1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
/*
Copyright 2014 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "m68k_core.h"
#include "m68k_internal.h"
#include "68kinst.h"
#include "backend.h"
#include "gen.h"
#include "util.h"
#include "serialize.h"
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
char disasm_buf[1024];
int8_t native_reg(m68k_op_info * op, m68k_options * opts)
{
if (op->addr_mode == MODE_REG) {
return opts->dregs[op->params.regs.pri];
}
if (op->addr_mode == MODE_AREG) {
return opts->aregs[op->params.regs.pri];
}
return -1;
}
size_t dreg_offset(uint8_t reg)
{
return offsetof(m68k_context, dregs) sizeof(uint32_t) * reg;
}
size_t areg_offset(uint8_t reg)
{
return offsetof(m68k_context, aregs) sizeof(uint32_t) * reg;
}
//must be called with an m68k_op_info that uses a register
size_t reg_offset(m68k_op_info *op)
{
return op->addr_mode == MODE_REG ? dreg_offset(op->params.regs.pri) : areg_offset(op->params.regs.pri);
}
void m68k_print_regs(m68k_context * context)
{
printf("XNZVC\n%d%d%d%d%d\n", context->flags[0], context->flags[1], context->flags[2], context->flags[3], context->flags[4]);
for (int i = 0; i < 8; i ) {
printf("d%d: %X\n", i, context->dregs[i]);
}
for (int i = 0; i < 8; i ) {
printf("a%d: %X\n", i, context->aregs[i]);
}
}
void m68k_read_size(m68k_options *opts, uint8_t size)
{
switch (size)
{
case OPSIZE_BYTE:
call(&opts->gen.code, opts->read_8);
break;
case OPSIZE_WORD:
call(&opts->gen.code, opts->read_16);
break;
case OPSIZE_LONG:
call(&opts->gen.code, opts->read_32);
break;
}
}
void m68k_write_size(m68k_options *opts, uint8_t size, uint8_t lowfirst)
{
switch (size)
{
case OPSIZE_BYTE:
call(&opts->gen.code, opts->write_8);
break;
case OPSIZE_WORD:
call(&opts->gen.code, opts->write_16);
break;
case OPSIZE_LONG:
if (lowfirst) {
call(&opts->gen.code, opts->write_32_lowfirst);
} else {
call(&opts->gen.code, opts->write_32_highfirst);
}
break;
}
}
void m68k_save_result(m68kinst * inst, m68k_options * opts)
{
if (inst->dst.addr_mode != MODE_REG && inst->dst.addr_mode != MODE_AREG && inst->dst.addr_mode != MODE_UNUSED) {
if (inst->dst.addr_mode == MODE_AREG_PREDEC &&
((inst->src.addr_mode == MODE_AREG_PREDEC && inst->op != M68K_MOVE) || (inst->op == M68K_NBCD))
) {
areg_to_native(opts, inst->dst.params.regs.pri, opts->gen.scratch2);
}
m68k_write_size(opts, inst->extra.size, 1);
}
}
static void translate_m68k_lea_pea(m68k_options * opts, m68kinst * inst)
{
code_info *code = &opts->gen.code;
int8_t dst_reg = inst->op == M68K_PEA ? opts->gen.scratch1 : native_reg(&(inst->dst), opts);
switch(inst->src.addr_mode)
{
case MODE_AREG_INDIRECT:
cycles(&opts->gen, BUS);
if (dst_reg >= 0) {
areg_to_native(opts, inst->src.params.regs.pri, dst_reg);
} else {
if (opts->aregs[inst->src.params.regs.pri] >= 0) {
native_to_areg(opts, opts->aregs[inst->src.params.regs.pri], inst->dst.params.regs.pri);
} else {
areg_to_native(opts, inst->src.params.regs.pri, opts->gen.scratch1);
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
}
}
break;
case MODE_AREG_DISPLACE:
cycles(&opts->gen, 8);
calc_areg_displace(opts, &inst->src, dst_reg >= 0 ? dst_reg : opts->gen.scratch1);
if (dst_reg < 0) {
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
}
break;
case MODE_AREG_INDEX_DISP8:
cycles(&opts->gen, 12);
if (dst_reg < 0 || inst->dst.params.regs.pri == inst->src.params.regs.pri || inst->dst.params.regs.pri == (inst->src.params.regs.sec >> 1 & 0x7)) {
dst_reg = opts->gen.scratch1;
}
calc_areg_index_disp8(opts, &inst->src, dst_reg);
if (dst_reg == opts->gen.scratch1 && inst->op != M68K_PEA) {
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
}
break;
case MODE_PC_DISPLACE:
cycles(&opts->gen, 8);
if (inst->op == M68K_PEA) {
ldi_native(opts, inst->src.params.regs.displacement inst->address 2, dst_reg);
} else {
ldi_areg(opts, inst->src.params.regs.displacement inst->address 2, inst->dst.params.regs.pri);
}
break;
case MODE_PC_INDEX_DISP8:
cycles(&opts->gen, BUS*3);
if (dst_reg < 0 || inst->dst.params.regs.pri == (inst->src.params.regs.sec >> 1 & 0x7)) {
dst_reg = opts->gen.scratch1;
}
ldi_native(opts, inst->address 2, dst_reg);
calc_index_disp8(opts, &inst->src, dst_reg);
if (dst_reg == opts->gen.scratch1 && inst->op != M68K_PEA) {
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
}
break;
case MODE_ABSOLUTE:
case MODE_ABSOLUTE_SHORT:
cycles(&opts->gen, (inst->src.addr_mode == MODE_ABSOLUTE) ? BUS * 3 : BUS * 2);
if (inst->op == M68K_PEA) {
ldi_native(opts, inst->src.params.immed, dst_reg);
} else {
ldi_areg(opts, inst->src.params.immed, inst->dst.params.regs.pri);
}
break;
default:
m68k_disasm(inst, disasm_buf);
fatal_error("%X: %s\naddress mode %d not implemented (lea src)\n", inst->address, disasm_buf, inst->src.addr_mode);
}
if (inst->op == M68K_PEA) {
subi_areg(opts, 4, 7);
areg_to_native(opts, 7, opts->gen.scratch2);
call(code, opts->write_32_lowfirst);
}
}
