1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1863 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
|
/*
* Copyright (c) International Business Machines Corp., 2000-2002
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <config.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <assert.h>
#include "jfs_types.h"
#include "jfs_endian.h"
#include "jfs_filsys.h"
#include "jfs_superblock.h"
#include "jfs_dinode.h"
#include "jfs_dtree.h"
#include "jfs_xtree.h"
#include "jfs_logmgr.h"
#include "jfs_dmap.h"
#include "jfs_imap.h"
#include "logredo.h"
#include "logform.h"
#include "devices.h"
#include "debug.h"
#include "utilsubs.h"
#include "fsck_message.h" /* for chkdsk message logging facility */
/*
*
* L O C A L M A C R O D E F I N I T I O N S
*
*/
#define MAKEDEV(__x,__y) (dev_t)(((__x)<<16) | (__y))
#define LOGPNTOB(x) ((x)<<L2LOGPSIZE)
#define LOG2NUM(NUM, L2NUM)\
{\
if ((NUM) <= 0)\
L2NUM = -1;\
else\
if ((NUM) == 1)\
L2NUM = 0;\
else\
{\
L2NUM = 0;\
while ( (NUM) > 1 )\
{\
L2NUM ;\
(NUM) >>= 1;\
}\
}\
}
/*
*
* R E M E M B E R M E M O R Y A L L O C F A I L U R E
*
*/
int32_t Insuff_memory_for_maps = 0;
char *available_stg_addr = NULL;
int32_t available_stg_bytes = 0;
char *bmap_stg_addr = NULL;
int32_t bmap_stg_bytes = 0;
/*
*
* S T U F F F O R T H E L O G
*
*/
static struct logsuper logsup; /* log super block */
static int32_t numdoblk; /* number of do blocks used */
static int32_t numnodofile; /* number of nodo file blocks used */
int32_t numExtDtPg = 0; /* number of extended dtpage blocks used */
/*
* open file system aggregate/lv array
*
* logredo() processes a single log.
*
* In the first release, logredo will process a single log which relates
* to the single fileset in a single aggregate. In some future release,
* a single log may be used for multiple filesets which may or may not all
* reside in the same aggregate.
*
*/
struct vopen vopen[MAX_ACTIVE];
struct log_info Log;
struct {
uuid_t uuid;
FILE *fp;
} primary_vol;
extern int LogOpenMode; /* logdump sets this to O_RDONLY */
/*
* if this flag is set then the primary superblock is
* corrupt. The secondary superblock is good, but chkdsk
* wasn't able to fix the primary version. logredo can
* run, but must use the secondary version of the
* aggregate superblock
*/
int32_t use_2ndary_agg_superblock;
/*
* file system page buffer cache
*
* for k > 0, bufhdr[k] describes contents of buffer[k-1].
* bufhdr[0] is reserved as anchor for free/lru list:
* bufhdr[0].next points to the MRU buffer (head),
* bufhdr[0].prev points to the LRU buffer (tail);
*/
/* buffer header table */
static struct bufhdr {
int16_t next; /* 2: next on free/lru list */
int16_t prev; /* 2: previous on free/lru list */
int16_t hnext; /* 2: next on hash chain */
int16_t hprev; /* 2: previous on hash chain */
char modify; /* 1: buffer was modified */
char inuse; /* 1: buffer on hash chain */
int16_t reserve; /* 2 */
int32_t vol; /* 4: minor of agrregate/lv number */
pxd_t pxd; /* 8: on-disk page pxd */
} bufhdr[NBUFPOOL]; /* (24) */
/* buffer table */
static struct bufpool {
char bytes[PSIZE];
} buffer[NBUFPOOL - 1];
/*
* log page buffer cache
*
* log has its own 4 page buffer pool.
*/
static uint8_t afterdata[LOGPSIZE * 2]; /* buffer to read in redopage data */
/*
* Miscellaneous
*/
static caddr_t prog; /* Program name */
extern int32_t mntcnt;
static int32_t bufsize;
static char *mntinfo;
static int32_t retcode; /* return code from logredo */
int end_of_transaction = 0;
/*
* external references
*/
extern char *optarg;
extern int optind;
extern int initMaps(int32_t);
extern int updateMaps(int);
extern int findEndOfLog(void);
extern int logRead(int32_t, struct lrd *, char *);
extern int logredoInit(void);
extern int doCommit(struct lrd *);
extern int doExtDtPg(void);
extern int doNoRedoFile(struct lrd *, uint32_t);
extern int doNoRedoPage(struct lrd *);
extern int doNoRedoInoExt(struct lrd *);
extern int doAfter(struct lrd *, int32_t);
extern int doUpdateMap(struct lrd *);
extern int alloc_wrksp(uint32_t, int, int, void **);
extern FILE * open_by_label(uuid_t, int, int, char *, int *);
extern char log_device[];
/*
* forward references
*/
int doMount(struct lrd *);
int openVol(int32_t);
int updateSuper(int vol);
int rdwrSuper(FILE *, struct superblock *, int32_t);
int bflush(int32_t, struct bufpool *);
int logOpen(void);
int fsError(int, int, int64_t);
int logError(int, int);
static int recoverExtendFS(FILE *);
int alloc_storage(int32_t, void **, int32_t *);
int alloc_dmap_bitrec(struct dmap_bitmaps **);
/*
* debug control
*/
#ifdef _JFS_DEBUG
int32_t dflag = 1;
time_t *Tp;
uint32_t tp_start, tp_end;
int xdump(char *, int);
int x_scmp(char *, char *);
void x_scpy(char *, char *);
int prtdesc(struct lrd *);
#else
int32_t dflag = 0;
#endif
/*
* NAME: jfs_logredo()
*
* FUNCTION: Replay all transactions committed since the most
* recent synch point.
*
* NOTES:
* >>>>>> The log replay is accomplished in one pass over the
* log, reading backwards from logend to the first synch
* point record encountered. This means that the log
* entries are read and processed in LIFO (Last-In-First-Out)
* order. In other words, the records logged latest in
* time are the first records processed during log replay.
*
* >>>>>> Inodes, index trees, and directory trees
*
* Inodes, index tree structures, and directory tree
* structures are handled by processing committed redopage
* records which have not been superceded by noredo records.
* This processing copies data from the log record into the
* appropriate disk extent page(s).
*
* To ensure that only the last (in time) updates to any
* given disk page are applied during log replay, logredo
* maintains a record (union structure summary1/summary2),
* for each disk page which it has processed, of which
* portions have been updated by log records encountered.
*
* >>>>>> Inode Allocation Map processing
* The xtree for the Inode Allocation Map is journaled, and
* a careful write is used to update it during commit
* processing.
* The imap index tree is also duplicated at the known location. (TBD)
* So at logredo time, the xtree for imap is always readable and correct.
* This is the basic requirement from logredo.
*
* the inode map control page (struct dinomap) is only flushed to disk at
* the umount time. For iag, pmap will go to disk at commit time.
* iagnum will not change in run-time.
* agstart field will stable without extendfs utility. It is TBD for
* how to handle agstart when extendfs utility is available.
* Other fields ( wmap. inosmap, extsmap ino free list pointers,
* ino ext free list pointers ) are at working status ( i.e they are
* updated in run-time. So the following
* meta-data of the imap need to be reconstructed at the logredo time:
* 1) IAGs, the pmap of imap and inoext array are contained in IAGs.
