1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1863 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
|
;;; ============================================================================
;;; dags.lisp
;;; Título: Term dags in ACL2
;;; ============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "dags")
|#
(in-package "ACL2")
(include-book "basic")
;;; ============================================================================
;;;
;;; 0) Introducción
;;;
;;; ============================================================================
;;; We discuss a representation for term graphs, using
;;; lists and we define the notion of directed acyclic graphs, proving
;;; its main properties. We also describe and prove a way of recursively
;;; traversing term dags.
;;; More precisely, in this book:
;;; *)
;;; We define a representation for term graphs, {\em using lists}.
;;; *)
;;; We define a predicate {\tt dag-p}, the property of being acyclic (a dag).
;;; *)
;;; We prove the main properties of that definition.
;;; *)
;;; We also prove a property about directed acyclic graphs that become
;;; cyclic when one of its nodes is changed in a certain way.
;;; *)
;;; We define a measure function that will be used to admit functions
;;; that traverse dags in a way that resembles recursion on
;;; first order terms represented as lists in preffix notation.
;;; *)
;;; We prove the corresponding termination conjectures.
;;; -)
;;; The results in this book will be translated to an analogue
;;; representation of term-dags using stobjs, that will be used to
;;; compute. I feel more comfortable working with lists than working
;;; with stobjs (which requires more technical details), so I prefer to
;;; stay in the "logical side" and translate the main events later.
;;; ============================================================================
;;;
;;; 1) Representation of term graphs
;;;
;;; ============================================================================
;;; We represent a (directed) term graph as a list. If @g@ is a list
;;; representing a term graph, {\tt (nth x g)} stores a symbol (function or
;;; variable) and information about the neighbors of the node @x@.
;;; There are two kinds of nodes: function nodes and variable nodes.
;;; Depending on the kind of a node @h@, we will store in {\tt (nth h g)} the
;;; following information:
;;; *)
;;; Variable nodes. They can be of two forms:
;;; *.*)
;;; @N@ (integer numbers): bound variables. They are bound to
;;; the node @N@ (note that negative numbers are interpreted
;;; w.r.t. @nth@ as 0). I will call this nodes "IS" nodes.
;;; *.*)
;;; {\tt (X . T)} : they represent an unbound variable
;;; @X@. I will call these nodes "VARIABLES".
;;; *.-)
;;; *)
;;; Non-variable nodes (function nodes): {\tt (F. L)} (where @L@ is
;;; different from @T@), interpreted as the function symbol @F@ and the
;;; list @L@ of its neighbors (its arguments). These are "NON-VARIABLE"
;;; nodes.
;;; -)
;;; Examples:
;;; Graph representing the term $f(h(x), h(y), k(l(x,y)))$:
; ((F 1 3 5) (H 2) (X . T) (H 4) (Y . T) (K 6) (L 7 8) 2 4)
;;; Graph representing the term $f(h(x,x), h(y,y), k(l(x,y)))$:
; ((F 1 4 7) (H 2 3) (X . T) 2 (H 5 6) (Y . T) 5 (K 8) (L 9 10) 2 5)
;;; A graph will be represented as a list @G@ with the sequence of
;;; that information. This means that the neighbors of node @N@ and
;;; eventually its variable or function symbol is in {\tt (nth N G)}. We
;;; will say that a node of a graph @G@ is {\em important} if it is a
;;; natural number less than the length of the list @G@.
;;; The following function computes the neighbors of a node @h@ in a graph @G@:
(defun neighbors (h g)
(let ((ng (nth h g)))
(if (integerp ng)
(list ng)
(let ((ngs (cdr ng)))
(if (equal ngs t) nil ngs)))))
;;; REMARK: As usual, every ACL2 object can be seen as a term
;;; graph. Moreover, since neighbors are determined by the behaviour of
;;; the function @nth@, every ACL2 has a list of neighbors (possibly
;;; empty) w.r.t. to a term graph. In particular, non-natural nodes has
;;; the same list of neighbors than the node @0@. Natural nodes geater
;;; than the length of @g@ have an empty list of neighbors (they can be
;;; seen as the constant @(nil)@).
;;; ============================================================================
;;;
;;; 2) Directed acyclic (term) graphs
;;;
;;; ============================================================================
;;; We now define a predicate checking that a given term graph has no
;;; cyclic paths. A term graph with this property is called a dag
;;; (directed acyclic graph).
;;; We are going to define a function @dag-p@, inspired in "An
;;; exercise in graph theory", J Moore \cite{moore-graph}. The main
;;; auxiliary function to define this function is called @dag-p-aux@,
;;; and will be defined in the following way:
; (defun dag-p-aux (hs rev-path g)
; (declare (xargs :measure (measure-dag-p hs rev-path g)))
; (if (endp hs)
; t
; (let ((hs-car (nfix (car hs))))
; (if (member hs-car rev-path)
; nil
; (and (dag-p-aux (neighbors (car hs) g)
; (cons hs-car rev-path)
; g)
; (dag-p-aux (cdr hs) rev-path g))))))
;;; In this definition, @g@ is a term graph, @hs@ is a stack of nodes that
;;; remains to be explored and @rev-path@ contains a path (in reverse
;;; order) with nodes already visited. This recursive schema is inspired
;;; in the one given in J Moore's paper.
;;; If {\tt (list-of-n $n$)} is a function returning the list of
;;; natural numbers less than $n$ (it will be defined later), then our
;;; function @dag-p@ will be defined simply as:
; (defun dag-p (g)
; (dag-p-aux (list-of-n (len g)) nil g))
;;; Examples:
; ACL2 !>(dag-p '((F 1 3 5) (H 2) (X . T) (H 4) (Y . T) (K 6) (L 7 8) 2 4))
; T
; ACL2 !>(dag-p '((F 1 3 5) (H 2) 1 (H 4) (Y . T) (K 6) (L 7 8) 2 4))
; NIL
;;; -----------------------------------------------
;;;
;;; 2.1) Termination of {\tt dag-p-aux}
;;;
;;; -----------------------------------------------
;;; Note that the termination of {\tt dag-p-aux} is not trivial, because
;;; of the different behaviour of the two recursive calls. So we are
;;; going to define a measure needed to admit the function. This measure
;;; will also be used later, to justify the termination of other
;;; functions.