static void push_const(m68k_options *opts, int32_t value)
{
ldi_native(opts, value, opts->gen.scratch1);
subi_areg(opts, 4, 7);
areg_to_native(opts, 7, opts->gen.scratch2);
call(&opts->gen.code, opts->write_32_highfirst);
}
void jump_m68k_abs(m68k_options * opts, uint32_t address)
{
code_info *code = &opts->gen.code;
code_ptr dest_addr = get_native_address(opts, address);
if (!dest_addr) {
opts->gen.deferred = defer_address(opts->gen.deferred, address, code->cur 1);
//dummy address to be replaced later, make sure it generates a 4-byte displacement
dest_addr = code->cur 256;
}
jmp(code, dest_addr);
//this used to call opts->native_addr for destinations in RAM, but that shouldn't be needed
//since instruction retranslation patches the original native instruction location
}
static void translate_m68k_bsr(m68k_options * opts, m68kinst * inst)
{
code_info *code = &opts->gen.code;
int32_t disp = inst->src.params.immed;
uint32_t after = inst->address (inst->variant == VAR_BYTE ? 2 : 4);
//TODO: Add cycles in the right place relative to pushing the return address on the stack
cycles(&opts->gen, 10);
push_const(opts, after);
jump_m68k_abs(opts, inst->address 2 disp);
}
static void translate_m68k_jmp_jsr(m68k_options * opts, m68kinst * inst)
{
uint8_t is_jsr = inst->op == M68K_JSR;
code_info *code = &opts->gen.code;
code_ptr dest_addr;
uint8_t sec_reg;
uint32_t after;
uint32_t m68k_addr;
switch(inst->src.addr_mode)
{
case MODE_AREG_INDIRECT:
cycles(&opts->gen, BUS*2);
if (is_jsr) {
push_const(opts, inst->address 2);
}
areg_to_native(opts, inst->src.params.regs.pri, opts->gen.scratch1);
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
break;
case MODE_AREG_DISPLACE:
cycles(&opts->gen, BUS*2);
if (is_jsr) {
push_const(opts, inst->address 4);
}
calc_areg_displace(opts, &inst->src, opts->gen.scratch1);
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
break;
case MODE_AREG_INDEX_DISP8:
cycles(&opts->gen, BUS*3);//TODO: CHeck that this is correct
if (is_jsr) {
push_const(opts, inst->address 4);
}
calc_areg_index_disp8(opts, &inst->src, opts->gen.scratch1);
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
break;
case MODE_PC_DISPLACE:
//TODO: Add cycles in the right place relative to pushing the return address on the stack
cycles(&opts->gen, 10);
if (is_jsr) {
push_const(opts, inst->address 4);
}
jump_m68k_abs(opts, inst->src.params.regs.displacement inst->address 2);
break;
case MODE_PC_INDEX_DISP8:
cycles(&opts->gen, BUS*3);//TODO: CHeck that this is correct
if (is_jsr) {
push_const(opts, inst->address 4);
}
ldi_native(opts, inst->address 2, opts->gen.scratch1);
calc_index_disp8(opts, &inst->src, opts->gen.scratch1);
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
break;
case MODE_ABSOLUTE:
case MODE_ABSOLUTE_SHORT:
//TODO: Add cycles in the right place relative to pushing the return address on the stack
cycles(&opts->gen, inst->src.addr_mode == MODE_ABSOLUTE ? 12 : 10);
if (is_jsr) {
push_const(opts, inst->address (inst->src.addr_mode == MODE_ABSOLUTE ? 6 : 4));
}
jump_m68k_abs(opts, inst->src.params.immed);
break;
default:
m68k_disasm(inst, disasm_buf);
fatal_error("%s\naddress mode %d not yet supported (%s)\n", disasm_buf, inst->src.addr_mode, is_jsr ? "jsr" : "jmp");
}
}
static void translate_m68k_unlk(m68k_options * opts, m68kinst * inst)
{
cycles(&opts->gen, BUS);
if (inst->dst.params.regs.pri != 7) {
areg_to_native(opts, inst->dst.params.regs.pri, opts->aregs[7]);
}
areg_to_native(opts, 7, opts->gen.scratch1);
call(&opts->gen.code, opts->read_32);
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
if (inst->dst.params.regs.pri != 7) {
addi_areg(opts, 4, 7);
}
}
static void translate_m68k_link(m68k_options * opts, m68kinst * inst)
{
//compensate for displacement word
cycles(&opts->gen, BUS);
subi_areg(opts, 4, 7);
areg_to_native(opts, 7, opts->gen.scratch2);
areg_to_native(opts, inst->src.params.regs.pri, opts->gen.scratch1);
call(&opts->gen.code, opts->write_32_highfirst);
native_to_areg(opts, opts->aregs[7], inst->src.params.regs.pri);
addi_areg(opts, inst->dst.params.immed, 7);
//prefetch
cycles(&opts->gen, BUS);
}
static void translate_m68k_rts(m68k_options * opts, m68kinst * inst)
{
code_info *code = &opts->gen.code;
areg_to_native(opts, 7, opts->gen.scratch1);
addi_areg(opts, 4, 7);
call(code, opts->read_32);
cycles(&opts->gen, 2*BUS);
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
}
static void translate_m68k_rtr(m68k_options *opts, m68kinst * inst)
{
code_info *code = &opts->gen.code;
//Read saved CCR
areg_to_native(opts, 7, opts->gen.scratch1);
call(code, opts->read_16);
addi_areg(opts, 2, 7);
call(code, opts->set_ccr);
//Read saved PC
areg_to_native(opts, 7, opts->gen.scratch1);
call(code, opts->read_32);
addi_areg(opts, 4, 7);
//Get native address and jump to it
call(code, opts->native_addr);
jmp_r(code, opts->gen.scratch1);
}
static void translate_m68k_trap(m68k_options *opts, m68kinst *inst)
