1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
|
#|$ACL2s-Preamble$;
(include-book ;; Newline to fool ACL2/cert.pl dependency scanner
"../portcullis")
(begin-book t :ttags :all);$ACL2s-Preamble$|#
#|
Instructions to use this book
1. Install Glucose
The following are copied from instructions in :doc satlink::sat-solver-options)
a) Download Glucose @ http://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz
b) Extract and run the following command:
: cd glucose-syrup/simp; make
c) Verify that glucose-syrup/simp/glucose --help prints a help message
(NOTE for Mac users: If you are building Glucose 3.0 or 4.0 on a Mac, the build might fail. In that case, a solution may be to make the two replacements shown below, where the the first in each pair (<) is the Mac version, while the second in each pair (>) is the original source.
< // friend Lit mkLit(Var var, bool sign = false);
---
> friend Lit mkLit(Var var, bool sign = false);
< inline Lit mkLit (Var var, bool sign = false) { Lit p; p.x = var var (int)sign; return p; }
---
> inline Lit mkLit (Var var, bool sign) { Lit p; p.x = var var (int)sign; return p; }
End of NOTE for Mac users.)
2. Create executable script named glucose in your $PATH with contents:
#!/bin/sh
/path-to-glucose/glucose-syrup/simp/glucose -model "$@"
Imp Note: Lets just use the latest ACL2 sources. I have committed the
changes to acl2s-modes (ccg and prover-restrictions books) that will
not be compatible with older version of ACL2. This means to make and
test homeworks you need to use a separate ACL2s copy, perhaps
downloaded from the webpage.
3. Test that things are working:
: cd [acl2-books]/centaur/satlink/solvers
: [acl2-books]/build/cert.pl test-glucose
4. Certify ACL2s books using our script. That will certify this book too.
|#
(in-package "CGEN")
(include-book "acl2s/utilities" :dir :system)
(include-book "centaur/gl/gl" :dir :system)
(include-book "centaur/satlink/top" :dir :system)
(include-book "centaur/gl/bfr-satlink" :dir :system :ttags :all) ;missing in the Manual
; Make a Glucose satlink config
(def-const *my-config* (satlink::make-config :cmdline "glucose -model"))
;; (def-const *my-config* (satlink::make-config :cmdline "cryptominisat5.exe"))
(defun gl-my-satlink-config ()
(declare (xargs :guard t))
*my-config*)
; You need to do this otherwise the default glucose-cert is used (which gives error: drat-trim)
(defattach gl::gl-satlink-config gl-my-satlink-config)
; (weird) need to check this config, otherwise the def-gl-thm below errors out
(include-book "centaur/satlink/check-config" :dir :system)
;(value-triple (satlink::check-config *my-config*))
; Turn on the AIG mode
;(local (gl::gl-satlink-mode))
(include-book "acl2s/defdata/defdata-util" :dir :system)
(defun collect-vars (term)
(reverse (acl2::all-vars term)))
(defmacro s (&rest args)
"string/symbol(s) concat to return a symbol.
:pkg and :separator keyword args recognized."
`(defdata::s ,@args :pkg "CGEN"))
(defmacro g1 (a x)
`(defdata::get1 ,a ,x))
;propositional constants
(defun has-output (f x)
(member x (g1 :out f)))
(defun has-input (f x)
(member x (g1 :in f)))
(defun I/O-compat (f1 f2)
"f1 and f2 are I/O compatible"
(or (intersection-eq (g1 :out f1) (g1 :in f2))
(intersection-eq (g1 :out f2) (g1 :in f1))))
(defun can-flow (x f1 f2)
"value of x can possibly flow from f1 to f2"
(member-eq x (intersection-eq (g1 :out f1) (g1 :in f2))))
(defun sfixes-lit (fixer l)
(and (member-equal l (g1 :fixes fixer)) t))
(defmacro deffilter (nm arglst filter-fn)
;the first arg is the one to recur on
`(defloop ,nm (,@arglst)
(for ((x in ,(car arglst))) (append (and (,filter-fn x) (list x))))))
(deffilter filter-has-output (fixers x-var)
(lambda (x) (has-output x x-var)))
(deffilter filter-has-input (fixers x-var)
(lambda (x) (has-input x x-var)))
(deffilter filter-sfixes-lit (fixers l)
(lambda (f) (sfixes-lit f l)))
(defun subst-args (new-arg old-arg args)
(if (endp args)
'()
(if (equal old-arg (car args))
(if (and (true-listp new-arg) (consp new-arg)) ;usually (list x1 x2 ..)