;;; REMARK:
;;; 1)
;;; Note that cycle detection in {\tt dag-p-aux} is done "modulo
;;; nfix". Non natural nodes are transformed to 0.
;;; -)
;;; So our goal is to define a measure {\tt measure-dag-p}, and show
;;; the following termination conjectures, which will allow the
;;; admission of the above function:
; (AND (O-P (MEASURE-DAG-P HS REV-PATH G))
; (IMPLIES (AND (NOT (ENDP HS))
; (NOT (MEMBER (NFIX (CAR HS)) REV-PATH)))
; (O< (MEASURE-DAG-P (NEIGHBORS (CAR HS) G)
; (CONS (NFIX (CAR HS)) REV-PATH)
; G)
; (MEASURE-DAG-P HS REV-PATH G)))
; (IMPLIES (AND (NOT (ENDP HS))
; (NOT (MEMBER (NFIX (CAR HS)) REV-PATH))
; (DAG-P-AUX (NEIGHBORS (CAR HS) G)
; (CONS (NFIX (CAR HS)) REV-PATH)
; G))
; (O< (MEASURE-DAG-P (CDR HS) REV-PATH G)
; (MEASURE-DAG-P HS REV-PATH G)))).
;;; This measure will be a lexicographic combination of:
;;; *)
;;; The number of important nodes that are not in rev-path .
;;; *)
;;; The length of @hs@.
;;; -)
;;; But previously, some auxiliary definitions and lemmas:
(defthm nfix-natp
(natp (nfix x)))
(defthm nfix-neighbors
(equal (neighbors (nfix x) g)
(neighbors x g)))
(defthm nfix-nth
(equal (nth (nfix x) l)
(nth x l)))
(defun map-nfix (l)
(if (endp l)
l
(cons (nfix (car l)) (map-nfix (cdr l)))))
(defthm map-nfix-member
(implies (member x l)
(member (nfix x) (map-nfix l))))
(defun bounded-natp (x n)
(and (natp x) (< x n)))
(defun count-bounded-natp-not-in (n l)
(cond ((zp n) 0)
((member (1- n) l) (count-bounded-natp-not-in (1- n) l))
(t (1 (count-bounded-natp-not-in (1- n) l)))))
;;; The measure:
(defun measure-dag-p (hs rp g)
(list* (cons 1 (1 (count-bounded-natp-not-in (len g) rp)))
(len hs)))
;;; The measure conjectures:
(defthm measure-dag-p-e0-ordinalp
(o-p (measure-dag-p hs rp g)))
;;; Some previous lemmas about len
(defthm natp-len
(natp (len l)))
(defthm positive-len
(equal (< 0 (len l))
(consp l)))
(local
(defthm nth-non-nil
(implies (and (<= (len l) n) (natp n))
(not (nth n l)))))
(encapsulate
()
(local
(defthm count-bounded-natp-not-in-cons-1
(>= (count-bounded-natp-not-in n l)
(count-bounded-natp-not-in n (cons m l)))
:rule-classes :linear))
(local
(defthm count-bounded-natp-not-in-cons-2
(implies (natp n)
(iff (equal (count-bounded-natp-not-in n (cons x m))
(count-bounded-natp-not-in n m))
(or (member x m) (not (bounded-natp x n)))))))
(defthm measure-dag-p-recursion-1
(implies (and (consp hs)
(not (member (nfix (car hs)) rev-path)))
(o< (measure-dag-p (neighbors (car hs) g)
(cons (nfix (car hs)) rev-path)
g)
(measure-dag-p hs rev-path g))))
(defthm measure-dag-p-recursion-2
(implies (consp hs)
(o< (measure-dag-p (cdr hs) rev-path g)
(measure-dag-p hs rev-path g)))))
;;; We disable the function:
(in-theory (disable measure-dag-p))
;;; We also temporarily disable nfix and neighbors
(local (in-theory (disable nfix)))
(local (in-theory (disable neighbors)))
;;; The function dag-p-aux, with its admission:
(defun dag-p-aux (hs rev-path g)
(declare (xargs :measure (measure-dag-p hs rev-path g)))
(if (endp hs)
t
(let ((hs-car (nfix (car hs))))
(if (member hs-car rev-path)
nil
(and (dag-p-aux (neighbors (car hs) g)
(cons hs-car rev-path)
g)
(dag-p-aux (cdr hs) rev-path g))))))
;;; -----------------------------
;;;
;;; 2.2) Definition of dag-p
;;;
;;; -----------------------------
;;; We will say that a directed term graph is acyclic (a dag), if it has
;;; no cycles starting in an important node. We do not have to worry
;;; about the rest of the nodes. If they are natural numbers greater
;;; than the length of the list representing the graph, they are nodes
;;; without neighbors. If they are not natural numbers, the behave as
;;; the node 0.
;;; First we define and characterize the list of natural numbers between
;;; 0 and n:
(defun list-of-n (n)
(declare (xargs :guard (and (integerp n) (>= n 0))))
(if (zp n)
nil
(cons (1- n) (list-of-n (1- n)))))
(defthm bounded-natp-list-of-n
(implies (natp n)
(iff (member x (list-of-n n))
(bounded-natp x n))))
(in-theory (disable list-of-n))
;;; Finally, the definition {\tt dag-p}:
(defun dag-p (g)
(dag-p-aux (list-of-n (len g)) nil g))
;;; ============================================================================
;;;
;;; 3) Verification of {\tt dag-p}
;;;
;;; ============================================================================
;;; Our goal is to prove that {\tt (dag-p g)} if and only if {\tt g} is
;;; cycle-free.
;;; -----------------------------------
;;;
;;; 3.1) Definition of path and cycles
;;;
;;; -----------------------------------
;;; We define that relation between neigbors nodes in a graph:
(defun rel-graph (x y g)
(member y (map-nfix (neighbors x g))))
;;; The following function defines the notion of path in a term graph:
(defun path-p (p g)
(cond ((endp p) (equal p nil))
((endp (cdr p)) (and (natp (car p)) (equal (cdr p) nil)))
(t (and
(natp (first p))
(rel-graph (first p) (second p) g)
(path-p (cdr p) g)))))
;;; REMARK: Note that this definition of path differs slightly form the
;;; definition of Moore: paths are sequences of natural numbers. We use
;;; {\tt map-nfix} to transform non-natural nodes to node 0.