* 2) AG Free inode list
* 3) AG Free Inode Extent list
* 4) IAG Free list
*
* There are two imaps need to take care of :
* 1) aggregate imap
* 2) fileset imap
* For the first release, the aggregate imap is stable and we only
* need to deal with the fileset imap.
*
* Block Allocation Map (bmap file) is for an aggregate/lv. There are
* three fields related to the size of bmap file.
* 1) superblock.s_size: This field indicates aggregate size. It
* tells number of sector-size blocks for this
* aggregate. The size of aggregate determines
* the size of its bmap file.
* Since the aggregate's superblock is updated
* using sync-write, superblock.s_size is trustable
* at logredo time.
* note1: mkfs reserves the fsck space. So s_size really
* inidcate (size_of_aggregate - fsck_reserve_space)
* note2: At the mkfs time, "-s" parameter could be used
* to indicate how large the aggregate/filesystem is.
* One lv contains at most one aggregate/filesystem.
* If "-s" gives the value is smaller than the size
* of lv, it is ok. The space is just wasted.
*
* Without "-s" parameter, mkfs wil use the whole
* size of lv to make an aggregate/filesystem.
* That is usually the case. So we can also say
* an aggregate/lv. "-s" is often used for test.
*
* 2) dbmap.dn_mapsize: This field also indicates aggregate/lv size.
* It tells number of aggre. blocks in the
* aggregate/lv. Without extendfs, this field should
* be equivalent to superblock.s_size.
* With extendfs, this field may not be updated
* before a system crash happens. So logredo
* need to update it.
* 3) dinode.di_size: For an inode of bmap file, this field indicates
* the logical size of the file. I.e. it contains
* the offset value of the last byte written
* in the file plus one.
* So di_size will include the bmap control page,
* the dmap control pages and dmap pages.
* In the JFS, if a file is a sparse file, the logical
* size is different from its physical size.
* The bmap file is a sparse file if the total of
* dmap pages is ( < 1024) or ( < 1024 * 1024).
* In that case, physically L1.0, and/or L2 does
* not exist, but di_size will include their page
* size.
*
* Note: The di_size does NOT contain the logical
* structure of the file, i.e. the space allocated
* for the xtree stuff is not indicated in di_size.
* It is indicated in di_nblocks.
*
* In addition, the mkfs always put one more dmap
* page into the bmap file for preparing extendfs.
* This hidden dmap page cannot be figured out from
* superblock.s_size, but di_size includes it. Any
* dmapctl pages caused by this hidden dmap page
* are also included in di_size.
*
* The bmap control page, dmap control pages and dmap pages are all
* needed to rebuild at logredo time.
*
* In overall, the following actions are taken at logredo time:
* 1) apply log rec data to the specified page.
* 2) initialize freelist for dtree page or root.
* 3) rebuilt imap
* 4) rebuilt bmap
* in addition, in order to ensure the log record only applying to a
* certain portion of page one time, logredo will start NoRedoFile,
* NoRedoExtent/NoRedoPage filter in the process for accuracy and
* efficiency.
*
* The three log rec types: REDOPAGE, NOREDOPAGE, NOREDOINOEXT, and
* UPDATEMAP, are the main force to initiate these actions. See
* comments on doAfter(), updatePage(), doNoRedoPage(), doNoRedoInoExt,
* and doUpdateMap() for detailed information.
*
* If the aggregate/lv has state of FM_DIRTY, then fsck will run
* after the logredo process since logredo could not get 100%
* recovery. Currently bmap rebuild is slow ( 1 min per 32 GB),
* so logredo will NOT rebuild imap and bmap if fsck will do it
* anyway. But logredo still read maps in and mark them for starting
* NoRedoExtent/NoRedoPage filter.
*
* The maps are rebuilt in the following way:
* at the init phase, storage is allocated for the whole map file for
* both imap and bmap. Reading in the map files from the disk.
* The wmap is inited to zero. At the logredo time, the wmap is used
* to track the bits in pmap. In the beginning of the logredo process
* the allocation status of every block is in doubt. As log records
* are processed, the allocation state is determined and the bit of pmap
* is updated. This fact is recorded in the corresponding bits in wmap.
* So a pmap bit is only updated once at logredo time and only updated
* by the latest in time log record.
* At the end of logredo, the control information, the freelist, etc.
* are built from the value of pmap; then pmap is copied to wmap and
* the whole map is written back to disk.
*
* the status field s_state in the superblock of each file-system is
* set to FM_CLEAN provided the initial status was either FM_CLEAN
* or FM_MOUNT and logredo processing was successful. If an error
* is detected in logredo the status is set to FM_LOGREDO. the status
* is not changed if its initial value was FM_MDIRTY. fsck should be
* run to clean-up the probable damage if the status after logredo
* is either FM_LOGREDO or FM_MDIRTY.
*
* The log record has the format:
* <LogRecordData><LogRecLRD>
* At logredo time, the log is read backward. So for every log rec,
* we read LogRecLRD, which tells how long the LogRecordData is.
* see comments on updatePage() for detailed info of log record format.
*
*.....................................................................
* The logredo handles the log-within-file-system (aka inline log) issue:
*.....................................................................
* For AIX, we always deal with the outline log, i.e. the log resides
* in a separate logical volume. A log is associated with one volume
* group and can be shared by many file systems with this volume group.
* In AIX, the logredo received a device name. It then determines if
* this device is a log name or a filesystem name. If it is a filesustem
* name, get the log minor number for this filesystem. If it is a log name,
* get its minor number.
*
* XJFS decided to put log inside the file system
*
* For supporting the inline log, the above AIX logic should be changed.
*
* Here is the outline:
*
* When the logredo received a device name, it first read the SIZE_OF_SUPER
* bytes from SUPER1_OFF offset to see if it is a file system superblock.
* If yes, check the s_flag to see if it has a inline log or outline log.
* for an inline log the s_logdev should match the input device name's
* major and minor number. If not, an error is returned and logredo exit.
* If no error, the logredo read the log superblock according the log info
* in the fs superblock.
* If the device name does not represent a filesystem device, then logredo
* read the LOGPSIZE bytes from the log page 1 location. If it indicates
* a log device, then open the filesystems according to the log superblock's
* active list. For each filesystem in the active list, read its superblock
* if one of the superblock indicates that it uses an inline log, return
* an error. It is a system code bug if some filesystems use inline log
* and some use outline log.
* If the superblock indicates it used an outline log, check the superblock's
* s_logdev to match the input device name's major and minor numbers.
* If one of them does not match, return error. -- It is a system code bug,
* if some match and some not match; -- It should either match all or non of
* them match. The AIX logredo never check s_logdev with the input log device.
* We should check here.
*
* for outline log, logredo will be called once to cover all the file
* systems in the log superblock's active list.
* For inline log, logredo will be called many times. Each time is for
* one file system. The log superblock's active list has nothing. The
* logmajor and logminor contains file system's major and minor number.
*
*.....................................................................
* logredo handles support EA:
*.....................................................................
* There is 16-byte EA descriptor which is located in the section I of
* dinode.
* The EA can be inline or outline. If it is inlineEA then the data will
* occupy the section IV of the dinode. The dxd_t.flag will indicate so.
* If it is outlineEA, dxd_t.flag will indicate so and the single extent
* is described by EA descriptor.
