1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
(in-package "ACL2")
#|
clock-to-inv.lisp
~~~~~~~~~~~~~~~~~
Author: Sandip Ray
Date: Tue Jan 22 17:33:20 2004
In this book, we define a macro called inv-to-clock to convert from inductive
invariant style proofs to clock function style proofs. Both total and partial
correctness are concerned. The macro functionally instantiates the generic
theorems about clocks and invariants to produce the final theorems.
|#
(set-match-free-default :once)
;; Compatibility stuff.
(include-book "ordinals/e0-ordinal" :dir :system)
(set-well-founded-relation e0-ord-<)
;; (defun natp (n)
;; (and (integerp n)
;; (<= 0 n)))
(in-theory (disable natp))
;; The macro clock-to-inv below works exactly as you would expect, functionally
;; instantiating the generic functions to get the concrete theorems.
(defmacro inv-to-clock (name mode &key
(pre 'pre)
(next 'next)
(external 'external)
(post 'post)
(inv 'inv)
(m 'm))
(declare (xargs :guard (and (symbolp name)
(keywordp mode)
(symbolp next)
(symbolp pre)
(symbolp post)
(symbolp inv)
(symbolp m))))
;; We create the invariant as name-inv, and create the concrete theorems as
;; name-thm for the corresponding abstract theorem. The user needs to check
;; that there are no name clashes.
(let ((next next)
(pre pre)
(post post)
(inv inv)
(m m)
(clock (packn (list name '-clock))))
(if (eq mode :total)
;; the theorems for total functions.
(let* ((run (packn (list name '-run)))
(standard-1 (packn (list name '-standard-theorem-about-clocks-1)))
(standard-2 (packn (list name '-standard-theorem-about-clocks-2)))
(standard-3 (packn (list name '-standard-theorem-about-clocks-3)))
(clock-natp (packn (list name '-clock-is-natp))))
`(encapsulate
(((,clock *) => *))
;; Just throw in the book and do it.
(local (include-book "i2c-total"))
;; I should not be required to open next, pre, post, etc.
(in-theory (disable ,next ,pre, post ,inv))
(defun ,run (s n)
(if (zp n) s
(,run (,next s) (1- n))))
(local
(defun clock-aux (s)
(declare (xargs :measure (,m s)))
(cond ((not (,inv s)) 0)
((,external (,next s)) 0)
(t (1 (clock-aux (,next s)))))))
(local
(defun ,clock (s)
(1 (clock-aux s))))
(defthm ,clock-natp
(natp (,clock s))
:hints (("Goal"
:in-theory (disable clock-total--fn-is-natp)
:use ((:functional-instance
clock-total--fn-is-natp
(inv-total ,inv)
(pre-total ,pre)
(next-total ,next)
(external-total ,external)
(run-total ,run)
(post-total ,post)
(clock-total--fn ,clock)
(clock-total--fn-aux clock-aux)
(m ,m))))))
(defthm ,standard-1
(implies (,pre s)
(,external (,run s (,clock s))))
:hints (("Goal"
:in-theory (disable standard-theorem-about-clock-total-s-1)
:use ((:functional-instance
standard-theorem-about-clock-total-s-1
(inv-total ,inv)
(pre-total ,pre)
(next-total ,next)
(external-total ,external)
(run-total ,run)
(post-total ,post)
(clock-total--fn ,clock)
(clock-total--fn-aux clock-aux)
(m ,m))))))
(defthm ,standard-2
(implies (,pre s)
(,post (,run s (,clock s))))
:hints (("Goal"
:in-theory (disable standard-theorem-about-clock-total-s-2)
:use ((:functional-instance
standard-theorem-about-clock-total-s-2
(inv-total ,inv)
(pre-total ,pre)
(next-total ,next)
(external-total ,external)
(run-total ,run)
(post-total ,post)
(clock-total--fn ,clock)
(clock-total--fn-aux clock-aux)
(m ,m))))))
(defthm ,standard-3
(implies (and (,pre s)
(,external (,run s i)))
(<= (,clock s) i))
:hints (("Goal"
:in-theory (disable standard-theorem-about-clock-total-s-3)
:use ((:functional-instance
standard-theorem-about-clock-total-s-3
(inv-total ,inv)
(pre-total ,pre)
(next-total ,next)
(external-total ,external)
(run-total ,run)
(post-total ,post)
(clock-total--fn ,clock)
(clock-total--fn-aux clock-aux)
(m ,m))))))))
;; Not total. So use the partial conditions and also prove fewer
;; theorems.