;;; An interesting property about concatenation of paths (taken from
;;; J's work):
(defthm path-p-append
(implies (and (true-listp p1)
(true-listp p2))
(iff (path-p (append p1 p2) g)
(cond ((endp p1) (path-p p2 g))
((endp p2) (path-p p1 g))
(t (and (path-p p1 g)
(path-p p2 g)
(rel-graph (car (last p1)) (car p2) g)))))))
;;; A cycle is a path with no duplicate nodes:
(defun cycle-p (p g)
(and (path-p p g)
(not (no-duplicatesp p))))
;;; -----------------------------------
;;;
;;; 3.1) Soundness of {\tt dag-p}
;;;
;;; -----------------------------------
;;; We want to prove that {\tt (not (dag-p g))} implies the existence of
;;; a cycle. We have to give this cycle explicitly, defined by the below
;;; function {\tt one-cyclic-path}, whose main auxiliary function is the
;;; following:
(defun cyclic-path-aux (hs rev-path g)
(declare (xargs :measure (measure-dag-p hs rev-path g)))
(if (endp hs)
nil
(let ((hs-car (nfix (car hs))))
(if (member hs-car rev-path)
(revlist (cons hs-car rev-path))
(or (cyclic-path-aux (neighbors (car hs) g)
(cons hs-car rev-path)
g)
(cyclic-path-aux (cdr hs) rev-path g))))))
(defun one-cyclic-path (g)
(cyclic-path-aux (list-of-n (len g)) nil g))
;;; The function {\tt cyclic-path-aux} returns a path. Note that this
;;; property states the general invariant of the function:
(local
(defthm cyclic-path-aux-path-p
(let ((cp (cyclic-path-aux hs rp g)))
(implies (and (true-listp rp)
(path-p (revlist rp) g)
(if (consp rp)
(subsetp hs (neighbors (car rp) g))
t)
cp)
(path-p cp g)))))
;;; The function {\tt cyclic-path-aux} returns a list with duplicate nodes:
(local
(defthm cyclic-path-aux-path-p-no-duplicatesp-aux
(let ((cp (cyclic-path-aux hs rp g)))
(implies (and (true-listp rp) cp)
(member (car (revlist cp)) (cdr (revlist cp)))))))
(local
(encapsulate
()
(local
(defthm member-car-cdr-no-duplicatesp
(implies (member (car l) (cdr l))
(not (no-duplicatesp l)))))
(local
(defthm no-duplicatesp-append-cons
(equal (no-duplicatesp (append a (cons e b)))
(and (not (member e a))
(not (member e b))
(no-duplicatesp (append a b))))))
(defthm cyclic-path-aux-path-p-no-duplicatesp
(let ((cp (cyclic-path-aux hs rp g)))
(implies (and (true-listp rp) cp)
(not (no-duplicatesp cp))))
:hints (("Goal" :use (:instance
no-duplicatesp-revlist
(l (cyclic-path-aux hs rp g))))))))
;;; This is the main lemma for the soundness theorem:
(local
(defthm cyclic-path-iff-not-dag
(iff (cyclic-path-aux hs rp g)
(not (dag-p-aux hs rp g)))))
;;; Finally, the soundness theorem:
;;; ·······························
(defthm dag-p-soundness
(implies (not (dag-p g))
(cycle-p (one-cyclic-path g) g)))
;;; -----------------------------------
;;;
;;; 3.2) Completeness of {\tt dag-p}
;;;
;;; -----------------------------------
;;; Let us prove that if @p@ is a cyclic path in @g@, then {\tt (not
;;; (dag-p g))}
;;; This function checks if @p@ is list of nodes {\tt (n1 ... nk)} where @nk@ is
;;; in {\tt (append rp (n1 ... n(k-1)))} and no other @ni@ has this
;;; property. This function is needed to express an invariant property
;;; essential for the completeness theorem of {\tt dag-p}.
(local
(defun extension-to-cyclic-path (p rp)
(cond ((endp p) nil)
((endp (cdr p)) (member (car p) rp))
(t (and (not (member (car p) rp))
(extension-to-cyclic-path (cdr p) (cons (car p) rp)))))))
;;; A function for an induction hint:
(local
(defun induct-dag-p-aux-completeness (hs rev-path g p)
(declare (xargs :measure (measure-dag-p hs rev-path g)
:hints (("Subgoal 1" :use measure-dag-p-recursion-1
:in-theory (disable measure-dag-p-recursion-1)))))
(cond ((endp hs) t)
((member (nfix (car hs)) rev-path) t)
((equal (car p) (nfix (car hs)))
(induct-dag-p-aux-completeness
(neighbors (car hs) g) (cons (car p) rev-path) g (cdr p)))
(t (induct-dag-p-aux-completeness (cdr hs) rev-path g p)))))
;;; The main lemma for completeness:
;;; ································
(local
(defthm dag-p-aux-completeness-main-lemma
(implies (and (true-listp rp)
(extension-to-cyclic-path p rp)
(path-p p g)
(member (car p) (map-nfix hs)))
(not (dag-p-aux hs rp g)))
:hints (("Goal" :induct (induct-dag-p-aux-completeness hs rp g p)))))
;;; Now the rest of the proof consists of proving that when {\tt
;;; (cycle-p p g)}, we can build a path {\tt p1}, such that:
;;; 1)
;;; {\tt (path-p p1 g)}
;;; 2)
;;; {\tt (natp (car p1))} y {\tt (car p1) < (len g)}
;;; 3)
;;; {\tt (extension-to-cyclic-path p1 nil)}
;;; -)
;;; These three properties will allows us to apply the above theorem to
;;; show that {\tt (not (dag-p g))}. So let's go:
(encapsulate
()
;; This function {\tt make-simple-cycle-aux} will be the auxiliary
;; function needed to build such a path @p1@. In particular, given a
;; cycle @p@, the "simple" cicle @p1@ will be given by {\tt
;; (make-simple-cycle-aux p nil)}.