*
* The section IV of dinode has 128 byte. It is shared by the xtroot and
* inlineEA. The sharing is in FCFS style. If xtree gets the section IV,
* xtree will never give it away even if xtree is shrink or split.
* If inlineEA gets it, there is a chance that later inlineEA is freed and
* so xtree still can get it.
*
* for outlineEA, the XJFS will syncly write the data portion out so there
* is no log rec for the data, but there is still an INODE log rec for EA
* descriptor changes and there is a UPDATEMAP log rec for the allocated
* pxd. If an outlineEA is freed, there are also two log records for it:
* one is INODE with EA descriptor zeroed out, another is the UPDATEMAP
* log rec for the freed pxd.
* For inlineEA, it has to be recorded in the log rec. It is not in a
* separate log rec. Just one additional segment is added into the
* INODE log rec. So an INODE log rec can have at most three segments:
* when the parent and child inodes are in the same page, then there are
* one segment for parent base inode; one segment for child base inode;
* and maybe the third one for the child inlineEA data.
*....................................................................
* 32-bit vs 64-bit
* At the first release. assume that a file system will not be larger
* than 32-bit.
*....................................................................
* TBD:
* the method for handling crashes in the middle of extending a file
* system is as follows. the size of a filesystem is established from
* the superblock.s_size field (i.e the sizes in the diskmap
* and inodemaps are ignored). in extendfs (jfs_cntl.c) the superblock
* is not updated before the maps have been extended and the new inodes
* formatted to zeros. no allocations in the new part of the filesystem
* occur prior to the change in map sizes. if a crash occurs just
* before updating the superblock, the map sizes will be their old
* values. in this case the maps as files may be bigger than necessary.
* if the crash occurs just after writing the super block, the map sizes
* are fixed up here.
*/
int jfs_logredo(caddr_t pathname, FILE *fp, int32_t use_2nd_aggSuper)
{
int rc;
int k, logaddr, nextaddr, lastaddr, nlogrecords;
int syncrecord = 0;
struct lrd ld;
int lowest_lr_byte = 2 * LOGPSIZE LOGPHDRSIZE;
int highest_lr_byte = 0;
int log_has_wrapped = 0;
int logend;
int in_use;
/*
* store away the indicator of which aggregate superblock
* to use
*/
use_2ndary_agg_superblock = use_2nd_aggSuper;
/*
* loop until we get enough memory to read vmount struct
*/
mntinfo = (char *) &bufsize;
bufsize = sizeof (int);
/*
* validate that the log is not currently in use;
*/
rc = findLog(fp, &in_use);
if (rc < 0) {
fsck_send_msg(lrdo_DEVOPNREADERROR);
return (rc);
}
/* recover from extendfs() ? */
if (Log.location & INLINELOG && (vopen[0].status & FM_EXTENDFS)) {
fsck_send_msg(lrdo_REXTNDBEGIN);
rc = recoverExtendFS(fp);
fsck_send_msg(lrdo_REXTNDDONE);
return rc;
}
/*
* validate log superblock
*
* aggregate block size is for log file as well.
*/
rc = ujfs_rw_diskblocks(Log.fp,
(uint64_t) (Log.xaddr
LOGPNTOB(LOGSUPER_B)),
(unsigned) sizeof (struct logsuper), (char *) &logsup, GET);
if (rc != 0) {
fsck_send_msg(lrdo_CANTREADLOGSUP);
rc = LOGSUPER_READ_ERROR;
goto error_out;
}
ujfs_swap_logsuper(&logsup);
if (logsup.magic != LOGMAGIC) {
fsck_send_msg(lrdo_LOGSUPBADMGC);
rc = NOT_LOG_FILE_ERROR;
goto error_out;
}
if (logsup.version > LOGVERSION) {
fsck_send_msg(lrdo_LOGSUPBADVER);
rc = JFS_VERSION_ERROR;
goto error_out;
}
if (Log.location & OUTLINELOG) {
struct stat st;
if ((rc = fstat(fileno(Log.fp), &st)))
goto error_out;
Log.devnum = st.st_rdev;
if (in_use) {
fsck_send_msg(lrdo_LOGINUSE);
return LOG_IN_USE;
}
}
if (logsup.state == LOGREDONE) {
fsck_send_msg(lrdo_ALREADYREDONE);
if (Log.location & INLINELOG)
if ((rc = updateSuper(0)) != 0) {
fsck_send_msg(lrdo_CANTUPDLOGSUP);
return (rc);
}
return (0);
}
Log.size = logsup.size;
Log.serial = logsup.serial;
/*
* find the end of log
*/
logend = findEndOfLog();
if (logend < 0) {
fsck_send_msg(lrdo_LOGEND, logend);
fsck_send_msg(lrdo_LOGENDBAD1);
logError(LOGEND, 0);
ujfs_swap_logsuper(&logsup);
rc = ujfs_rw_diskblocks(Log.fp,
(Log.xaddr LOGPNTOB(LOGSUPER_B)),
(unsigned long) LOGPSIZE, (char *) &logsup, PUT);
rc = logend;
goto error_out;
}
/*
* allocate/initialize logredo runtime data structures and
* initialize each file system associated with the log based on
* the contents of its superblock
*/
if ((rc = logredoInit()) != 0) {
fsck_send_msg(lrdo_INITFAILED, rc, errno);
goto error_out;
}
highest_lr_byte = logsup.size * LOGPSIZE - LOGRDSIZE;
if ((logend < lowest_lr_byte) || (logend > highest_lr_byte)) {
fsck_send_msg(lrdo_LOGEND, logend);
fsck_send_msg(lrdo_LOGENDBAD2);
rc = INVALID_LOGEND;
goto error_out;
}
/*
* replay log
*
* read log backwards and process records as we go.
* reading stops at place specified by first SYNCPT we
* encounter.
*/
nlogrecords = lastaddr = 0;
nextaddr = logend;
do {
logaddr = nextaddr;
nextaddr = logRead(logaddr, &ld, afterdata);
DBG_TRACE(("Logaddr=%x\nNextaddr=%x\n", logaddr, nextaddr))
nlogrecords = 1;
/*
*
* Validate the nextaddr as much as possible
*
*/
if (nextaddr < 0) {
fsck_send_msg(lrdo_NEXTADDRINVALID);
rc = nextaddr;
goto error_out;
}
if ((nextaddr < lowest_lr_byte)
|| (nextaddr > highest_lr_byte)) {
fsck_send_msg(lrdo_NEXTADDROUTRANGE, nextaddr);
rc = INVALID_NEXTADDR;
goto error_out;
}
if (nextaddr == logaddr) {
fsck_send_msg(lrdo_NEXTADDRSAME, nextaddr);
rc = NEXTADDR_SAME;
goto error_out;
}
if (nextaddr > logaddr) {
if (log_has_wrapped) {
fsck_send_msg(lrdo_LOGWRAPPED);
rc = LOG_WRAPPED_TWICE;
goto error_out;
} else {
log_has_wrapped = -1;
}
}
/*
*
* The addresses seem ok. Process the current record.
