexid::WasmSignalInstallState);

static bool EnsureLazyProcessSignalHandlers() {
  auto lazyInstallState = sLazyInstallState.lock();
  if (lazyInstallState->tried) {
    return lazyInstallState->success;
  }

  lazyInstallState->tried = true;
  MOZ_RELEASE_ASSERT(lazyInstallState->success == false);

#  ifdef XP_DARWIN
  // Create the port that all JSContext threads will redirect their traps to.
  kern_return_t kret;
  kret = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE,
                            &sMachDebugPort);
  if (kret != KERN_SUCCESS) {
    return false;
  }
  kret = mach_port_insert_right(mach_task_self(), sMachDebugPort,
                                sMachDebugPort, MACH_MSG_TYPE_MAKE_SEND);
  if (kret != KERN_SUCCESS) {
    return false;
  }

  // Create the thread that will wait on and service sMachDebugPort.
  // It's not useful to destroy this thread on process shutdown so
  // immediately detach on successful start.
  Thread handlerThread;
  if (!handlerThread.init(MachExceptionHandlerThread)) {
    return false;
  }
  handlerThread.detach();
#  endif

  lazyInstallState->success = true;
  return true;
}
#endif  // JS_CODEGEN_NONE

bool wasm::EnsureFullSignalHandlers(JSContext* cx) {
#ifdef JS_CODEGEN_NONE
  return false;
#else
  if (cx->wasm().triedToInstallSignalHandlers) {
    return cx->wasm().haveSignalHandlers;
  }

  cx->wasm().triedToInstallSignalHandlers = true;
  MOZ_RELEASE_ASSERT(!cx->wasm().haveSignalHandlers);

  {
    auto eagerInstallState = sEagerInstallState.lock();
    MOZ_RELEASE_ASSERT(eagerInstallState->tried);
    if (!eagerInstallState->success) {
      return false;
    }
  }

  if (!EnsureLazyProcessSignalHandlers()) {
    return false;
  }

#  ifdef XP_DARWIN
  // In addition to the process-wide signal handler setup, OSX needs each
  // thread configured to send its exceptions to sMachDebugPort. While there
  // are also task-level (i.e. process-level) exception ports, those are
  // "claimed" by breakpad and chaining Mach exceptions is dark magic that we
  // avoid by instead intercepting exceptions at the thread level before they
  // propagate to the process-level. This works because there are no other
  // uses of thread-level exception ports.
  MOZ_RELEASE_ASSERT(sMachDebugPort != MACH_PORT_NULL);
  thread_port_t thisThread = mach_thread_self();
  kern_return_t kret = thread_set_exception_ports(
      thisThread, EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
      sMachDebugPort, EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES,
      THREAD_STATE_NONE);
  mach_port_deallocate(mach_task_self(), thisThread);
  if (kret != KERN_SUCCESS) {
    return false;
  }
#  endif

  cx->wasm().haveSignalHandlers = true;
  return true;
#endif
}

bool wasm::MemoryAccessTraps(const RegisterState& regs, uint8_t* addr,
                             uint32_t numBytes, uint8_t** newPC) {
#ifdef JS_CODEGEN_NONE
  return false;
#else
  const wasm::CodeSegment* codeSegment = wasm::LookupCodeSegment(regs.pc);
  if (!codeSegment || !codeSegment->isModule()) {
    return false;
  }

  const wasm::ModuleSegment& segment = *codeSegment->asModule();

  Trap trap;
  BytecodeOffset bytecode;
  if (!segment.code().lookupTrap(regs.pc, &trap, &bytecode)) {
    return false;
  }
  switch (trap) {
    case Trap::OutOfBounds:
      break;
    case Trap::NullPointerDereference:
      break;
#  ifdef WASM_HAS_HEAPREG
    case Trap::IndirectCallToNull:
      // We use the null pointer exception from loading the heapreg to
      // handle indirect calls to null.
      break;
#  endif
    default:
      return false;
  }

  const Instance& instance =
      *GetNearestEffectiveInstance(Frame::fromUntaggedWasmExitFP(regs.fp));
  MOZ_ASSERT(&instance.code() == &segment.code());

  switch (trap) {
    case Trap::OutOfBounds:
      if (!instance.memoryAccessInGuardRegion((uint8_t*)addr, numBytes)) {
        return false;
      }
      break;
    case Trap::NullPointerDereference:
      if ((uintptr_t)addr >= NullPtrGuardSize) {
        return false;
      }
      break;
#  ifdef WASM_HAS_HEAPREG
    case Trap::IndirectCallToNull:
      // Null pointer plus the appropriate offset.
      if (addr !=
          reinterpret_cast<uint8_t*>(wasm::Instance::offsetOfMemoryBase())) {
        return false;
      }
      break;
#  endif
    default:
      MOZ_CRASH("Should not happen");
  }

  JSContext* cx = TlsContext.get();  // Cold simulator helper function
  jit::JitActivation* activation = cx->activation()->asJit();
  activation->startWasmTrap(trap, bytecode.offset(), regs);
  *newPC = segment.trapCode();
  return true;
#endif
}

bool wasm::HandleIllegalInstruction(const RegisterState& regs,
                                    uint8_t** newPC) {
#ifdef JS_CODEGEN_NONE
  return false;
#else
  const wasm::CodeSegment* codeSegment = wasm::LookupCodeSegment(regs.pc);
  if (!codeSegment || !codeSegment->isModule()) {
    return false;
  }

  const wasm::ModuleSegment& segment = *codeSegment->asModule();

  Trap trap;
  BytecodeOffset bytecode;
  if (!segment.code().lookupTrap(regs.pc, &trap, &bytecode)) {
    return false;
  }

  JSContext* cx = TlsContext.get();  // Cold simulator helper function
  jit::JitActivation* activation = cx->activation()->asJit();
  activation->startWasmTrap(trap, bytecode.offset(), regs);
  *newPC = segment.trapCode();
  return true;
#endif
}