(local
(defun make-simple-cycle-aux (to-visit visited)
(cond ((endp to-visit) nil)
((member (car to-visit) visited) (list (car to-visit)))
(t (let ((temp (make-simple-cycle-aux (cdr to-visit)
(cons (car to-visit)
visited))))
(if temp (cons (car to-visit) temp) nil))))))
;; The main property of {\tt make-simple-cycle-aux}:
(local
(defthm extension-to-cyclic-path-make-simple-cycle-aux
(implies (make-simple-cycle-aux to-visit visited)
(extension-to-cyclic-path (make-simple-cycle-aux to-visit
visited)
visited))))
;; Starting in a cycle, this function alway suceed:
(local
(defthm not-make-simple-cycle-aux-implies-disjointp
(implies (and (member x l) (member x m))
(make-simple-cycle-aux l m))))
(local
(defthm not-no-duplicatesp-implies-make-simple-cycle-aux
(implies (not (no-duplicatesp l))
(make-simple-cycle-aux l m))))
;; Starting in a path, the function obtains a path:
(local
(defthm path-p-implies-make-simple-cycle-aux-pathp
(implies (path-p p g)
(path-p (make-simple-cycle-aux p l) g))))
(local
(defthm path-p-one-element
(implies (and (consp p)
(not (bounded-natp (car p) (len g)))
(not (endp (cdr p))))
(not (path-p p g)))
:hints (("Goal" :in-theory (enable nfix neighbors)))))
(local
(defthm car-make-simple-cycle-aux
(implies (make-simple-cycle-aux p l)
(equal (car (make-simple-cycle-aux p l)) (car p)))))
(local
(defthm member-map-nfix-2
(implies (and (member x l)
(natp x))
(member x (map-nfix l)))
:hints (("Goal" :in-theory (enable nfix)))))
;; Finally, the completeness theorem:
(defthm dag-p-completeness
(implies (cycle-p p g)
(not (dag-p g)))
:hints (("Goal" :use ((:instance dag-p-aux-completeness-main-lemma
(p (make-simple-cycle-aux p nil))
(rp nil)
(hs (list-of-n (len g))))
path-p-one-element)))))
;;; ============================================================================
;;;
;;; 4) Dags that become cyclic when updated
;;;
;;; ============================================================================
;;; For this section, we temporarily enable neighbors
(local (in-theory (enable neighbors)))
;;; We prove in this section that when an acyclicic graph becomes cyclic
;;; after updating some node @x@ with an "is" value @h@, then necessarily
;;; in the original graph there was a path from the node @h@ to the node
;;; @x@. More precisely, our goal is to prove the following theorem:
;(defthm obtain-path-from-h-to-x-from-an-updated-dag-main-property
; (let ((p* (obtain-path-from-h-to-x-from-an-updated-dag x h g)))
; (implies (and (natp x) (natp h) (dag-p g)
; (not (dag-p (update-nth x h g))))
; (and (path-p p* g)
; (equal (first p*) h) (equal (car (last p*)) x))))
;;; This means that we have {\em to define} the function {\tt
;;; obtain\--path\--from-h-to-x\--from-an-updated\--dag} and {\em prove} the above
;;; theorem about the function. This result will be used in the book
;;; {\tt dag\--unification\--rules\-.lisp}, to show that the {\tt ELIMINATE}
;;; rule of the unification transformation preserves the {\tt dag-p}
;;; property.
;;; The intuitive idea is the following: given a cycle in the updated
;;; graph, we can obtain a symple cycle (a path with no duplicate nodes
;;; in which only the last and the first element are neighbors).
;;; Necesarilly the node @x@ is in that path (since, otherwise, it would
;;; be a path in the original graph). Thus, in that path, the node
;;; following @x@ is @h@. We can therefore concatenate the nodes after
;;; @h@ with the nodes before @x@ to obtain a path from @h@ to @x@. And
;;; since in that path @x@ only appear as the last node, then it is a
;;; path in the original graph.
;;; -----------------------------------
;;;
;;; 4.1) Obtaining a symple cycle
;;;
;;; -----------------------------------
;;; We define here a function @simple-cycle-from-cycle@ that obtains a
;;; simple cycle from a cycle. A {\em simple cycle} is a path with no
;;; duplicates nodes, such that the first
;;; element of the path is a neighbor of the last element of the path.
;;; The following function obtains the first element repeated in a list
;;; and the prefix of the list just before that repetition. Note the it
;;; is tail recursive version of the algorithm.
(defun until-first-repetition (to-visit visited)
(cond ((endp to-visit) (mv nil nil))
((member (car to-visit) visited) (mv (car to-visit) (revlist visited)))
(t (until-first-repetition (cdr to-visit) (cons (car to-visit)
visited)))))
;;; This is the main property of @until-first-repetition@:
(local
(defthm until-first-repetition-property
(let ((path (until-first-repetition to-visit visited)))
(implies (and
(true-listp visited) (true-listp to-visit)
(path-p (append (revlist visited) to-visit) g)
(not (no-duplicatesp (append visited to-visit)))
(no-duplicatesp visited))
(and (no-duplicatesp (second path))
(path-p (second path) g)
(member (first path) (second path))
(natp (first path))
(rel-graph (car (last (second path))) (first path) g))))
:hints (("Goal" :in-theory (disable natp rel-graph)))
:rule-classes nil))
(local (in-theory (disable until-first-repetition)))
;;; Using the previous function, the following function obtains a simple
;;; cycle from a cycle:
(defun simple-cycle-from-cycle (p)
(mv-let (first second)
(until-first-repetition p nil)
(member first second)))
;;; An useful lemma:
(local
(defthm path-p-rel-forward-chaining
(implies (path-p p g)
(true-listp p))
:rule-classes :forward-chaining))
;;; The following sequence of events prove the main properties of the
;;; function {\tt simple\--cycle\--from\--cycle}. We want to prove the
;;; following theorem:
; (defthm simple-cycle-from-cycle-main-property
; (let ((simple-cycle (simple-cycle-from-cycle p)))
; (implies (and (path-p p g)
; (not (no-duplicatesp p)))
; (and (path-p simple-cycle g)
; (consp simple-cycle)
; (no-duplicatesp simple-cycle)
; (rel-graph (car (last simple-cycle)) (first
; simple-cycle) g)))))
;;; Instead of this, we will prove each of the four conclusions
;;; separately.