*
*/
switch (ld.type) {
case LOG_COMMIT:
rc = doCommit(&ld);
if (rc) {
fsck_send_msg(lrdo_BADCOMMIT, logaddr);
goto error_out;
}
break;
case LOG_MOUNT:
fsck_send_msg(lrdo_MOUNTRECORD, logaddr);
rc = doMount(&ld);
if (rc) {
fsck_send_msg(lrdo_BADMOUNT, logaddr);
goto error_out;
}
break;
case LOG_SYNCPT:
fsck_send_msg(lrdo_SYNCRECORD, logaddr);
rc = 0;
if (lastaddr == 0) {
syncrecord = logaddr;
lastaddr = (ld.log.syncpt.sync == 0)
? logaddr : ld.log.syncpt.sync;
}
break;
case LOG_REDOPAGE:
DBG_TRACE(("jfs_logredo:Case Log_redoPage"))
rc = doAfter(&ld, logaddr);
if (rc) {
fsck_send_msg(lrdo_BADREDOPAGE, logaddr);
goto error_out;
}
break;
case LOG_NOREDOPAGE:
DBG_TRACE(("jfs_logredo:Case Log_noredopage"))
rc = doNoRedoPage(&ld);
if (rc) {
fsck_send_msg(lrdo_BADNOREDOPAGE, logaddr);
goto error_out;
}
break;
case LOG_NOREDOINOEXT:
DBG_TRACE(("jfs_logredo:Case Log_noredoinoext"))
rc = doNoRedoInoExt(&ld);
if (rc) {
fsck_send_msg(lrdo_BADNOREDOINOEXT, logaddr);
goto error_out;
}
break;
case LOG_UPDATEMAP:
rc = doUpdateMap(&ld);
if (rc) {
fsck_send_msg(lrdo_BADUPDATEMAP, logaddr);
goto error_out;
}
break;
default:
fsck_send_msg(lrdo_UNKNOWNTYPE, logaddr);
rc = UNRECOG_LOGRECTYP;
goto error_out;
break;
}
if (rc < 0) {
fsck_send_msg(lrdo_ERRORNEEDREFORMAT);
goto error_out;
}
if (rc != 0) {
fsck_send_msg(lrdo_ERRORCANTCONTIN);
goto error_out;
}
/*
* If the transaction just completed was the last
* for the current transaction, then flush the
* buffers.
*/
if (end_of_transaction != 0) {
for (k = 1; k < NBUFPOOL; k ) {
if ((rc = bflush(k, &buffer[k - 1])) != 0)
goto error_out;
}
end_of_transaction = 0;
}
} while (logaddr != lastaddr);
/*
* If any 'dtpage extend' records were processed, then we need
* to go back and rebuild their freelists. This cannot be done
* when the 'dtpage extend' record is processed, since there may
* be records processed later which affect the previous (shorter)
* version of the dtpage. Only after all these records are processed
* can we safely and accurately rebuild the freelist.
*/
if (numExtDtPg != 0) {
rc = doExtDtPg();
}
/*
* flush data page buffer cache
*/
for (k = 1; k < NBUFPOOL; k ) {
if ((rc = bflush(k, &buffer[k - 1])) != 0)
break;
}
/*
* finalize file systems
*
* update allocation map and superblock of file systems
* of volumes which are open if they were modified here.
* i.e. if they were not previously unmounted cleanly.
*/
for (k = 0; k < MAX_ACTIVE; k ) {
if (vopen[k].state != VOPEN_OPEN)
continue;
if ((rc = updateMaps(k)) != 0) {
fsck_send_msg(lrdo_ERRORCANTUPDMAPS);
goto error_out;
}
/* Make sure all changes are committed to disk before we
* mark the superblock clean
*/
ujfs_flush_dev(vopen[k].fp);
if ((rc = updateSuper(k)) != 0) {
fsck_send_msg(lrdo_ERRORCANTUPDFSSUPER);
goto error_out;
}
/* sync superblock before journal is finalized */
ujfs_flush_dev(vopen[k].fp);
}
/*
* finalize log.
*
* clear active list.
* If this is a fully replayed log then it can be moved to earlier
* versions of the operating system. Therefore switch the magic
* number to the earliest level.
*/
if (logsup.state != LOGREADERR) {
for (k = 0; k < MAX_ACTIVE; k )
uuid_clear(logsup.active[k]);
logsup.end = logend;
logsup.state = LOGREDONE;
logsup.magic = LOGMAGIC;
}
ujfs_swap_logsuper(&logsup);
rc = ujfs_rw_diskblocks(Log.fp, (Log.xaddr LOGPNTOB(LOGSUPER_B)),
LOGPSIZE, (char *) &logsup, PUT);
/*
* now log some info for the curious
*/
fsck_send_msg(lrdo_LOGEND, logend);
fsck_send_msg(lrdo_RPTSYNCNUM, syncrecord);
fsck_send_msg(lrdo_RPTSYNCADDR, lastaddr);
fsck_send_msg(lrdo_RPTNUMLOGREC, nlogrecords);
fsck_send_msg(lrdo_RPTNUMDOBLK, numdoblk);
fsck_send_msg(lrdo_RPTNUMNODOBLK, numnodofile);
error_out:
if (rc > 0) {
rc = rc * (-1);
}
/*
* If everything went ok except that we didn't have
* enough memory to deal with the block map, tell chkdsk
* to be sure to do a full check and repair, but that a log
* format is not necessary
*/
if ((rc == 0) && Insuff_memory_for_maps) {
rc = ENOMEM25;
}
return (rc);
}
/*
* NAME: doMount(ld)
*
* FUNCTION: a log mount record is the first-in-time record which is
* put in the log so it is the last we want to process in
* logredo. so we mark volume as cleanly unmounted in vopen
* array. the mount record is imperative when the volume
* is a newly made filesystem.
*/
int doMount(struct lrd *ld)
{ /* pointer to record descriptor */
int vol, status;
vol = ld->aggregate;
status = vopen[vol].status;
DBG_TRACE(("Logredo:domount: status=%d\n", status))
if (!(status & (FM_LOGREDO | FM_DIRTY)))
vopen[vol].status = FM_CLEAN;
return (0);
}
/*
* NAME: openVol(vol)
*
* FUNCTION: open the aggregate/volume specified.
* check if it was cleanly unmounted. also check log
* serial number. initialize disk and inode mpas.
*/
int openVol(int vol)
{ /* device minor number of aggregate/lv */
int rc, l2agsize, agsize;
int64_t fssize; /* number of aggr blks in the aggregate/lv */
struct superblock sb;
int aggsb_numpages;
if (Log.location & OUTLINELOG) {
/* First check if this is the already opened volume */
if (!uuid_compare(vopen[vol].uuid, primary_vol.uuid))
vopen[vol].fp = primary_vol.fp;
else {
vopen[vol].fp = open_by_label(vopen[vol].uuid, 0, 0,
NULL, NULL);
if (vopen[vol].fp == NULL)
return ENOENT;
}
}
/* read superblock of the aggregate/volume */
if ((rc = rdwrSuper(vopen[vol].fp, &sb, PB_READ)) != 0) {
fsck_send_msg(lrdo_CANTREADFSSUPER);
fsError(READERR, vol, SUPER1_B);
vopen[vol].state = VOPEN_CLOSED;
return (FSSUPER_READERROR1);
}
/* check magic number and initialize version specific
* values in the vopen struct for this vol.