{
code_info *code = &opts->gen.code;
uint32_t vector, pc = inst->address;
switch (inst->op)
{
case M68K_TRAP:
vector = inst->src.params.immed VECTOR_TRAP_0;
pc = 2;
break;
case M68K_A_LINE_TRAP:
vector = VECTOR_LINE_1010;
break;
case M68K_F_LINE_TRAP:
vector = VECTOR_LINE_1111;
break;
}
ldi_native(opts, vector, opts->gen.scratch2);
ldi_native(opts, pc, opts->gen.scratch1);
jmp(code, opts->trap);
}
static void translate_m68k_illegal(m68k_options *opts, m68kinst *inst)
{
code_info *code = &opts->gen.code;
cycles(&opts->gen, BUS);
ldi_native(opts, VECTOR_ILLEGAL_INST, opts->gen.scratch2);
ldi_native(opts, inst->address, opts->gen.scratch1);
jmp(code, opts->trap);
}
static void translate_m68k_move_usp(m68k_options *opts, m68kinst *inst)
{
m68k_trap_if_not_supervisor(opts, inst);
cycles(&opts->gen, BUS);
int8_t reg;
if (inst->src.addr_mode == MODE_UNUSED) {
reg = native_reg(&inst->dst, opts);
if (reg < 0) {
reg = opts->gen.scratch1;
}
areg_to_native(opts, 8, reg);
if (reg == opts->gen.scratch1) {
native_to_areg(opts, opts->gen.scratch1, inst->dst.params.regs.pri);
}
} else {
reg = native_reg(&inst->src, opts);
if (reg < 0) {
reg = opts->gen.scratch1;
areg_to_native(opts, inst->src.params.regs.pri, reg);
}
native_to_areg(opts, reg, 8);
}
}
static void translate_movem_regtomem_reglist(m68k_options * opts, m68kinst *inst)
{
code_info *code = &opts->gen.code;
int8_t bit,reg,dir;
if (inst->dst.addr_mode == MODE_AREG_PREDEC) {
reg = 15;
dir = -1;
} else {
reg = 0;
dir = 1;
}
for(bit=0; reg < 16 && reg >= 0; reg = dir, bit ) {
if (inst->src.params.immed & (1 << bit)) {
if (inst->dst.addr_mode == MODE_AREG_PREDEC) {
subi_native(opts, (inst->extra.size == OPSIZE_LONG) ? 4 : 2, opts->gen.scratch2);
}
push_native(opts, opts->gen.scratch2);
if (reg > 7) {
areg_to_native(opts, reg-8, opts->gen.scratch1);
} else {
dreg_to_native(opts, reg, opts->gen.scratch1);
}
if (inst->extra.size == OPSIZE_LONG) {
call(code, opts->write_32_lowfirst);
} else {
call(code, opts->write_16);
}
pop_native(opts, opts->gen.scratch2);
if (inst->dst.addr_mode != MODE_AREG_PREDEC) {
addi_native(opts, (inst->extra.size == OPSIZE_LONG) ? 4 : 2, opts->gen.scratch2);
}
}
}
}
static void translate_movem_memtoreg_reglist(m68k_options * opts, m68kinst *inst)
{
code_info *code = &opts->gen.code;
for(uint8_t reg = 0; reg < 16; reg ) {
if (inst->dst.params.immed & (1 << reg)) {
push_native(opts, opts->gen.scratch1);
if (inst->extra.size == OPSIZE_LONG) {
call(code, opts->read_32);
} else {
call(code, opts->read_16);
}
if (inst->extra.size == OPSIZE_WORD) {
sign_extend16_native(opts, opts->gen.scratch1);
}
if (reg > 7) {
native_to_areg(opts, opts->gen.scratch1, reg-8);
} else {
native_to_dreg(opts, opts->gen.scratch1, reg);
}
pop_native(opts, opts->gen.scratch1);
addi_native(opts, (inst->extra.size == OPSIZE_LONG) ? 4 : 2, opts->gen.scratch1);
}
}
}
static code_ptr get_movem_impl(m68k_options *opts, m68kinst *inst)
{
uint8_t reg_to_mem = inst->src.addr_mode == MODE_REG;
uint8_t size = inst->extra.size;
int8_t dir = reg_to_mem && inst->dst.addr_mode == MODE_AREG_PREDEC ? -1 : 1;
uint16_t reglist = reg_to_mem ? inst->src.params.immed : inst->dst.params.immed;
for (uint32_t i = 0; i < opts->num_movem; i )
{
if (
opts->big_movem[i].reglist == reglist && opts->big_movem[i].reg_to_mem == reg_to_mem
&& opts->big_movem[i].size == size && opts->big_movem[i].dir == dir
) {
return opts->big_movem[i].impl;
}
}
if (opts->num_movem == opts->movem_storage) {
if (!opts->movem_storage) {
opts->movem_storage = 4;
} else {
opts->movem_storage *= 2;
}
opts->big_movem = realloc(opts->big_movem, sizeof(movem_fun) * opts->movem_storage);
}
if (!opts->extra_code.cur) {
init_code_info(&opts->extra_code);
}
check_alloc_code(&opts->extra_code, 512);
code_ptr impl = opts->extra_code.cur;
code_info tmp = opts->gen.code;
opts->gen.code = opts->extra_code;
if (reg_to_mem) {
translate_movem_regtomem_reglist(opts, inst);
} else {
translate_movem_memtoreg_reglist(opts, inst);
}
opts->extra_code = opts->gen.code;
opts->gen.code = tmp;
rts(&opts->extra_code);
return impl;
}
static void translate_m68k_movem(m68k_options * opts, m68kinst * inst)
{
code_info *code = &opts->gen.code;
uint8_t early_cycles;
uint16_t num_regs = inst->src.addr_mode == MODE_REG ? inst->src.params.immed : inst->dst.params.immed;
{
//TODO: Move this popcount alg to a utility function
uint16_t a = (num_regs & 0b1010101010101010) >> 1;
uint16_t b = num_regs & 0b0101010101010101;
num_regs = a b;
a = (num_regs & 0b1100110011001100) >> 2;
b = num_regs & 0b0011001100110011;
num_regs = a b;
a = (num_regs & 0b1111000011110000) >> 4;
b = num_regs & 0b0000111100001111;
num_regs = a b;
a = (num_regs & 0b1111111100000000) >> 8;
b = num_regs & 0b0000000011111111;
num_regs = a b;
}
if(inst->src.addr_mode == MODE_REG) {
//reg to mem
early_cycles = 8;
switch (inst->dst.addr_mode)
{
case MODE_AREG_INDIRECT:
case MODE_AREG_PREDEC:
areg_to_native(opts, inst->dst.params.regs.pri, opts->gen.scratch2);
break;
case MODE_AREG_DISPLACE:
early_cycles = BUS;
calc_areg_displace(opts, &inst->dst, opts->gen.scratch2);
break;
case MODE_AREG_INDEX_DISP8:
early_cycles = 6;
calc_areg_index_disp8(opts, &inst->dst, opts->gen.scratch2);
break;
case MODE_PC_DISPLACE:
early_cycles = BUS;
ldi_native(opts, inst->dst.params.regs.displacement inst->address 2, opts->gen.scratch2);
break;
case MODE_PC_INDEX_DISP8:
early_cycles = 6;
ldi_native(opts, inst->address 2, opts->gen.scratch2);
calc_index_disp8(opts, &inst->dst, opts->gen.scratch2);
case MODE_ABSOLUTE:
early_cycles = 4;
case MODE_ABSOLUTE_SHORT:
early_cycles = 4;
ldi_native(opts, inst->dst.params.immed, opts->gen.scratch2);
break;
default:
m68k_disasm(inst, disasm_buf);
fatal_error("%X: %s\naddress mode %d not implemented (movem dst)\n", inst->address, disasm_buf, inst->dst.addr_mode);
}
cycles(&opts->gen, early_cycles);
if (num_regs <= 9) {
translate_movem_regtomem_reglist(opts, inst);
} else {
call(code, get_movem_impl(opts, inst));
}
if (inst->dst.addr_mode == MODE_AREG_PREDEC) {
native_to_areg(opts, opts->gen.scratch2, inst->dst.params.regs.pri);
}
} else {
//mem to reg
early_cycles = 8; //includes prefetch
switch (inst->src.addr_mode)
{
case MODE_AREG_INDIRECT:
case MODE_AREG_POSTINC:
areg_to_native(opts, inst->src.params.regs.pri, opts->gen.scratch1);
break;
case MODE_AREG_DISPLACE:
early_cycles = BUS;
calc_areg_displace(opts, &inst->src, opts->gen.scratch1);
break;
case MODE_AREG_INDEX_DISP8:
early_cycles = 6;
calc_areg_index_disp8(opts, &inst->src, opts->gen.scratch1);
break;
case MODE_PC_DISPLACE:
early_cycles = BUS;
ldi_native(opts, inst->src.params.regs.displacement inst->address 2, opts->gen.scratch1);
break;
case MODE_PC_INDEX_DISP8:
early_cycles = 6;
ldi_native(opts, inst->address 2, opts->gen.scratch1);
calc_index_disp8(opts, &inst->src, opts->gen.scratch1);
break;
case MODE_ABSOLUTE:
early_cycles = 4;
case MODE_ABSOLUTE_SHORT:
early_cycles = 4;
ldi_native(opts, inst->src.params.immed, opts->gen.scratch1);
break;
default:
m68k_disasm(inst, disasm_buf);
fatal_error("%X: %s\naddress mode %d not implemented (movem src)\n", inst->address, disasm_buf, inst->src.addr_mode);
}
cycles(&opts->gen, early_cycles);
if (num_regs <= 9) {
translate_movem_memtoreg_reglist(opts, inst);
} else {
call(code, get_movem_impl(opts, inst));
}
if (inst->src.addr_mode == MODE_AREG_POSTINC) {
native_to_areg(opts, opts->gen.scratch1, inst->src.params.regs.pri);
}
//Extra read
call(code, opts->read_16);
}
}
static void translate_m68k_nop(m68k_options *opts, m68kinst *inst)
{
cycles(&opts->gen, BUS);
}
void swap_ssp_usp(m68k_options * opts)
{
areg_to_native(opts, 7, opts->gen.scratch2);
areg_to_native(opts, 8, opts->aregs[7]);
native_to_areg(opts, opts->gen.scratch2, 8);
}
static void translate_m68k_rte(m68k_options *opts, m68kinst *inst)
{
m68k_trap_if_not_supervisor(opts, inst);
code_info *code = &opts->gen.code;
//Read saved SR
areg_to_native(opts, 7, opts->gen.scratch1);
call(code, opts->read_16);
addi_areg(opts, 2, 7);
call(code, opts->set_sr);
//Read saved PC
areg_to_native(opts, 7, opts->gen.scratch1);
call(code, opts->read_32);
addi_areg(opts, 4, 7);
check_user_mode_swap_ssp_usp(opts);
cycles(&opts->gen, 2*BUS);
//Get native address, sync components, recalculate integer points and jump to returned address
call(code, opts->native_addr_and_sync);
jmp_r(code, opts->gen.scratch1);
}
code_ptr get_native_address(m68k_options *opts, uint32_t address)
{
native_map_slot * native_code_map = opts->gen.native_code_map;
memmap_chunk const *mem_chunk = find_map_chunk(address, &opts->gen, 0, NULL);
if (mem_chunk) {
//calculate the lowest alias for this address
address = mem_chunk->start ((address - mem_chunk->start) & mem_chunk->mask);
} else {
address &= opts->gen.address_mask;
}
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
return NULL;
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
if (native_code_map[chunk].offsets[offset] == INVALID_OFFSET || native_code_map[chunk].offsets[offset] == EXTENSION_WORD) {
return NULL;
}
return native_code_map[chunk].base native_code_map[chunk].offsets[offset];
}
code_ptr get_native_from_context(m68k_context * context, uint32_t address)
{
return get_native_address(context->options, address);
}
uint32_t get_instruction_start(m68k_options *opts, uint32_t address)
{
native_map_slot * native_code_map = opts->gen.native_code_map;
memmap_chunk const *mem_chunk = find_map_chunk(address, &opts->gen, 0, NULL);
if (mem_chunk) {
//calculate the lowest alias for this address
address = mem_chunk->start ((address - mem_chunk->start) & mem_chunk->mask);
} else {
address &= opts->gen.address_mask;
}
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
return 0;
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
if (native_code_map[chunk].offsets[offset] == INVALID_OFFSET) {