(local
(encapsulate
()
(local
(defthm path-p-rel-member
(implies (and (path-p p g)
(member x p))
(path-p (member x p) g))))
(local
(defthm no-duplicatesp-member
(implies (and (no-duplicatesp p)
(member x p))
(no-duplicatesp (member x p)))))
(local
(defthm first-and-last-member
(implies (member x l)
(and (equal (last (member x l)) (last l))
(equal (car (member x l)) x)))))
;; The simple cycle obtained is a path:
(defthm simple-cycle-from-cycle-main-property-P1
(let ((simple-cycle (simple-cycle-from-cycle p)))
(implies (and (path-p p g)
(not (no-duplicatesp p)))
(path-p simple-cycle g)))
:hints (("Goal" :use
(:instance until-first-repetition-property
(to-visit p) (visited nil)))))
;; The simple cycle obtained is not empty:
(defthm simple-cycle-from-cycle-main-property-P2
(let ((simple-cycle (simple-cycle-from-cycle p)))
(implies (and (path-p p g)
(not (no-duplicatesp p)))
(consp simple-cycle)))
:hints (("Goal" :use
(:instance until-first-repetition-property
(to-visit p) (visited nil)))))
;; The simple cycle obtained has no duplicates:
(defthm simple-cycle-from-cycle-main-property-P3
(let ((simple-cycle (simple-cycle-from-cycle p)))
(implies (and (path-p p g)
(not (no-duplicatesp p)))
(no-duplicatesp simple-cycle)))
:hints (("Goal" :use
(:instance until-first-repetition-property
(to-visit p) (visited nil)))))
;; The first element of the simple cycle is a neighbor of the last
;; element of the path.
(defthm simple-cycle-from-cycle-main-property-P4
(let ((simple-cycle (simple-cycle-from-cycle p)))
(implies (and (path-p p g)
(not (no-duplicatesp p)))
(rel-graph (car (last simple-cycle)) (first
simple-cycle) g)))
:hints (("Goal" :use
(:instance until-first-repetition-property
(to-visit p) (visited nil)))))))
;;; -----------------------------------
;;;
;;; 4.2) Putting an element the last in a simple cycle
;;;
;;; -----------------------------------
;;; The following function @put-element-last-in-cycle@ rearrange a path
;;; in such a way that a given element is the last element.
(defun prefix-x (x p)
(cond ((endp p) nil)
((equal x (car p)) (list x))
(t (cons (car p) (prefix-x x (cdr p))))))
(defun sufix-x (x p)
(cond ((endp p) nil)
((equal x (car p)) (cdr p))
(t (sufix-x x (cdr p)))))
(defun put-element-last-in-cycle (x p)
(append (sufix-x x p) (prefix-x x p)))
;;; The following events prove the main properties of this function:
(local
(encapsulate
()
(local
(defthm append-prefix-sufix
(implies (member x l)
(equal (append (prefix-x x l) (sufix-x x l)) l))))
(local
(defthm prefix-x-path-p
(implies (and (member x p) (path-p p g))
(and (path-p (prefix-x x p) g)
(true-listp (prefix-x x p))))))
(local
(defthm sufix-x-path-p
(implies (and (member x p) (path-p p g))
(and (path-p (sufix-x x p) g)
(true-listp (sufix-x x p))))))
(local
(defthm car-prefix-x
(implies (member x p) (equal (car (prefix-x x p)) (car p)))))
(local
(defthm last-suffix-x
(implies (consp (sufix-x x p))
(equal (last (sufix-x x p)) (last p)))))
;; When given a simple cycle, the operation obtains a path:
(defthm put-element-last-in-cycle-P1
(let ((pl (put-element-last-in-cycle x p)))
(implies (and (path-p p g)
(member x p)
(rel-graph (car (last p)) (car p) g))
(path-p pl g))))
;; The last element is the intended:
(defthm put-element-last-in-cycle-P2
(let ((pl (put-element-last-in-cycle x p)))
(implies (and (path-p p g)
(member x p))
(equal (car (last pl)) x)))
:rule-classes nil)
(defun my-butlast (l)
(if (or (endp l) (endp (cdr l)))
nil
(cons (car l) (my-butlast (cdr l)))))
(local
(defthm my-butlast-append
(equal (my-butlast (append l1 l2))
(if (endp l2)
(my-butlast l1)
(append l1 (my-butlast l2))))))
(local
(defthm not-member-x-sufix-x
(implies (no-duplicatesp p)
(not (member x (sufix-x x p))))))
(local
(defthm not-member-x-prefix-x
(not (member x (my-butlast (prefix-x x p))))))
;; Morever, this last element does not appear before in the path:
(defthm put-element-last-in-cycle-P3
(let ((pl (put-element-last-in-cycle x p)))
(implies (and (member x p)
(no-duplicatesp p))
(not (member x (my-butlast pl))))))
(local
(defthm car-append
(equal (car (append l1 l2))
(if (endp l1) (car l2) (car l1)))))
(local
(defthm car-sufix
(implies (and (path-p p g)
(member x p)
(consp (sufix-x x p)))
(rel-graph x (car (sufix-x x p)) g))
:hints (("Goal" :in-theory (disable rel-graph)))))
(local
(defthm empty-sufix-x-last-element-is-x
(implies (and (member x p) (endp (sufix-x x p)))
(equal (car (last p)) x))))
;; And finally, the first element is again a neighbour of the last
;; element:
(defthm put-element-last-in-cycle-P4
(let ((pl (put-element-last-in-cycle x p)))
(implies (and (path-p p g)
(member x p)
(rel-graph (car (last p)) (car p) g))
(rel-graph x (first pl) g)))
:hints (("Goal" :in-theory (disable rel-graph))))))
;;; -----------------------------------
;;;
;;; 4.3) Cycles in updated dags
;;;
;;; -----------------------------------
;;; In this subsection we prove that if a cycle appear when
;;; updating the node @x@ in a dag, then neccesarily this cycle contains
;;; the node @x@.
(local (in-theory (enable nfix)))
(local
(defthm relation-between-paths-of-updated-graphs-1
(let ((g-u (update-nth x h g)))
(implies (and (natp x)
(not (member x (my-butlast p)))
(path-p p g-u))
(path-p p g)))
:rule-classes nil))
(local
(defthm first-element-path-p
(implies (and (natp x) (natp h))
(iff (rel-graph x y (update-nth x h g))
(equal y h)))
:rule-classes nil))
(local
(defthm relation-between-paths-of-updated-graphs-2
(implies (and (natp x)
(path-p p (update-nth x h g))
(not (path-p p g)))
(member x p))
:rule-classes nil))
(local
(defthm path-p-elements-natp
(implies (and (path-p p g) (consp p))
(natp (car (last p))))))
(local
(defthm member-last
(implies (consp l)
(member (car (last l)) l))))
(local
(defthm path-p-last-elt-related-with-first-cycle-p
(implies (and (path-p p g) (consp p) ;;?