*/
if (strncmp(sb.s_magic, JFS_MAGIC, (unsigned) strlen(JFS_MAGIC))) {
fsck_send_msg(lrdo_FSSUPERBADMAGIC);
vopen[vol].state = VOPEN_CLOSED;
return (LOGSUPER_BADMAGIC);
}
if (sb.s_version > JFS_VERSION) {
fsck_send_msg(lrdo_FSSUPERBADMAGIC);
vopen[vol].state = VOPEN_CLOSED;
return (LOGSUPER_BADVERSION);
}
if (Log.location & OUTLINELOG && (sb.s_flag & (JFS_INLINELOG == JFS_INLINELOG))) {
fsck_send_msg(lrdo_FSSUPERBADLOGLOC);
vopen[vol].state = VOPEN_CLOSED;
return (LOGSUPER_BADLOGLOC);
}
vopen[vol].lblksize = sb.s_bsize;
vopen[vol].l2bsize = sb.s_l2bsize;
vopen[vol].l2bfactor = sb.s_l2bfactor;
fssize = sb.s_size >> sb.s_l2bfactor;
vopen[vol].fssize = fssize;
vopen[vol].agsize = sb.s_agsize;
/* LOG2NUM will alter agsize, so use local var (Then why don't we
fix LOG2NUM?) */
agsize = vopen[vol].agsize;
LOG2NUM(agsize, l2agsize);
vopen[vol].numag = fssize >> l2agsize;
if (fssize & (vopen[vol].agsize - 1))
vopen[vol].numag = 1;
vopen[vol].l2agsize = l2agsize;
if (Log.location & INLINELOG) {
/*
* Now that the aggregate superblock has been read, do some
* more validation of the log superblock
*/
if (logsup.bsize != vopen[vol].lblksize) {
fsck_send_msg(lrdo_LOGSUPBADBLKSZ);
return JFS_BLKSIZE_ERROR;
}
if (logsup.l2bsize != vopen[vol].l2bsize) {
fsck_send_msg(lrdo_LOGSUPBADL2BLKSZ);
return JFS_L2BLKSIZE_ERROR;
}
aggsb_numpages = lengthPXD(&sb.s_logpxd) * logsup.bsize / LOGPSIZE;
if (logsup.size != aggsb_numpages) {
fsck_send_msg(lrdo_LOGSUPBADLOGSZ);
return JFS_LOGSIZE_ERROR;
}
}
/*
*set lbperpage in vopen.
*/
vopen[vol].lbperpage = PSIZE >> vopen[vol].l2bsize;
/*
* was it cleanly umounted ?
*/
if (sb.s_state == FM_CLEAN) {
vopen[vol].status = FM_CLEAN;
vopen[vol].state = VOPEN_CLOSED;
return (0);
}
/*
* get status of volume
*/
vopen[vol].status = sb.s_state;
vopen[vol].is_fsdirty = (sb.s_state & FM_DIRTY);
/*
*check log serial number
*/
if (sb.s_logserial != Log.serial) {
fsck_send_msg(lrdo_FSSUPERBADLOGSER);
vopen[vol].state = VOPEN_CLOSED;
fsError(SERIALNO, vol, SUPER1_B);
return (LOGSUPER_BADSERIAL);
}
/* initialize the disk and inode maps
*/
if ((rc = initMaps(vol)) != 0) {
fsck_send_msg(lrdo_INITMAPSFAIL);
fsError(MAPERR, vol, 0);
return (rc);
}
vopen[vol].state = VOPEN_OPEN;
return 0;
}
/*
* NAME: updateSuper(vol)
*
* FUNCTION: updates primary aggregate/lv's superblock status and
* writes it out.
*/
int updateSuper(int vol)
{ /* device minor number of aggregate/lv */
int rc, status;
struct superblock sb;
/* read in superblock of the volume */
if ((rc = rdwrSuper(vopen[vol].fp, &sb, PB_READ)) != 0) {
fsck_send_msg(lrdo_READFSSUPERFAIL);
return (FSSUPER_READERROR2);
}
/* mark superblock state. write it out */
status = vopen[vol].status;
if (status & (FM_DIRTY | FM_LOGREDO))
sb.s_state = status & ~FM_EXTENDFS;
else
sb.s_state = FM_CLEAN;
if ((rc = rdwrSuper(vopen[vol].fp, &sb, PB_UPDATE)) != 0) {
fsck_send_msg(lrdo_WRITEFSSUPERFAIL);
}
return (rc);
}
/*
* NAME: rdwrSuper(fp, sb, rwflag)
*
* FUNCTION: read or write the superblock for the file system described
* by the file descriptor of the opened aggregate/lv.
* for read, if a read of primary superblock is failed,
* try to read the secondary superblock. report error only
* when both reads failed.
* for write, any write failure should be reported.
*/
int rdwrSuper(FILE *fp, struct superblock * sb, int32_t rwflag)
{
int rc;
uint64_t super_offset;
union {
struct superblock super;
char block[PSIZE];
} super;
if (use_2ndary_agg_superblock) {
super_offset = SUPER2_OFF;
} else {
super_offset = SUPER1_OFF;
}
/*
* seek to the postion of the primary superblock.
* since at this time we don't know the aggregate/lv
* logical block size yet, we have to use the fixed
* byte offset address super_offset to seek for.
*/
/*
* read super block
*/
if (rwflag == PB_READ) {
rc = ujfs_rw_diskblocks(fp, super_offset,
(unsigned) SIZE_OF_SUPER, super.block, GET);
if (rc != 0) {
if (!use_2ndary_agg_superblock) {
fsck_send_msg(lrdo_READFSPRIMSBFAIL);
return (CANTREAD_PRIMFSSUPER);
} else {
fsck_send_msg(lrdo_READFS2NDSBFAIL);
return (CANTREAD_2NDFSSUPER);
}
}
*sb = super.super;
ujfs_swap_superblock(sb);
/*
* write superblock
*/
} else { /* PB_UPDATE */
/* ? memset(super.block, 0, SIZE_OF_SUPER); */
super.super = *sb;
ujfs_swap_superblock(&super.super);
/*
* write whichever superblock we're working with.
* chkdsk will take care of replicating it.
*/
rc = ujfs_rw_diskblocks(fp, super_offset,
(unsigned) SIZE_OF_SUPER, super.block, PUT);
if (rc != 0) {
if (!use_2ndary_agg_superblock) {
fsck_send_msg(lrdo_WRITEFSPRIMSBFAIL);
return (CANTWRITE_PRIMFSSUPER);
} else {
fsck_send_msg(lrdo_WRITEFS2NDSBFAIL);
return (CANTWRITE_2NDFSSUPER);
}
}
}
return (0);
}
/*
* NAME: bflush()
*
* FUNCTION: write out appropriate portion of buffer page if its modified.
* Note that a dtree page may not be 4k, depending on the length
* field specified in pxd. Write out only length that is needed.
*/
int bflush(int32_t k, /* The index in bufhdr that describes buf */
struct bufpool *buf)
{ /* pointer to buffer pool page */
FILE *fp = NULL;
int rc;
int32_t vol;
int32_t nbytes;
int64_t blkno;
/* nothing to do ? */
if (bufhdr[k].modify == 0)
return (0);
/* write it out */
vol = bufhdr[k].vol;
fp = vopen[vol].fp;
blkno = addressPXD(&bufhdr[k].pxd);
nbytes = lengthPXD(&bufhdr[k].pxd) << vopen[vol].l2bsize;
rc = ujfs_rw_diskblocks(fp,
(uint64_t) (blkno << vopen[vol].l2bsize),
(unsigned) nbytes, (char *) buf, PUT);
if (rc != 0) {
fsck_send_msg(lrdo_BUFFLUSHFAIL);
return (BFLUSH_WRITEERROR);
}
bufhdr[k].modify = 0;
return (0);
}
/*
* NAME: findLog()
*
* FUNCTION: open the device to see if it's a valid filesystem
* or journal. If it is a filesystem, determine whether
* the log is inline or external. If external, find
* the log device.