return 0;
}
while (native_code_map[chunk].offsets[offset] == EXTENSION_WORD)
{
--address;
chunk = address / NATIVE_CHUNK_SIZE;
offset = address % NATIVE_CHUNK_SIZE;
}
return address;
}
static void map_native_address(m68k_context * context, uint32_t address, code_ptr native_addr, uint8_t size, uint8_t native_size)
{
m68k_options * opts = context->options;
native_map_slot * native_code_map = opts->gen.native_code_map;
uint32_t meta_off;
memmap_chunk const *mem_chunk = find_map_chunk(address, &opts->gen, MMAP_CODE, &meta_off);
if (mem_chunk) {
if (mem_chunk->flags & MMAP_CODE) {
uint32_t masked = (address - mem_chunk->start) & mem_chunk->mask;
uint32_t final_off = masked meta_off;
uint32_t ram_flags_off = final_off >> (opts->gen.ram_flags_shift 3);
context->ram_code_flags[ram_flags_off] |= 1 << ((final_off >> opts->gen.ram_flags_shift) & 7);
uint32_t slot = final_off / 1024;
if (!opts->gen.ram_inst_sizes[slot]) {
opts->gen.ram_inst_sizes[slot] = malloc(sizeof(uint8_t) * 512);
}
opts->gen.ram_inst_sizes[slot][(final_off/2) & 511] = native_size;
//TODO: Deal with case in which end of instruction is in a different memory chunk
masked = (address size - 1) & mem_chunk->mask;
final_off = masked meta_off;
ram_flags_off = final_off >> (opts->gen.ram_flags_shift 3);
context->ram_code_flags[ram_flags_off] |= 1 << ((final_off >> opts->gen.ram_flags_shift) & 7);
}
//calculate the lowest alias for this address
address = mem_chunk->start ((address - mem_chunk->start) & mem_chunk->mask);
} else {
address &= opts->gen.address_mask;
}
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
native_code_map[chunk].base = native_addr;
native_code_map[chunk].offsets = malloc(sizeof(int32_t) * NATIVE_CHUNK_SIZE);
memset(native_code_map[chunk].offsets, 0xFF, sizeof(int32_t) * NATIVE_CHUNK_SIZE);
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
native_code_map[chunk].offsets[offset] = native_addr-native_code_map[chunk].base;
for(address ,size-=1; size; address ,size-=1) {
address &= opts->gen.address_mask;
chunk = address / NATIVE_CHUNK_SIZE;
offset = address % NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
native_code_map[chunk].base = native_addr;
native_code_map[chunk].offsets = malloc(sizeof(int32_t) * NATIVE_CHUNK_SIZE);
memset(native_code_map[chunk].offsets, 0xFF, sizeof(int32_t) * NATIVE_CHUNK_SIZE);
}
if (native_code_map[chunk].offsets[offset] == INVALID_OFFSET) {
//TODO: Better handling of overlapping instructions
native_code_map[chunk].offsets[offset] = EXTENSION_WORD;
}
}
}
static uint8_t get_native_inst_size(m68k_options * opts, uint32_t address)
{
uint32_t meta_off;
memmap_chunk const *chunk = find_map_chunk(address, &opts->gen, MMAP_CODE, &meta_off);
if (chunk) {
meta_off = (address - chunk->start) & chunk->mask;
}
uint32_t slot = meta_off/1024;
return opts->gen.ram_inst_sizes[slot][(meta_off/2)Q2];
}
uint8_t m68k_is_terminal(m68kinst * inst)
{
return inst->op == M68K_RTS || inst->op == M68K_RTE || inst->op == M68K_RTR || inst->op == M68K_JMP
|| inst->op == M68K_TRAP || inst->op == M68K_ILLEGAL || inst->op == M68K_INVALID
|| (inst->op == M68K_BCC && inst->extra.cond == COND_TRUE);
}
static void m68k_handle_deferred(m68k_context * context)
{
m68k_options * opts = context->options;
process_deferred(&opts->gen.deferred, context, (native_addr_func)get_native_from_context);
if (opts->gen.deferred) {
translate_m68k_stream(opts->gen.deferred->address, context);
}
}
uint16_t m68k_get_ir(m68k_context *context)
{
uint32_t inst_addr = get_instruction_start(context->options, context->last_prefetch_address-2);
uint16_t *native_addr = get_native_pointer(inst_addr, (void **)context->mem_pointers, &context->options->gen);
if (native_addr) {
return *native_addr;
}
fprintf(stderr, "M68K: Failed to calculate value of IR. Last prefetch address: %X\n", context->last_prefetch_address);
return 0xFFFF;
}
static m68k_debug_handler find_breakpoint(m68k_context *context, uint32_t address)
{
for (uint32_t i = 0; i < context->num_breakpoints; i )
{
if (context->breakpoints[i].address == address) {
return context->breakpoints[i].handler;
}
}
return NULL;
}
void insert_breakpoint(m68k_context * context, uint32_t address, m68k_debug_handler bp_handler)
{
if (!find_breakpoint(context, address)) {
if (context->bp_storage == context->num_breakpoints) {
context->bp_storage *= 2;
if (context->bp_storage < 4) {
context->bp_storage = 4;
}
context->breakpoints = realloc(context->breakpoints, context->bp_storage * sizeof(m68k_breakpoint));
}
context->breakpoints[context->num_breakpoints ] = (m68k_breakpoint){
.handler = bp_handler,
.address = address
};
m68k_breakpoint_patch(context, address, bp_handler, NULL);
}
}
m68k_context *m68k_bp_dispatcher(m68k_context *context, uint32_t address)
{
m68k_debug_handler handler = find_breakpoint(context, address);
if (handler) {
handler(context, address);
} else {
//spurious breakoint?