(rel-graph (car (last p)) (first p) g))
(cycle-p (cons (car (last p)) p) g))
:hints (("Goal" :in-theory (disable natp rel-graph)))))
(local
(defthm dag-p-completeness-corollary
(implies (and (dag-p g)
(not (no-duplicatesp p)))
(not (path-p p g)))
:hints (("Goal" :use dag-p-completeness))))
;;; This is the main property of this subsection:
(local
(defthm if-a-cycle-appears-in-the-updated-graph-then-x-is-member
(implies (and (path-p p (update-nth x h g))
(dag-p g) (natp x) (consp p)
(rel-graph (car (last p)) (first p) (update-nth x h g)))
(member x p))
:rule-classes nil
:hints (("Goal"
:in-theory (disable rel-graph) ;; it is not neccesary
:use (:instance
relation-between-paths-of-updated-graphs-2
(p (cons (car (last p)) p)))))))
(local (in-theory (disable put-element-last-in-cycle simple-cycle-from-cycle)))
;;; -----------------------------------
;;;
;;; 4.4) The intended result
;;;
;;; -----------------------------------
;;; We assembly in this subsection all the pieces of our proof plan.
;;; The following function, given a ptha, obtains the path we are
;;; looking for:
(defun obtain-path-from-h-to-x (x p)
(put-element-last-in-cycle x (simple-cycle-from-cycle p)))
;;; And this is the main property we intend to prove, given that @p@ is
;;; a cycle in the updated graph:
(local
(defthm obtain-path-from-h-to-x-main-property
(let ((p* (obtain-path-from-h-to-x x p)))
(implies (and (natp x) (natp h) (dag-p g)
(cycle-p p (update-nth x h g)))
(and (path-p p* g)
(equal (first p*) h)
(equal (car (last p*)) x))))
:hints (("Goal"
:in-theory (disable rel-graph)
:use ((:instance put-element-last-in-cycle-P2
(p (simple-cycle-from-cycle p))
(g (update-nth x h g)))
(:instance first-element-path-p
(y (first (obtain-path-from-h-to-x x p))))
(:instance relation-between-paths-of-updated-graphs-1
(p (obtain-path-from-h-to-x x p)))
(:instance
if-a-cycle-appears-in-the-updated-graph-then-x-is-member
(p (simple-cycle-from-cycle p))))))))
(local (in-theory (disable obtain-path-from-h-to-x)))
;;; Now we only have to provide a cycle from the updated graph, under
;;; the hypothesis that this updated graph is not a dag. For that
;;; purpose, we use the function @one-cyclic-path@ used in the soundness
;;; theorem of @dag-p@:
(defun obtain-path-from-h-to-x-from-an-updated-dag (x h g)
(obtain-path-from-h-to-x
x (one-cyclic-path
(update-nth x h g))))
;;; And the intended theorem is now an easy corollary:
(defthm obtain-path-from-h-to-x-from-an-updated-dag-main-property
(let ((p* (obtain-path-from-h-to-x-from-an-updated-dag x h g)))
(implies (and (natp x) (natp h) (dag-p g)
(not (dag-p (update-nth x h g))))
(and (path-p p* g)
(equal (first p*) h) (equal (car (last p*)) x))))
:hints (("Goal" :in-theory (disable cycle-p
dag-p
natp
one-cyclic-path))))
;;; We again disable neighbors and nfix
(local (in-theory (disable neighbors nfix)))
;;; ============================================================================
;;;
;;; 5) A measure function for traversing dags
;;;
;;; ============================================================================
;;; We will need to define functions on dags that traverse the graph in
;;; the same recursive fashion than functions acting on terms
;;; represented using lists. Unlike terms represented as lists, this
;;; functions may not terminate in general, although this is not the
;;; case for dags.
;;; Defining functions on dags using the same recursive schema than the
;;; corresponding function on terms in prefix notation will be essential
;;; for compositional reasoning, allowing us to translate properties
;;; from the prefix case to the dags case.
;;; For example, this will be a typical recursive definition on dags:
; (defun occur-check-l (flg x h g)
; (declare (xargs :measure (measure-rec-dag flg h g)))
; (if (dag-p g)
; (if flg
; (let ((p (term-dagi-l h g)))
; (if (integerp p)
; (occur-check-l flg x p g)
; (let ((args (cdr p)))
; (if (equal args t)
; (= x h)
; (occur-check-l nil x args g)))))
; (if (endp h)
; nil
; (or (occur-check-l t x (car h) g)
; (occur-check-l nil x (cdr h) g))))
; t))
;;; So we now define a measure called {\tt measure-rec-dag} for
;;; aceppting this type of recursive definitions.