(append (cdr new-arg) (cdr args))
(cons new-arg (cdr args)))
(cons (car args) (subst-args new-arg old-arg (cdr args))))))
(defmacro defloop (name arglist &rest forms)
"allows nested for loops"
(b* ((loop -form (car (last forms)))
(`(FOR ((,elem IN ,loop-arg)) ,body) loop -form)
((unless (eq 'FOR (car body)))
`(defloop ,name ,arglist . ,forms))
(nm1 (s name "1"))
(arglist-aux (subst-args elem loop-arg arglist)))
`(PROGN
(DEFLOOP ,nm1 ,arglist-aux ,body)
(DEFLOOP ,name ,arglist
(FOR ((_X IN ,loop-arg))
(APPEND (B* ((,elem _X))
(,nm1 ,@arglist-aux))))))))
(defun to-string (x)
(declare (xargs :mode :program))
(coerce (cdr (coerce (fms-to-string "~x0" (list (cons #\0 x))) 'list)) 'string))
(defun all-vars/fixer (f)
(union-eq (g1 :in f) (g1 :out f)))
(defun all-vars/lit (l)
"assume literal l is a term; return all variables in l"
(collect-vars l))
(program)
(defun lit-name (lit)
(acl2s::fix-intern-in-pkg-of-sym (to-string lit) 'acl2::x))
; [TheFixer chosen for c]
(defun chosen-fixer-var (F lit)
(s (g1 :name F) "**" (lit-name lit)))
(defloop pvars/chosen-fixer (lits fixers)
(for ((l in lits))
(for ((f in fixers))
(when (sfixes-lit f l)
(collect (chosen-fixer-var f l))))))
; [Final-value]
(defun final-value-var (f1x)
(b* (((list f1 x) f1x))
(s (g1 :name f1) "!" x)))
(defloop final-value-vars (fixers x)
(for ((f in fixers))
(when (has-output f x)
(collect (final-value-var (list f x))))))
(defloop pvars/final (vars fixers)
(for ((x in vars))
(append (final-value-vars fixers x))))
(defloop final-fixer-variable-pairs (vars fixers)
(for ((x in vars))
(for ((f in fixers))
(when (has-output f x)
(collect (list (g1 :name f) x))))))
(defun final-value-var-table (vars fixers)
"map final-value-var to its (list fixer variable) pair"
(pairlis$ (pvars/final vars fixers)
(final-fixer-variable-pairs vars fixers)))
; [Connected]
(defloop all-pairs-fn (f1s f2s distinct-p)
(for ((f1 in f1s))
(for ((f2 in f2s))
(when (implies distinct-p (not (equal f1 f2)))
(collect (list f1 f2))))))
(defmacro all-pairs (fs &key distinct-p)
`(all-pairs-fn ,fs ,fs ',distinct-p))
(defloop all-connections1 (f1f2s vars)
(for (((list f1 f2) in f1f2s))
(for ((x in vars))
(when (can-flow x f1 f2)
(collect (list f1 x f2))))))
;TODO revisit efficiency
(defun all-connections (fixers vars)
(all-connections1 (all-pairs fixers :distinct-p t) vars))
;the following two functions assume that you collected connections are between distinct fixers
(defloop connections-from-via (f1 x fixers)
(for ((f2 in fixers))
(when (and (has-input f2 x)
(not (equal f1 f2)))
(collect (list f1 x f2)))))
(defloop connections-to-via (f2 x fixers)
(for ((f1 in fixers))
(when (and (has-output f1 x)
(not (equal f1 f2)))
(collect (list f1 x f2)))))
(defun connection-var (f1xf2)
(b* (((list f1 x f2) f1xf2))
(s (g1 :name f1) "-" x "->" (g1 :name f2))))
(defloop connection-vars (f1xf2-list)
(for ((f1xf2 in f1xf2-list)) (collect (connection-var f1xf2))))
(defun pvars/conn (fixers vars)
(connection-vars (all-connections fixers vars)))
(defloop connection-var-table1 (f1xf2-list)
(for ((f1xf2 in f1xf2-list))
(collect (cons (connection-var f1xf2)
(b* (((list f1 x f2) f1xf2))
(list (g1 :name f1) x (g1 :name f2)))))))
(defun connection-var-table (vars fixers)
"map connection-var to the connection"