warning("Spurious breakpoing at %X\n", address);
remove_breakpoint(context, address);
}
return context;
}
typedef enum {
RAW_FUNC = 1,
BINARY_ARITH,
UNARY_ARITH,
OP_FUNC
} impl_type;
typedef void (*raw_fun)(m68k_options * opts, m68kinst *inst);
typedef void (*op_fun)(m68k_options * opts, m68kinst *inst, host_ea *src_op, host_ea *dst_op);
typedef struct {
union {
raw_fun raw;
uint32_t flag_mask;
op_fun op;
} impl;
impl_type itype;
} impl_info;
#define RAW_IMPL(inst, fun) [inst] = { .impl = { .raw = fun }, .itype = RAW_FUNC }
#define OP_IMPL(inst, fun) [inst] = { .impl = { .op = fun }, .itype = OP_FUNC }
#define UNARY_IMPL(inst, mask) [inst] = { .impl = { .flag_mask = mask }, .itype = UNARY_ARITH }
#define BINARY_IMPL(inst, mask) [inst] = { .impl = { .flag_mask = mask}, .itype = BINARY_ARITH }
static impl_info m68k_impls[] = {
//math
BINARY_IMPL(M68K_ADD, X|N|Z|V|C),
BINARY_IMPL(M68K_SUB, X|N|Z|V|C),
//z flag is special cased for ADDX/SUBX
BINARY_IMPL(M68K_ADDX, X|N|V|C),
BINARY_IMPL(M68K_SUBX, X|N|V|C),
OP_IMPL(M68K_ABCD, translate_m68k_abcd_sbcd),
OP_IMPL(M68K_SBCD, translate_m68k_abcd_sbcd),
OP_IMPL(M68K_NBCD, translate_m68k_abcd_sbcd),
BINARY_IMPL(M68K_AND, N|Z|V0|C0),
BINARY_IMPL(M68K_EOR, N|Z|V0|C0),
BINARY_IMPL(M68K_OR, N|Z|V0|C0),
RAW_IMPL(M68K_CMP, translate_m68k_cmp),
OP_IMPL(M68K_DIVS, translate_m68k_div),
OP_IMPL(M68K_DIVU, translate_m68k_div),
OP_IMPL(M68K_MULS, translate_m68k_mul),
OP_IMPL(M68K_MULU, translate_m68k_mul),
RAW_IMPL(M68K_EXT, translate_m68k_ext),
UNARY_IMPL(M68K_NEG, X|N|Z|V|C),
OP_IMPL(M68K_NEGX, translate_m68k_negx),
UNARY_IMPL(M68K_NOT, N|Z|V|C),
UNARY_IMPL(M68K_TST, N|Z|V0|C0),
//shift/rotate
OP_IMPL(M68K_ASL, translate_m68k_sl),
OP_IMPL(M68K_LSL, translate_m68k_sl),
OP_IMPL(M68K_ASR, translate_m68k_asr),
OP_IMPL(M68K_LSR, translate_m68k_lsr),
OP_IMPL(M68K_ROL, translate_m68k_rot),
OP_IMPL(M68K_ROR, translate_m68k_rot),
OP_IMPL(M68K_ROXL, translate_m68k_rot),
OP_IMPL(M68K_ROXR, translate_m68k_rot),
UNARY_IMPL(M68K_SWAP, N|Z|V0|C0),
//bit
OP_IMPL(M68K_BCHG, translate_m68k_bit),
OP_IMPL(M68K_BCLR, translate_m68k_bit),
OP_IMPL(M68K_BSET, translate_m68k_bit),
OP_IMPL(M68K_BTST, translate_m68k_bit),
//data movement
RAW_IMPL(M68K_MOVE, translate_m68k_move),
RAW_IMPL(M68K_MOVEM, translate_m68k_movem),
RAW_IMPL(M68K_MOVEP, translate_m68k_movep),
RAW_IMPL(M68K_MOVE_USP, translate_m68k_move_usp),
RAW_IMPL(M68K_LEA, translate_m68k_lea_pea),
RAW_IMPL(M68K_PEA, translate_m68k_lea_pea),
UNARY_IMPL(M68K_CLR, N0|V0|C0|Z1),
OP_IMPL(M68K_EXG, translate_m68k_exg),
RAW_IMPL(M68K_SCC, translate_m68k_scc),
//function calls and branches
RAW_IMPL(M68K_BCC, translate_m68k_bcc),
RAW_IMPL(M68K_BSR, translate_m68k_bsr),
RAW_IMPL(M68K_DBCC, translate_m68k_dbcc),
RAW_IMPL(M68K_JMP, translate_m68k_jmp_jsr),
RAW_IMPL(M68K_JSR, translate_m68k_jmp_jsr),
RAW_IMPL(M68K_RTS, translate_m68k_rts),
RAW_IMPL(M68K_RTE, translate_m68k_rte),
RAW_IMPL(M68K_RTR, translate_m68k_rtr),
RAW_IMPL(M68K_LINK, translate_m68k_link),
RAW_IMPL(M68K_UNLK, translate_m68k_unlk),
//SR/CCR stuff
RAW_IMPL(M68K_ANDI_CCR, translate_m68k_andi_ori_ccr_sr),
RAW_IMPL(M68K_ANDI_SR, translate_m68k_andi_ori_ccr_sr),
RAW_IMPL(M68K_EORI_CCR, translate_m68k_eori_ccr_sr),
RAW_IMPL(M68K_EORI_SR, translate_m68k_eori_ccr_sr),
RAW_IMPL(M68K_ORI_CCR, translate_m68k_andi_ori_ccr_sr),
RAW_IMPL(M68K_ORI_SR, translate_m68k_andi_ori_ccr_sr),
OP_IMPL(M68K_MOVE_CCR, translate_m68k_move_ccr_sr),
OP_IMPL(M68K_MOVE_SR, translate_m68k_move_ccr_sr),
OP_IMPL(M68K_MOVE_FROM_SR, translate_m68k_move_from_sr),
RAW_IMPL(M68K_STOP, translate_m68k_stop),
//traps
OP_IMPL(M68K_CHK, translate_m68k_chk),
RAW_IMPL(M68K_TRAP, translate_m68k_trap),
RAW_IMPL(M68K_A_LINE_TRAP, translate_m68k_trap),
RAW_IMPL(M68K_F_LINE_TRAP, translate_m68k_trap),
RAW_IMPL(M68K_TRAPV, translate_m68k_trapv),
RAW_IMPL(M68K_ILLEGAL, translate_m68k_illegal),
RAW_IMPL(M68K_INVALID, translate_m68k_illegal),
//misc
RAW_IMPL(M68K_NOP, translate_m68k_nop),
RAW_IMPL(M68K_RESET, translate_m68k_reset),
RAW_IMPL(M68K_TAS, translate_m68k_tas),
};
static void translate_m68k(m68k_context *context, m68kinst * inst)
{
m68k_options * opts = context->options;
if (inst->address & 1) {
translate_m68k_odd(opts, inst);
return;
}
code_ptr start = opts->gen.code.cur;
check_cycles_int(&opts->gen, inst->address);
m68k_debug_handler bp;
if ((bp = find_breakpoint(context, inst->address))) {
m68k_breakpoint_patch(context, inst->address, bp, start);
}
//log_address(&opts->gen, inst->address, "M68K: %X @ %d\n");
if (
(inst->src.addr_mode > MODE_AREG && inst->src.addr_mode < MODE_IMMEDIATE)
|| (inst->dst.addr_mode > MODE_AREG && inst->dst.addr_mode < MODE_IMMEDIATE)
|| (inst->op == M68K_BCC && (inst->src.params.immed & 1))