;;; The idea is simple: we define the number of nodes that can be
;;; reached in a dag starting from the nodes in a given list of
;;; nodes. If we detect a cycle, we return 0. The cycle detection is
;;; done as in the previous functions. This measure is a good choice
;;; except when @flg@ is @nil@ and we recurse on a list of dags. But in
;;; this case, we can compare the {\tt acl2-count} of the list:
(defun dag-nodes-aux (hs rev-path g)
(declare (xargs :measure (measure-dag-p hs rev-path g)))
(if (endp hs)
0
(let ((hs-car (nfix (car hs))))
(if (member hs-car rev-path)
0 ;; cycle detected
(let ((nodes-car (dag-nodes-aux
(neighbors (car hs) g)
(cons hs-car rev-path)
g))
(nodes-cdr (dag-nodes-aux (cdr hs) rev-path g)))
( 1 nodes-car nodes-cdr))))))
(defun dag-nodes (hs g)
(dag-nodes-aux hs nil g))
(local (in-theory (enable neighbors)))
;;; That is the measure we want to define (lexicographic combination of
;;; numbers of nodes and the {\tt acl2-count} of @hs@)
(defun measure-rec-dag (flg h g)
(if (dag-p g)
(if flg
(list* (cons 1 (1 (dag-nodes (list h) g))) (acl2-count h))
(list* (cons 1 (1 (dag-nodes h g))) (acl2-count h)))
0))
;;; ============================================================================
;;;
;;; 6) Termination conjectures about {\tt measure-rec-dag}
;;;
;;; ============================================================================
;;; Some useful macros to improve readability:
(defmacro term-dag-is-p (x g)
`(integerp (nth ,x ,g)))
(defmacro term-dag-variable-p (x g)
`(equal (cdr (nth ,x ,g)) t))
(defmacro term-dag-non-variable-p (x g)
`(and (not (term-dag-is-p ,x ,g))
(not (term-dag-variable-p ,x ,g))))
(defmacro term-dag-symbol (x g)
`(car (nth ,x ,g)))
(defmacro term-dag-args (x g)
`(cdr (nth ,x ,g)))
;;; So our goal is to prove the following theorems about {\tt measure-rec-dag}:
; (defthm measure-rec-dag-e0-ordinalp
; (o-p (measure-rec-dag flg h g)))
; (defthm dag-recursion-case-1
; (implies (and (dag-p g)
; (term-dag-non-variable-p h g)
; flg)
; (o< (measure-rec-dag nil (term-dag-args h g) g)
; (measure-rec-dag flg h g))))
; (defthm dag-recursion-case-2
; (implies (and (dag-p g)
; (term-dag-is-p h g)
; flg)
; (o< (measure-rec-dag flg (nth h g) g)
; (measure-rec-dag flg h g))))
; (defthm dag-recursion-case-3
; (implies (and (dag-p g) (consp h))
; (o< (measure-rec-dag t (car h) g)
; (measure-rec-dag nil h g))))
; (defthm dag-recursion-case-4
; (implies (and (dag-p g) (consp h))
; (o< (measure-rec-dag nil (cdr h) g)
; (measure-rec-dag nil h g))))
;;; ------------------------------------------
;;;
;;; 6.1) An important lemma about {\tt dag-p}
;;;
;;; ------------------------------------------
;;; Before we prove the above theorems, let us prove that under the
;;; hypothesis {\tt (dag-p g)}, we have {\tt (dag-p-aux hs nil g)} for
;;; all @hs@. Note that this is not a trivial property, since {\tt
;;; (dag-p g)} only ensures that for a specific list of nodes (the nodes
;;; from 1 to the length of @g@), in a given order, the graph is
;;; cycle-free. But nothing is said about the rest of nodes and about
;;; lists in an arbitrary order. Note also the role of the second
;;; argument, since it is changed in every recursive call.
;;; The proof strategy will be the following:
;;; 1)
;;; We will prove that {\tt dag-p-aux} is preserved in subsets.
;;; 2)
;;; We will prove that {\tt dag-p-aux} is preserved in append.
;;; 3)
;;; Every @hs@ can be included as a subset of a concatenation containing
;;; the important nodes (for these nodes we have @dag-p-aux@ by
;;; hypothesis) plus the natural numbers greater (they don't have
;;; neighbors and trivially satisfies @dag-p-aux@) plus the non-naturals
;;; (they behave like 0, which is in one of the previos pieces).
;;; -)
;;; For these two last theorems, @hs@ and @rp@ have to be disjoint.
;;; Append preserved
(local
(defthm dag-p-aux-append
(implies (and (dag-p-aux hs1 rp g)
(dag-p-aux hs2 rp g))
(dag-p-aux (append hs1 hs2) rp g))))
;;; Subsetp preserved
(local
(encapsulate
()
(local
(defthm dag-p-aux-member
(implies (and (dag-p-aux hs rp g)
(member x hs))
(dag-p-aux (list x) rp g))))
(local
(defthm dag-p-aux-subsetp-lemma
(implies (and (dag-p-aux hs2 rp g)
(dag-p-aux hs1 rp g)
(member x hs1))
(dag-p-aux (cons x hs2) rp g))
:hints (("Goal" :use (:instance dag-p-aux-append
(hs1 (list x)))))))
(defthm dag-p-aux-subsetp
(implies (and (dag-p-aux hs2 rp g)
(subsetp hs1 hs2))
(dag-p-aux hs1 rp g))
:hints (("Goal" :induct (subsetp hs1 hs2))))))
;;; The special case of empty graphs:
(local
(encapsulate
()
(local
(defthm neighbors-empty-graph
(implies (not (consp g))
(equal (neighbors h g) nil))
:hints (("Goal" :in-theory (enable neighbors)))))
(defthm dag-p-aux-not-consp-graph
(implies (and (atom g)
(disjointp (map-nfix hs) rp))
(dag-p-aux hs rp g)))))
;;; Non-natural nodes:
(local
(encapsulate
()
(defun list-of-non-natp (l)
(if (endp l)
t
(and (not (natp (car l)))
(list-of-non-natp (cdr l)))))
(local (in-theory (enable neighbors nfix)))
(local
(defthm neighbors-non-natp
(implies (not (natp x))
(equal (neighbors x g) (neighbors 0 g)))))
(local
(defthm dag-p-aux-non-natp-nodes-lemma
(implies (and (dag-p-aux (list 0) rp g)
(list-of-non-natp l))
(dag-p-aux l rp g))))
(local (in-theory (disable neighbors)))
(defthm dag-p-aux-non-natp-nodes
(implies (and (dag-p-aux (list-of-n (len g)) rp g)
(list-of-non-natp hs)
(disjointp (map-nfix hs) rp))
(dag-p-aux hs rp g))
:hints (("Goal" :cases ((atom g)))))))
;;; Natural nodes greater than the length:
(local
(encapsulate
()
(defun list-of-greater-natp (n l)
(if (endp l)
t
(and (natp (car l)) (>= (car l) n)
(list-of-greater-natp n (cdr l)))))
(defthm neighbors-greater-natp
(implies (and (natp n) (>= n (len g)))
(equal (neighbors n g) nil))
:hints (("Goal" :in-theory (enable neighbors))))
(defthm dag-p-aux-greater-natp-nodes
(implies (and (dag-p-aux (list-of-n (len g)) rp g)
(list-of-greater-natp (len g) hs)
(disjointp (map-nfix hs) rp)) ;;; se puede dejar en hs.