*
*/
int findLog(FILE *fp, int *in_use)
{
struct logsuper logsup;
struct superblock sb;
*in_use = 0;
/*
* try the LV as file system with in-line log
*/
if (rdwrSuper(fp, &sb, PB_READ)) {
fsck_send_msg(lrdo_NOTAFSDEV);
return NOT_FSDEV_ERROR;
}
/*
* is the LV a file system ?
*/
if (memcmp(sb.s_magic, JFS_MAGIC, sizeof (sb.s_magic)) == 0) {
/*
* does file system contains its in-line log ?
*/
if ((sb.s_flag & JFS_INLINELOG) == JFS_INLINELOG) {
Log.location = INLINELOG;
Log.fp = fp;
//Log.status = sb.s_state;
Log.l2bsize = sb.s_l2bsize;
Log.xaddr = addressPXD(&sb.s_logpxd) << sb.s_l2bsize;
/* vopen[0] represents fs if inline log */
vopen[0].status = sb.s_state;
vopen[0].fp = fp;
return 0;
}
/* Save fp and uuid */
primary_vol.fp = fp;
uuid_copy(primary_vol.uuid, sb.s_uuid);
/*
* External log
*
* First check device specified on
* command line
*/
Log.xaddr = 0;
if (log_device[0]) {
Log.fp = NULL;
if (LogOpenMode != O_RDONLY) {
Log.fp = fopen_excl(log_device, "r ");
if (Log.fp == NULL)
*in_use = 1;
}
if (Log.fp == NULL) {
Log.fp = fopen(log_device, "r");
if (Log.fp == NULL) {
printf("Invalid journal specified (%s)\n",
log_device);
goto by_uuid;
}
}
ujfs_rw_diskblocks(Log.fp, LOGPNTOB(LOGSUPER_B),
sizeof (struct logsuper), &logsup, GET);
ujfs_swap_logsuper(&logsup);
if ((logsup.magic != LOGMAGIC) || (uuid_compare(logsup.uuid, sb.s_loguuid))) {
fclose(Log.fp);
*in_use = 0;
goto by_uuid;
}
Log.location = OUTLINELOG;
return 0;
}
by_uuid:
Log.fp = open_by_label(sb.s_loguuid, 0, 1, NULL, in_use);
if (Log.fp != NULL) {
Log.location |= OUTLINELOG;
return 0;
}
return NOT_INLINELOG_ERROR;
}
/*
* is this an external log?
*/
ujfs_rw_diskblocks(fp, LOGPNTOB(LOGSUPER_B), sizeof (struct logsuper), &logsup, GET);
ujfs_swap_logsuper(&logsup);
if (logsup.magic != LOGMAGIC) {
fsck_send_msg(lrdo_NOTAFSDEV);
return NOT_FSDEV_ERROR;
}
Log.fp = fp;
Log.location = OUTLINELOG;
return 0;
}
extern void exit(int);
/*
* NAME: fsError(type,vol,bn)
*
* FUNCTION: error handling code for the specified
* aggregate/lv (filesystem).
*/
int fsError(int type, /* error types */
int vol, /* the minor number of the aggregate/lv */
int64_t bn)
{ /* aggregate block No. */
fsck_send_msg(lrdo_ERRORONVOL, vol);
retcode = -1;
vopen[vol].status = FM_LOGREDO;
switch (type) {
case OPENERR:
fsck_send_msg(lrdo_OPENFAILED);
break;
case MAPERR:
fsck_send_msg(lrdo_CANTINITMAPS);
break;
case DBTYPE:
fsck_send_msg(lrdo_BADDISKBLKNUM, (long long) bn);
break;
case INOTYPE:
fsck_send_msg(lrdo_BADINODENUM, (long long) bn);
break;
case READERR:
fsck_send_msg(lrdo_CANTREADBLK, (long long) bn);
break;
case SERIALNO:
fsck_send_msg(lrdo_BADLOGSER);
break;
case IOERROR:
fsck_send_msg(lrdo_IOERRREADINGBLK, (long long) bn);
break;
case LOGRCERR:
fsck_send_msg(lrdo_BADUPDMAPREC, (long long) bn);
break;
}
return (0);
}
/*
* logError(type)
*
* error handling for log read errors.
*/
int logError(int type, int logaddr)
{
int k;
retcode = -1;
logsup.state = LOGREADERR;
switch (type) {
case LOGEND:
fsck_send_msg(lrdo_FINDLOGENDFAIL);
break;
case READERR:
fsck_send_msg(lrdo_LOGREADFAIL, logaddr);
break;
case UNKNOWNR:
fsck_send_msg(lrdo_UNRECOGTYPE, logaddr);
break;
case IOERROR:
fsck_send_msg(lrdo_IOERRONLOG, logaddr);
break;
case LOGWRAP:
fsck_send_msg(lrdo_LOGWRAP);
}
/* mark all open volumes in error
*/
for (k = 0; k < MAX_ACTIVE; k ) {
if ((vopen[k].state == VOPEN_OPEN) && vopen[k].status != FM_CLEAN)
vopen[k].status = FM_LOGREDO;
}
return (0);
}
/*
* recoverExtendFS()
*
* function: recover crash while in extendfs() for inline log;
*
* note: fs superblock fields remains pre-extendfs state,
* while that bmap file, fsck and inline log area may be in
* unknown state;
*
* at entry, only log type/lv has been validated;
* for inline log: vopen[0], fs fp = log fp;
*/
static int recoverExtendFS(FILE *fp)
{
struct superblock *sbp;
struct dinode *dip1, *dip2;
struct dbmap *bgcp;
xtpage_t *p;
int64_t lmchild = 0, xaddr, xoff, barrier, t64, agsize;
uint8_t lmxflag;
int32_t i;
char *dip, *bp;
pxd_t temp_pxd;
/*
* read bmap global control page
*/
/* read superblock yet again */
sbp = (struct superblock *) &buffer[0];
if (rdwrSuper(fp, sbp, PB_READ))
goto errout;
/* read primary block allocation map inode */
dip = (char *) &buffer[1];
if (ujfs_rw_diskblocks(fp, AITBL_OFF, PSIZE, dip, GET)) {
fsck_send_msg(lrdo_EXTFSREADFSSUPERFAIL);
goto errout;
}
/* locate the inode in the buffer page */
dip1 = (struct dinode *) dip;
dip1 = BMAP_I;
bp = (char *) &buffer[2]; /* utility buffer */
/* start from root in dinode */
p = (xtpage_t *) & dip1->di_btroot;
/* is this page leaf ? */
if (p->header.flag & BT_LEAF)
goto rdbgcp;
/* traverse down leftmost child node to leftmost leaf of xtree */
do {
/* read in the leftmost child page */
t64 = addressXAD(&p->xad[XTENTRYSTART]) << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKMAPINOFAIL);
goto errout;
}
p = (xtpage_t *) bp;
/* is this page leaf ? */
if (p->header.flag & BT_LEAF)
break;
} while (1);
rdbgcp:
t64 = addressXAD(&p->xad[XTENTRYSTART]) << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKFAIL1, (long long) t64);
goto errout;
}
bgcp = (struct dbmap *) bp;
/*
* recover to pre- or post-extendfs state ?:
*/
if (__le64_to_cpu(bgcp->dn_mapsize) > (sbp->s_size >> sbp->s_l2bfactor)) {
agsize = __le64_to_cpu(bgcp->dn_agsize);
goto postx;
}
/*
* recover pre-extendfs state
*/
/*
* reset block allocation map inode (xtree root)
*/
/* read 2ndary block allocation map inode */
t64 = addressPXD(&sbp->s_ait2) << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKFAIL2, (long long) t64);
goto errout;
}
dip2 = (struct dinode *) bp;
dip2 = BMAP_I;
/*
* Reset primary bam inode with 2ndary bam inode
*
* Not forgetting to reset di_ixpxd since they are in different
* inode extents.