) {
//Not accurate for all cases, but probably good enough for now
m68k_set_last_prefetch(opts, inst->address inst->bytes);
}
impl_info * info = m68k_impls inst->op;
if (info->itype == RAW_FUNC) {
info->impl.raw(opts, inst);
return;
}
host_ea src_op, dst_op;
uint8_t needs_int_latch = 0;
if (inst->src.addr_mode != MODE_UNUSED) {
needs_int_latch |= translate_m68k_op(inst, &src_op, opts, 0);
}
if (inst->dst.addr_mode != MODE_UNUSED) {
needs_int_latch |= translate_m68k_op(inst, &dst_op, opts, 1);
}
if (needs_int_latch) {
m68k_check_cycles_int_latch(opts);
}
if (info->itype == OP_FUNC) {
info->impl.op(opts, inst, &src_op, &dst_op);
} else if (info->itype == BINARY_ARITH) {
translate_m68k_arith(opts, inst, info->impl.flag_mask, &src_op, &dst_op);
} else if (info->itype == UNARY_ARITH) {
translate_m68k_unary(opts, inst, info->impl.flag_mask, inst->dst.addr_mode != MODE_UNUSED ? &dst_op : &src_op);
} else {
m68k_disasm(inst, disasm_buf);
fatal_error("%X: %s\ninstruction %d not yet implemented\n", inst->address, disasm_buf, inst->op);
}
if (opts->gen.code.stack_off) {
m68k_disasm(inst, disasm_buf);
fatal_error("Stack offset is %X after %X: %s\n", opts->gen.code.stack_off, inst->address, disasm_buf);
}
}
void translate_m68k_stream(uint32_t address, m68k_context * context)
{
m68kinst instbuf;
m68k_options * opts = context->options;
code_info *code = &opts->gen.code;
if(get_native_address(opts, address)) {
return;
}
uint16_t *encoded, *next;
do {
if (opts->address_log) {
fprintf(opts->address_log, "%X\n", address);
fflush(opts->address_log);
}
do {
encoded = get_native_pointer(address, (void **)context->mem_pointers, &opts->gen);
if (!encoded) {
code_ptr start = code->cur;
translate_out_of_bounds(opts, address);
code_ptr after = code->cur;
map_native_address(context, address, start, 2, after-start);
break;
}
code_ptr existing = get_native_address(opts, address);
if (existing) {
jmp(code, existing);
break;
}
next = m68k_decode(encoded, &instbuf, address);
if (instbuf.op == M68K_INVALID) {
instbuf.src.params.immed = *encoded;
}
uint16_t m68k_size = (next-encoded)*2;
address = m68k_size;
//char disbuf[1024];
//m68k_disasm(&instbuf, disbuf);
//printf("%X: %s\n", instbuf.address, disbuf);
//make sure the beginning of the code for an instruction is contiguous
check_code_prologue(code);
code_ptr start = code->cur;
translate_m68k(context, &instbuf);
code_ptr after = code->cur;
map_native_address(context, instbuf.address, start, m68k_size, after-start);
} while(!m68k_is_terminal(&instbuf) && !(address & 1));
process_deferred(&opts->gen.deferred, context, (native_addr_func)get_native_from_context);
if (opts->gen.deferred) {
address = opts->gen.deferred->address;
}
} while(opts->gen.deferred);
}
void * m68k_retranslate_inst(uint32_t address, m68k_context * context)
{
m68k_options * opts = context->options;
code_info *code = &opts->gen.code;
uint8_t orig_size = get_native_inst_size(opts, address);
code_ptr orig_start = get_native_address(context->options, address);
uint32_t orig = address;
code_info orig_code = {orig_start, orig_start orig_size 5, 0};
uint16_t *after, *inst = get_native_pointer(address, (void **)context->mem_pointers, &opts->gen);
m68kinst instbuf;
after = m68k_decode(inst, &instbuf, orig);
if (orig_size != MAX_NATIVE_SIZE) {
deferred_addr * orig_deferred = opts->gen.deferred;
//make sure we have enough code space for the max size instruction
check_alloc_code(code, MAX_NATIVE_SIZE);
code_ptr native_start = code->cur;
translate_m68k(context, &instbuf);
code_ptr native_end = code->cur;
/*uint8_t is_terminal = m68k_is_terminal(&instbuf);
if ((native_end - native_start) <= orig_size) {
code_ptr native_next;
if (!is_terminal) {
native_next = get_native_address(context->native_code_map, orig (after-inst)*2);
}
if (is_terminal || (native_next && ((native_next == orig_start orig_size) || (orig_size - (native_end - native_start)) > 5))) {
printf("Using original location: %p\n", orig_code.cur);
remove_deferred_until(&opts->gen.deferred, orig_deferred);
code_info tmp;
tmp.cur = code->cur;
tmp.last = code->last;
code->cur = orig_code.cur;
code->last = orig_code.last;
translate_m68k(context, &instbuf);
native_end = orig_code.cur = code->cur;
code->cur = tmp.cur;
code->last = tmp.last;
if (!is_terminal) {
nop_fill_or_jmp_next(&orig_code, orig_start orig_size, native_next);
}
m68k_handle_deferred(context);
return orig_start;
}
}*/
map_native_address(context, instbuf.address, native_start, (after-inst)*2, MAX_NATIVE_SIZE);
jmp(&orig_code, native_start);
if (!m68k_is_terminal(&instbuf)) {
code_ptr native_end = code->cur;
code->cur = native_start MAX_NATIVE_SIZE;