(dag-p-aux hs rp g)))))
;;; Let's now separate every list into three pieces:
(local
(encapsulate
()
(defun greater-natp-nodes (n hs)
(cond ((endp hs) nil)
((and (natp (car hs)) (>= (car hs) n))
(cons (car hs) (greater-natp-nodes n (cdr hs))))
(t (greater-natp-nodes n (cdr hs)))))
(local
(defthm list-of-greater-natp-greater-natp-nodes
(list-of-greater-natp n (greater-natp-nodes n hs))))
(defun non-natp-nodes (hs)
(cond ((endp hs) nil)
((not (natp (car hs)))
(cons (car hs) (non-natp-nodes (cdr hs))))
(t (non-natp-nodes (cdr hs)))))
(local
(defthm list-of-non-natp-non-natp-nodes
(list-of-non-natp (non-natp-nodes hs))))
(local
(defthm nodes-subsetp
(implies (natp n)
(subsetp hs (append (list-of-n n)
(greater-natp-nodes n hs)
(non-natp-nodes hs))))))
;; And finally we have the desired property:
(defthm dag-p-main-property
(implies (dag-p g)
(dag-p-aux hs nil g))
:hints (("Goal"
:in-theory (disable dag-p-aux-subsetp)
:use (:instance dag-p-aux-subsetp
(rp nil)
(hs1 hs)
(hs2 (append (list-of-n (len g))
(greater-natp-nodes (len g) hs)
(non-natp-nodes hs)))))))))
;;; ------------------------------------------------------
;;;
;;; 6.2) Normalization of {\tt dag-nodes-aux} expressions
;;;
;;; ------------------------------------------------------
;;; Analyzing the definition of {\tt dag-nodes-aux}, one could think
;;; that it is easy to prove that in a dag, {\tt dag-nodes} of a node is
;;; strictly greater than {\tt dag-nodes} of its neighbors. But ther is
;;; a subtle detail: the second argument of {\tt dag-nodes-aux} is
;;; different in the recursive call. Nevertheles we can "fix" this
;;; asimmetry:
;;; The function {\tt dag-nodes-aux} is independent of its second argument
(local
(defthm dag-nodes-aux-independent-of-path
(implies (and (dag-p-aux hs rev-path g)
(dag-p-aux hs rev-path2 g))
(equal (dag-nodes-aux hs rev-path g)
(dag-nodes-aux hs rev-path2 g)))
:rule-classes nil))
;;; Using this previous property and the property {\tt
;;; dag-p-main-property}, we "normalize" expressions involving {\tt
;;; dag-p-aux}, by means of the following rewrite rule:
(local
(defthm dag-nodes-aux-subsetp-rewrite-rule
(implies (and (dag-p g)
(dag-p-aux hs rp g)
(syntaxp (not (and (consp rp) (eq (car rp) 'quote)))))
(equal (dag-nodes-aux hs rp g)
(dag-nodes-aux hs nil g)))
:hints (("Goal" :use ((:instance dag-nodes-aux-independent-of-path
(rev-path rp)
(rev-path2 nil)))))))
(local (in-theory (enable neighbors)))
;;; ---------------------------
;;;
;;; 6.3) The intended theorems
;;;
;;; ---------------------------
(defthm measure-rec-dag-e0-ordinalp
(o-p (measure-rec-dag flg h g)))
(encapsulate
()
(local
(defthm dag-recursion-case-1-lemma
(implies (and (dag-p g)
(term-dag-non-variable-p h g))
(dag-p-aux (cdr (nth h g)) (list (nfix h)) g))
:hints (("Goal" :use (:instance dag-p-main-property
(hs (list h)))
:in-theory (disable dag-p-main-property)))))
(defthm dag-recursion-case-1
(implies (and (dag-p g)
(term-dag-non-variable-p h g)
flg)
(o< (measure-rec-dag nil (term-dag-args h g) g)
(measure-rec-dag flg h g)))
:hints (("Goal" :expand (dag-nodes-aux (list h) nil g)))))
(encapsulate
()
(local
(defthm dag-recursion-case-2-lemma
(implies (and (dag-p g)
(term-dag-is-p h g))
(dag-p-aux (list (nth h g)) (list (nfix h)) g))
:hints (("Goal" :use (:instance dag-p-main-property
(hs (list h)))
:in-theory (disable dag-p-main-property)))))
(defthm dag-recursion-case-2
(implies (and (dag-p g)
(term-dag-is-p h g)
flg)
(o< (measure-rec-dag flg (nth h g) g)
(measure-rec-dag flg h g)))
:hints (("Goal" :expand (dag-nodes-aux (list h) nil g)))))
(defthm dag-recursion-case-3
(implies (and (dag-p g) (consp h))
(o< (measure-rec-dag t (car h) g)
(measure-rec-dag nil h g)))
:hints (("Goal" :expand (dag-nodes-aux h nil g))))
(defthm dag-recursion-case-4
(implies (and (dag-p g) (consp h))
(o< (measure-rec-dag nil (cdr h) g)
(measure-rec-dag nil h g)))
:hints (("Goal" :expand (dag-nodes-aux h nil g))))
;;; We disable {\tt measure-rec-dag}
(in-theory (disable measure-rec-dag))
;;; RECALL: These two theorems would allow us to define functions like these:
;;; ·········································································
; (defun occur-check-l (flg x h g)
; (declare (xargs :measure (measure-rec-dag flg h g)))
; (if (dag-p g)
; (if flg
; (let ((p (term-dagi-l h g)))
; (if (integerp p)
; (occur-check-l flg x p g)
; (let ((args (cdr p)))
; (if (equal args t)
; (= x h)
; (occur-check-l nil x args g)))))
; (if (endp h)
; nil
; (or (occur-check-l t x (car h) g)
; (occur-check-l nil x (cdr h) g))))
; t))
; (defun deref-l (h g)
; (declare (xargs :measure (measure-rec-dag t h g)))
; (if (dag-p g)
; (let ((p (term-dagi-l h g)))
; (if (integerp p) (deref-l p g) h))
; nil))
; (defun dag-as-term-l (flg h g)
; (declare (xargs :measure (measure-rec-dag flg h g)))
; (if (dag-p g)
; (if flg
; (let ((p (term-dagi-l h g)))
; (if (integerp p)
; (dag-as-term-l flg p g)
; (let ((args (cdr p))
; (symb (car p)))
; (if (equal args t)
; symb
; (cons symb (dag-as-term-l nil args g))))))
; (if (endp h)
; h
; (cons (dag-as-term-l t (car h) g)
; (dag-as-term-l nil (cdr h) g))))
; nil))
(local (in-theory (enable nfix)))
(in-theory (disable dag-p))
;;; ===============================================================
|