(b* ((conns (all-connections fixers vars)))
(connection-var-table1 conns)))
; [Appears in solution/Valid]
(defun valid-var (f1)
(s (g1 :name f1) ".VALID"))
(defloop pvars/valid (fixers)
(for ((f1 in fixers)) (collect (valid-var f1))))
(defloop g1-lst (kwd alists)
(for ((alist in alists)) (collect (g1 kwd alist))))
(defun valid-var-table (fixers)
"map valid-var to its fixer name"
(pairlis$ (pvars/valid fixers) (g1-lst :name fixers)))
; [Transitively Connected with flow annotation]
(defun trans-conn-with-flow-var (f1xf2)
(b* (((list f1 x f2) f1xf2))
(s (g1 :name f1) "---" x "--->" (g1 :name f2))))
(defloop trans-conn-with-flow-vars (f1xf2-list)
(for ((f1xf2 in f1xf2-list))
(collect (trans-conn-with-flow-var f1xf2))))
(defun pvars/trans-flow (fixers vars)
(trans-conn-with-flow-vars (all-connections1 (all-pairs fixers :distinct-p nil) vars)))
; [Transitively Connected]
(defun trans-conn-var (f1f2)
(b* (((list f1 f2) f1f2))
(s (g1 :name f1) "--->" (g1 :name f2))))
(defloop all-possible-trans-pairs1 (f1f2-list)
(for ((f1f2 in f1f2-list)) (when (g1 :in (second f1f2))
;;it should have input port
(collect f1f2))))
(defun all-possible-trans-pairs (fixers)
(all-possible-trans-pairs1 (all-pairs fixers)))
(defloop trans-conn-vars (f1f2-list)
(for ((f1f2 in f1f2-list)) (collect (trans-conn-var f1f2))))
(defun pvars/trans (fixers)
(trans-conn-vars (all-possible-trans-pairs fixers)))
(defun pvar/sat-term (term)
(s (lit-name term) ".is_SAT"))
(defloop pvars/sat-term (terms)
(for ((term in terms)) (collect (pvar/sat-term term))))
(defun pvar/sat-lit (lit)
(s (lit-name lit) ".is_SAT"))
(defloop pvars/sat-lit (lits)
(for ((lit in lits)) (collect (pvar/sat-lit lit))))
(defun pvars-fn (vars fixers lits terms)
(append (pvars/chosen-fixer lits fixers)
(pvars/final vars fixers)
(pvars/conn fixers vars)
(pvars/valid fixers)
(pvars/trans-flow fixers vars)
(pvars/trans fixers)
(union-equal (pvars/sat-term terms)
(pvars/sat-lit lits))
))
(defun pvars-type-constraints (vars fixers lits terms)
(b* ((pvars (pvars-fn vars fixers lits terms))
(n (len pvars))
(booleanps (make-list n :initial-element 'booleanp)))
(defdata::list-up-lists booleanps pvars)))
; Represent a clause as a list
; Now we will generate the SAT constraints/clauses of the encoding
;[Circuit/Each var has atleast one final-value ]
; \E F_k : x \in Out(F_k): F_k!x
(defloop C/atleast-one-final-value (vars fixers)
(for ((x in vars))
(collect `(OR ,@(final-value-vars fixers x)))))
;[Circuit/Each var has atmost one final-value ]
; F_j!x => ~F_k!x for all k!=j
(defloop C/atmost-one-final-value1 (f1f2-list x)
(for ((f1f2 in f1f2-list))
(collect (b* (((list f1 f2) f1f2))
`(IMPLIES ,(final-value-var (list f1 x))
(NOT ,(final-value-var (list f2 x))))))))
(defloop C/atmost-one-final-value (vars fixers)
(for ((x in vars)) (append (C/atmost-one-final-value1 (all-pairs (filter-has-output fixers x) :distinct-p t) x))))
; [TheFixer def]
; \A F,c :: F**c => F.valid /\ sfixes(F,c)
(defun C/F-is-TheFixer-for-lit (F lit)
`(IMPLIES ,(chosen-fixer-var F lit) ,(valid-var F)))
(defloop C/TheChosenFixer-def (literals fixers)
(for ((lit in literals))
(for ((F in fixers))
(when (sfixes-lit F lit)
(collect (C/F-is-TheFixer-for-lit F lit))))))
; [2016-02-17 Wed] example *ms-eg2-fixer-table* gives a wasteful solution!!