code_ptr rest = get_native_address_trans(context, orig (after-inst)*2);
code_info tmp_code = {
.cur = native_end,
.last = native_start MAX_NATIVE_SIZE,
.stack_off = code->stack_off
};
jmp(&tmp_code, rest);
} else {
code->cur = native_start MAX_NATIVE_SIZE;
}
m68k_handle_deferred(context);
return native_start;
} else {
code_info tmp = *code;
*code = orig_code;
translate_m68k(context, &instbuf);
orig_code = *code;
*code = tmp;
if (!m68k_is_terminal(&instbuf)) {
jmp(&orig_code, get_native_address_trans(context, orig (after-inst)*2));
}
m68k_handle_deferred(context);
return orig_start;
}
}
code_ptr get_native_address_trans(m68k_context * context, uint32_t address)
{
code_ptr ret = get_native_address(context->options, address);
if (!ret) {
translate_m68k_stream(address, context);
ret = get_native_address(context->options, address);
}
return ret;
}
void remove_breakpoint(m68k_context * context, uint32_t address)
{
for (uint32_t i = 0; i < context->num_breakpoints; i )
{
if (context->breakpoints[i].address == address) {
if (i != (context->num_breakpoints-1)) {
context->breakpoints[i] = context->breakpoints[context->num_breakpoints-1];
}
context->num_breakpoints--;
break;
}
}
code_ptr native = get_native_address(context->options, address);
if (!native) {
return;
}
code_info tmp = context->options->gen.code;
context->options->gen.code.cur = native;
context->options->gen.code.last = native MAX_NATIVE_SIZE;
check_cycles_int(&context->options->gen, address);
context->options->gen.code = tmp;
}
void start_68k_context(m68k_context * context, uint32_t address)
{
code_ptr addr = get_native_address_trans(context, address);
m68k_options * options = context->options;
options->start_context(addr, context);
}
void resume_68k(m68k_context *context)
{
code_ptr addr = context->resume_pc;
context->resume_pc = NULL;
m68k_options * options = context->options;
context->should_return = 0;
options->start_context(addr, context);
}
void m68k_reset(m68k_context * context)
{
//TODO: Actually execute the M68K reset vector rather than simulating some of its behavior
uint16_t *reset_vec = get_native_pointer(0, (void **)context->mem_pointers, &context->options->gen);
if (!(context->status & 0x20)) {
//switching from user to system mode so swap stack pointers
context->aregs[8] = context->aregs[7];
}
context->status = 0x27;
context->aregs[7] = reset_vec[0] << 16 | reset_vec[1];
uint32_t address = reset_vec[2] << 16 | reset_vec[3];
//interrupt mask may have changed so force a sync
sync_components(context, address);
start_68k_context(context, address);
}
void m68k_options_free(m68k_options *opts)
{
for (uint32_t address = 0; address < opts->gen.address_mask; address = NATIVE_CHUNK_SIZE)
{
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (opts->gen.native_code_map[chunk].base) {
free(opts->gen.native_code_map[chunk].offsets);
}
}
free(opts->gen.native_code_map);
uint32_t ram_inst_slots = ram_size(&opts->gen) / 1024;
for (uint32_t i = 0; i < ram_inst_slots; i )
{
free(opts->gen.ram_inst_sizes[i]);
}
free(opts->gen.ram_inst_sizes);
free(opts->big_movem);
free(opts);
}
m68k_context * init_68k_context(m68k_options * opts, m68k_reset_handler reset_handler)
{
m68k_context * context = calloc(1, sizeof(m68k_context) ram_size(&opts->gen) / (1 << opts->gen.ram_flags_shift) / 8);
context->options = opts;
context->int_cycle = CYCLE_NEVER;
context->status = 0x27;
context->reset_handler = (code_ptr)reset_handler;
return context;
}
void m68k_serialize(m68k_context *context, uint32_t pc, serialize_buffer *buf)
{
for (int i = 0; i < 8; i )
{
save_int32(buf, context->dregs[i]);
}
for (int i = 0; i < 9; i )
{
save_int32(buf, context->aregs[i]);
}
save_int32(buf, pc);
uint16_t sr = context->status << 3;
for (int flag = 4; flag >= 0; flag--) {
sr <<= 1;
sr |= context->flags[flag] != 0;
}
save_int16(buf, sr);
save_int32(buf, context->current_cycle);
save_int32(buf, context->int_cycle);
save_int8(buf, context->int_num);
save_int8(buf, context->int_pending);
save_int8(buf, context->trace_pending);
}
void m68k_deserialize(deserialize_buffer *buf, void *vcontext)
{
m68k_context *context = vcontext;
for (int i = 0; i < 8; i )
{
context->dregs[i] = load_int32(buf);
}
for (int i = 0; i < 9; i )
{
context->aregs[i] = load_int32(buf);
}
//hack until both PC and IR registers are represented properly
context->last_prefetch_address = load_int32(buf);
uint16_t sr = load_int16(buf);
context->status = sr >> 8;
for (int flag = 0; flag < 5; flag )
{
context->flags[flag] = sr & 1;
sr >>= 1;
}
context->current_cycle = load_int32(buf);
context->int_cycle = load_int32(buf);
context->int_num = load_int8(buf);
context->int_pending = load_int8(buf);
context->trace_pending = load_int8(buf);
}
|