*/
memcpy((void *) &temp_pxd, (void *) &(dip1->di_ixpxd), sizeof (pxd_t));
memcpy(dip1, dip2, DISIZE);
memcpy((void *) &(dip1->di_ixpxd), (void *) &temp_pxd, sizeof (pxd_t));
if (ujfs_rw_diskblocks(fp, AITBL_OFF, PSIZE, dip, PUT)) {
fsck_send_msg(lrdo_EXTFSWRITEBLKFAIL1, AITBL_OFF);
goto errout;
}
/*
* backout bmap file to fs size:
*
* trim xtree to range specified by i_size:
* xtree has been grown in append mode and
* written from right to left, bottom-up;
*/
barrier = __le64_to_cpu(dip1->di_size) >> sbp->s_l2bsize;
/* start with root */
xaddr = 0;
p = (xtpage_t *) & dip1->di_btroot;
lmxflag = p->header.flag;
p->header.next = 0;
if (lmxflag & BT_INTERNAL) {
/* save leftmost child xtpage xaddr */
lmchild = addressXAD(&p->xad[XTENTRYSTART]);
}
/*
* scan each level of xtree via leftmost descend
*/
while (1) {
/*
* scan each xtpage of current level of xtree
*/
while (1) {
/*
* scan each xad in current xtpage
*/
for (i = XTENTRYSTART; i < p->header.nextindex; i ) {
/* test if extent is of interest */
xoff = offsetXAD(&p->xad[i]);
if (xoff < barrier)
continue;
/*
* barrier met in current page
*/
assert(i > XTENTRYSTART);
/* update current page */
p->header.nextindex = i;
if (xaddr) {
/* discard further right sibling
* pages
*/
p->header.next = 0;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, p, PUT)) {
fsck_send_msg(lrdo_EXTFSWRITEBLKFAIL2, (long long) t64);
goto errout;
}
}
goto nextLevel;
} /* end for current xtpage scan */
/* barrier was not met in current page */
/* read in next/right sibling xtpage */
xaddr = p->header.next;
if (xaddr) {
if (xaddr >= barrier) {
p->header.next = 0;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, p, PUT)) {
fsck_send_msg(lrdo_EXTFSWRITEBLKFAIL3, (long long) t64);
break;
}
}
t64 = xaddr << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKFAIL3, (long long) t64);
goto errout;
}
p = (xtpage_t *) bp;
} else
break;
} /* end while current level scan */
/*
* descend: read leftmost xtpage of next lower level of xtree
*/
nextLevel:
if (lmxflag & BT_INTERNAL) {
/* get the leftmost child page */
xaddr = lmchild;
t64 = xaddr << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKFAIL4, (long long) t64);
goto errout;
}
p = (xtpage_t *) bp;
lmxflag = p->header.flag;
if (lmxflag & BT_INTERNAL) {
/* save leftmost child xtpage xaddr */
lmchild = addressXAD(&p->xad[XTENTRYSTART]);
}
} else
break;
} /* end while level scan */
/*
* reconstruct map;
*
* readBmap() init blocks beyond fs size in the last
* partial dmap page as allocated which might have been
* marked as free by extendfs();
*/
/* fake log opend/validated */
Log.serial = sbp->s_logserial;
/*
* reconstruct maps
*/
/* open LV and initialize maps */
if (logredoInit()) {
fsck_send_msg(lrdo_EXTFSINITLOGREDOFAIL);
goto errout;
}
/* bypass log replay */
/* update/write maps */
updateMaps(0);
/*
* reformat log
*
* request reformat original log (which might have been
* overwritten by extendfs() and set superblock clean
*/
jfs_logform(fp, sbp->s_bsize, sbp->s_l2bsize, sbp->s_flag,
addressPXD(&sbp->s_logpxd), lengthPXD(&sbp->s_logpxd), NULL, NULL);
/* update superblock */
updateSuper(0);
fsck_send_msg(lrdo_REXTNDTOPRE);
return 0;
/*
* recover post-extendfs state
*/
postx:
/*
* update 2ndary bam inode
*/
/* read 2ndary block allocation map inode */
t64 = addressPXD(&sbp->s_ait2) << sbp->s_l2bsize;
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, GET)) {
fsck_send_msg(lrdo_EXTFSREADBLKFAIL5, (long long) t64);
goto errout;
}
dip2 = (struct dinode *) bp;
dip2 = BMAP_I;
/*
* Reset 2ndary bam inode with primary bam inode
* Not forgetting to reset di_ixpxd since they are in different
* inode extents.
*/
memcpy((void *) &temp_pxd, (void *) &(dip2->di_ixpxd), sizeof (pxd_t));
memcpy(dip2, dip1, DISIZE);
memcpy((void *) &(dip2->di_ixpxd), (void *) &temp_pxd, sizeof (pxd_t));
if (ujfs_rw_diskblocks(fp, t64, PSIZE, bp, PUT)) {
fsck_send_msg(lrdo_EXTFSWRITEBLKFAIL4, (long long) t64);
goto errout;
}
/*
* update superblock
*/
if (!(sbp->s_state & (FM_DIRTY | FM_LOGREDO)))
sbp->s_state = FM_CLEAN;
else
sbp->s_state &= ~FM_EXTENDFS;
sbp->s_size = sbp->s_xsize;
sbp->s_agsize = agsize;
sbp->s_fsckpxd = sbp->s_xfsckpxd;
sbp->s_fscklog = 0;
sbp->s_logpxd = sbp->s_xlogpxd;
sbp->s_logserial = 1;
if (rdwrSuper(fp, sbp, PB_UPDATE)) {
fsck_send_msg(lrdo_EXTFSWRITEFSSUPERFAIL);
goto errout;
}
/*
* finalize log
*
* note: new log is valid;
*/
/* read log superblock */
t64 = (addressPXD(&sbp->s_logpxd) << sbp->s_l2bsize) LOGPSIZE;
if (ujfs_rw_diskblocks(fp, t64, LOGPSIZE, &logsup, GET)) {
fsck_send_msg(lrdo_EXTFSREADLOGSUPFAIL);
goto errout;
}
logsup.end = findEndOfLog();
logsup.state = LOGREDONE;
if (ujfs_rw_diskblocks(fp, t64, LOGPSIZE, &logsup, PUT)) {
fsck_send_msg(lrdo_EXTFSWRITELOGSUPFAIL);
goto errout;
}
fsck_send_msg(lrdo_REXTNDTOPOST);
return 0;
errout:
fsck_send_msg(lrdo_REXTNDFAIL, errno);
return (EXTENDFS_FAILRECOV);
}
/*
*
* NAME: alloc_dmap_bitrec
*
* FUNCTION: This routine allocates memory by calling the chkdsk
* alloc_wrksp() routine (because that will allocate high
* memory during autocheck). If that fails then logredo
* cannot continue bmap processing, so it will set a flag
* and make the storage aleady allocated to the bmap
* available for other uses.