(let* ((run (packn (list name '-run)))
(standard-1 (packn (list name '-standard-theorem-about-clocks-1)))
(standard-2 (packn (list name '-standard-theorem-about-clocks-2)))
(standard-3 (packn (list name '-standard-theorem-about-clocks-3)))
(clock-natp (packn (list name '-clock-is-natp))))
`(encapsulate
(((,clock *) => *))
(local (include-book "i2c-partial"))
(in-theory (disable ,next ,pre ,post ,inv))
(defun ,run (s n)
(if (zp n) s
(,run (,next s) (1- n))))
(local
(defun-sk for-all-inv (s i)
(forall j
(implies (<= j i)
(,inv (,run s j))))))
(local
(defun-sk exists-run-to-external (s)
(exists i (and (natp i)
(for-all-inv s i)
(,inv (,run s i))
(,external (,next (,run s i)))))))
(local
(defun ,clock (s)
(if (exists-run-to-external s)
(1 (exists-run-to-external-witness s))
0)))
(local
(defthm inv-witness-1
(implies (and (for-all-inv s i)
(<= j i))
(,inv (,run s j)))
:hints (("Goal"
:in-theory (disable for-all-inv-necc)
:use ((:instance for-all-inv-necc))))))
(local
(in-theory (disable for-all-inv-necc)))
(defthm ,clock-natp
(natp (,clock s))
:otf-flg t
:hints (("Goal"
:in-theory (disable clock-partial--is-a-natp)
:use ((:functional-instance
clock-partial--is-a-natp
(inv-partial ,inv)
(pre-partial ,pre)
(next-partial ,next)
(external-partial ,external)
(run-partial ,run)
(post-partial ,post)
(clock-partial--fn ,clock)
(exists-run-partial-to-external-partial
exists-run-to-external)
(exists-run-partial-to-external-partial-witness
exists-run-to-external-witness)
(for-all-inv-partial for-all-inv)
(for-all-inv-partial-witness
for-all-inv-witness))))))
(defthm ,standard-1
(implies (and (,pre s)
(,external (,run s i)))
(,external (,run s (,clock s))))
:hints (("Goal"
:in-theory (disable standard-theorem-for-clock-partial-s-1)
:use ((:functional-instance
standard-theorem-for-clock-partial-s-1
(inv-partial ,inv)
(pre-partial ,pre)
(next-partial ,next)
(external-partial ,external)
(run-partial ,run)
(post-partial ,post)
(clock-partial--fn ,clock)
(exists-run-partial-to-external-partial
exists-run-to-external)
(exists-run-partial-to-external-partial-witness
exists-run-to-external-witness)
(for-all-inv-partial for-all-inv)
(for-all-inv-partial-witness
for-all-inv-witness))))))
(defthm ,standard-2
(implies (and (,pre s)
(,external (,run s i)))
(,post (,run s (,clock s))))
:hints (("Goal"
:in-theory (disable standard-theorem-for-clock-partial-s-2)
:use ((:functional-instance
standard-theorem-for-clock-partial-s-2
(inv-partial ,inv)
(pre-partial ,pre)
(next-partial ,next)
(external-partial ,external)
(run-partial ,run)
(post-partial ,post)
(clock-partial--fn ,clock)
(exists-run-partial-to-external-partial
exists-run-to-external)
(exists-run-partial-to-external-partial-witness
exists-run-to-external-witness)
(for-all-inv-partial for-all-inv)
(for-all-inv-partial-witness
for-all-inv-witness))))))
(defthm ,standard-3
(implies (and (,pre s)
(,external (,run s i)))
(<= (,clock s) i))
:hints (("Goal"
:in-theory (disable standard-theorem-for-clock-partial-s-3)
:use ((:functional-instance
standard-theorem-for-clock-partial-s-3
(inv-partial ,inv)
(pre-partial ,pre)
(next-partial ,next)
(external-partial ,external)
(run-partial ,run)
(post-partial ,post)
(clock-partial--fn ,clock)
(exists-run-partial-to-external-partial
exists-run-to-external)
(exists-run-partial-to-external-partial-witness
exists-run-to-external-witness)
(for-all-inv-partial for-all-inv)
(for-all-inv-partial-witness
for-all-inv-witness)))))))))))
;; Testing:
;; Example 1: Total correctness
(local
(encapsulate
()
(local (defun nextt (s) s))
(local (defun pret (s)(declare (ignore s)) nil))
(local (defun postt (s) (declare (ignore s)) t))
(local(defun externalt (s) (declare (ignore s)) t))
(local (defun invt (s) (declare (ignore s)) nil))
(local (defun meas (s) (declare (ignore s)) 0))
(local
(defthm pre-has-inv
(implies (pret s)
(invt s))))
(local
(defthm inv-persists
(implies (and (invt s)
(not (externalt (nextt s))))
(invt (nextt s)))))
(local
(defthm inv-implies-post
(implies (and (invt s)
(externalt (nextt s)))
(postt (nextt s)))))
(local
(defthm m-ordinal
(e0-ordinalp (meas s))))
(local
(defthm m-decreases
(implies (and (invt s)
(not (externalt (nextt s))))
(e0-ord-< (meas (nextt s))
(meas s)))))
(local
(defthm inv-not-external
(implies (invt s)
(not (externalt s)))))
(local
(inv-to-clock try-total
:total
:pre pret
:next nextt
:external externalt
:post postt
:inv invt
:m meas))))
;; Example 2: Partial correctness
(local
(encapsulate
()
(local (defun nextp (s) s))
(local (defun prep (s) (declare (ignore s)) nil))
(local (defun postp (s) (declare (ignore s)) t))
(local (defun externalp (s) (declare (ignore s)) nil))
(local (defun invp (s) (declare (ignore s)) nil))
(local
(defthm pre-has-inv
(implies (prep s)
(invp s))))
(local
(defthm inv-not-external
(implies (invp s)
(not (externalp s)))))
(local
(defthm inv-persists
(implies (and (invp s)
(not (externalp (nextp s))))
(invp (nextp s)))))
(local
(defthm inv-implies-post
(implies (and (invp s)
(externalp (nextp s)))
(postp (nextp s)))))
(local
(inv-to-clock try-partial
:partial
:pre prep
:next nextp
:external externalp
:post postp
:inv invp))))
;; Notice that to use the macro one might need to disable the bodies of the
;; functions next, pre, post etc. So some theory creation is important. I don't
;; do that since for all I know the body might have been stubbed out. But you
;; are pretty safe in a theory that keeps only the theorems specified as axioms.
|