* was successfully allocated and there's enough of it left,
* this routine will return a piece of it.
*/
int alloc_dmap_bitrec(struct dmap_bitmaps ** dmap_bitrec)
{
int adb_rc = 0;
int intermed_rc = 0;
*dmap_bitrec = NULL;
intermed_rc = alloc_wrksp((uint32_t) (sizeof (struct dmap_bitmaps)), 0, /* not meaningful from logredo */
-1, /* I am logredo */
(void **) dmap_bitrec);
if ((intermed_rc != 0) || ((*dmap_bitrec) == NULL)) {
Insuff_memory_for_maps = -1;
available_stg_addr = bmap_stg_addr;
available_stg_bytes = bmap_stg_bytes;
/*
* initialize the storage for its new use
*/
memset((void *) available_stg_addr, 0, available_stg_bytes);
}
return (adb_rc);
} /* end alloc_dmap_bitrec() */
/*
*
* NAME: alloc_storage
*
* FUNCTION: This routine allocates memory by calling the chkdsk
* alloc_wrksp() routine (because that will allocate high
* memory during autocheck). If that fails and the bmap
* was successfully allocated and there's enough of it left,
* this routine will return a piece of it.
*/
int alloc_storage(int32_t size_in_bytes, void **addr_stg_ptr, int32_t * bmap_stg_returned)
{
int as_rc = 0;
int intermed_rc = 0;
*bmap_stg_returned = 0; /* assume we'll get it the usual way */
*addr_stg_ptr = NULL;
intermed_rc = alloc_wrksp((uint32_t) size_in_bytes, 0, -1, addr_stg_ptr);
if ((intermed_rc != 0) || ((*addr_stg_ptr) == NULL)) {
if ((!Insuff_memory_for_maps) && (bmap_stg_addr != NULL)) {
/*
* we did allocate storage for the bmap
* and haven't started cannibalizing it yet
*/
Insuff_memory_for_maps = -1;
available_stg_addr = bmap_stg_addr;
available_stg_bytes = bmap_stg_bytes;
/*
* initialize the storage for its new use
*/
memset((void *) available_stg_addr, 0, available_stg_bytes);
}
/* end we did allocate storage for the bmap... */
if (Insuff_memory_for_maps & (available_stg_bytes != 0)) {
/*
* we may be able to go on anyway
*/
if (available_stg_bytes < size_in_bytes) {
/*
* not enough here
*/
return (ENOMEM0);
} else {
/* we can scavenge the memory we need */
*addr_stg_ptr = available_stg_addr;
available_stg_bytes -= size_in_bytes;
available_stg_addr = (char *) (available_stg_addr size_in_bytes);
*bmap_stg_returned = -1;
}
} else {
return (ENOMEM1);
}
}
return (as_rc);
}
#ifdef _JFS_WIP
/*
* nfsisloaded()
*
* check whether nfs is loaded
*/
static int nfsisloaded()
{
int sav_errno;
int (*entry) ();
if (entry = load("/usr/sbin/probe", 0, 0))
return (1);
if (errno == ENOEXEC) {
DBG_TRACE(("%s: nfs is not loaded\n", prog))
return (0);
}
sav_errno = errno;
DBG_TRACE(("%s: ", prog))
errno = sav_errno;
perror("load");
return (0);
}
#endif /* _JFS_WIP */
#ifdef _JFS_DEBUG
/*
* xdump()
*
* hex dump
*/
xdump(char *saddr, int count)
{
#define LINESZ 60
#define ASCIISTRT 40
#define HEXEND 36
int i, j, k, hexdigit;
int c;
char *hexchar;
char linebuf[LINESZ 1];
char prevbuf[LINESZ 1];
char *linestart;
int asciistart;
char asterisk = ' ';
void x_scpy();
int x_scmp();
hexchar = "0123456789ABCDEF";
prevbuf[0] = '\0';
i = (int) saddr % 4;
if (i != 0)
saddr = saddr - i;
for (i = 0; i < count;) {
for (j = 0; j < LINESZ; j )
linebuf[j] = ' ';
linestart = saddr;
asciistart = ASCIISTRT;
for (j = 0; j < HEXEND;) {
for (k = 0; k < 4; k ) {
c = *(saddr ) & 0xFF;
if ((c >= 0x20) && (c <= 0x7e))
linebuf[asciistart ] = (char) c;
else
linebuf[asciistart ] = '.';
hexdigit = c >> 4;
linebuf[j ] = hexchar[hexdigit];
hexdigit = c & 0x0f;
linebuf[j ] = hexchar[hexdigit];
i ;
}
if (i >= count)
break;
linebuf[j ] = ' ';
}
linebuf[LINESZ] = '\0';
if (((j = x_scmp(linebuf, prevbuf)) == 0) && (i < count)) {
if (asterisk == ' ') {
asterisk = '*';
DBG_TRACE((" *\n"))
}
} else {
DBG_TRACE((" %x %s\n", linestart, linebuf))
asterisk = ' ';
x_scpy(prevbuf, linebuf);
}
}
return (0);
}
int x_scmp(char *s1, char *s2)
{
while ((*s1) && (*s1 == *s2)) {
s1 ;
s2 ;
}
if (*s1 || *s2)
return (-1);
else
return (0);
}
void x_scpy(char *s1, char *s2)
{
while ((*s1 = *s2) != '\0') {
s1 ;
s2 ;
}
}
prtdesc(struct lrd *ld)
{
switch (ld->log.redopage.type) {
case LOG_XTREE:
DBG_TRACE((" REDOPAGE:XTREE\n "))
break;
case (LOG_XTREE | LOG_NEW):
DBG_TRACE((" REDOPAGE:XTREE_NEW\n "))
break;
case (LOG_BTROOT | LOG_XTREE):
DBG_TRACE((" REDOPAGE:BTROOT_XTREE\n "))
break;
case LOG_DTREE:
DBG_TRACE((" REDOPAGE:DTREE\n "))
break;
case (LOG_DTREE | LOG_NEW):
DBG_TRACE((" REDOPAGE:DTREE_NEW \n "))
break;
case (LOG_DTREE | LOG_EXTEND):
DBG_TRACE((" REDOPAGE:DTREE_EXTEND\n "))
break;
case (LOG_BTROOT | LOG_DTREE):
DBG_TRACE((" REDOPAGE:BTROOT_DTREE\n "))
break;
case (LOG_BTROOT | LOG_DTREE | LOG_NEW):
DBG_TRACE((" REDOPAGE:BTROOT_DTREE.NEW\n "))
break;
case LOG_INODE:
/*
* logredo() updates imap for alloc of inode.
*/
DBG_TRACE((" REDOPAGE:INODE\n "))
break;
case LOG_EA:
DBG_TRACE((" REDOPAGE:EA\n "))
break;
case LOG_DATA:
DBG_TRACE((" REDOPAGE:DATA\n "))
break;
}
return (0);
}
#endif /* _JFS_DEBUG */
|