; The following constraint precludes it by forcing F**C to be valid for atmost one fixer.
; \A F1,c :: F1**c => \A F2 :F2 sfixes c, F2!=F1: ~F2.valid
;; WRONG pointed by PETE [2016-08-27 Sat] USE the foll instead:
;; \A F1,c :: F1**c => \A F2: F2 sfixes c, F2!=F1 : ~F2**c
;; [2016-09-07 Wed] But this is not enough, so use the following optimization
;; for avoiding redundant fixer terms
; \A F1 :: F1.valid => \E c: sfixes(F1,c): F1**c
(defloop C/valid-fixes-at-least-one-lit (fixers lits)
(for ((F1 in fixers))
(collect `(IMPLIES ,(valid-var F1)
(OR ,@(pvars/chosen-fixer lits (list F1)))))))
(defloop C/TheCF-uniquely-valid2 (F1 other-lit-fixers lit)
(for ((F2 in other-lit-fixers)) (collect `(IMPLIES ,(chosen-fixer-var F1 lit)
(NOT ,(chosen-fixer-var F2 lit))))))
(defloop C/TheCF-uniquely-valid1 (literals fixers all-fixers)
(for ((lit in literals))
(for ((F1 in fixers))
(when (sfixes-lit F1 lit)
(append (C/TheCF-uniquely-valid2 F1
(remove1-equal F1 (filter-sfixes-lit all-fixers lit))
lit))))))
(defun C/TheChosenFixer (lits fixers)
(append (C/TheChosenFixer-def lits fixers)
(C/TheCF-uniquely-valid1 lits fixers fixers)))
; [Final-Value fixer is Valid]
; F_1!x => F_1.valid
(defloop C/final-value-implies-valid (vars fixers)
(for ((x in vars))
(for ((f1 in fixers))
(when (has-output f1 x)
(collect `(IMPLIES ,(final-value-var (list f1 x))
,(valid-var f1)))))))
; [Connections are between Valid fixers]
; F_1-x->F_2 => F_1.valid /\ F_2.valid
(defloop C/connection-implies-valid1 (f1xf2-list)
(for ((f1xf2 in f1xf2-list))
(collect (b* (((list f1 ?x f2) f1xf2))
`(IMPLIES ,(connection-var f1xf2)
(AND ,(valid-var f1)
,(valid-var f2)))))))
(defun C/connection-implies-valid (fixers vars)
(C/connection-implies-valid1 (all-connections fixers vars)))
; [Circuit/Atmost one input connection]
; F_j-x->F_1 => ~F_i-x->F_1 for all i!=j
;TODO -- might be inefficient!
(defloop C/atmost-one-input-conn1 (fs fifj-list vars)
(for ((f1 in fs))
(for (((list fi fj) in fifj-list)) ;distinct pair
(for ((x in vars))
(when (and (can-flow x fi f1)
(can-flow x fj f1)
(not (equal fi f1)) (not (equal fj f1)))
(collect `(IMPLIES ,(connection-var (list fj x f1))
(NOT ,(connection-var (list fi x f1))))))))))
(defun C/atmost-one-input-conn (fixers vars)
(C/atmost-one-input-conn1 fixers (all-pairs fixers :distinct-p t) vars))
; [Circuit/Atleast one input connection]
; F_1.valid => \Ax:\in In(F_1):\E F_k:x \in Out(F_k):F_k-x->F_1
(defloop C/atleast-one-input-conn1 (fs all-fixers vars)
(for ((f1 in fs))
(for ((x in vars)) ;A=>B&C == A=>B & A=>C
(when (has-input f1 x)
(collect `(IMPLIES ,(valid-var f1)
(OR . ,(connection-vars
(connections-to-via f1 x all-fixers)))))))))
(defun C/atleast-one-input-conn (fixers vars)
(C/atleast-one-input-conn1 fixers fixers vars))
; [Def of transitivity (with flow variable annotated and otherwise)]
(defun drop-flow-var (f1xf2)
(b* (((list f1 & f2) f1xf2))
(list f1 f2)))
;[Partial Def of transitivity]
(defloop C/trans1/basis1 (f1xf2-list)
(for ((f1xf2 in f1xf2-list))
(collect `(IMPLIES ,(connection-var f1xf2)
(AND ,(trans-conn-with-flow-var f1xf2)
,(trans-conn-var (drop-flow-var f1xf2)))))))
(defun C/trans1/basis (fixers vars)
(C/trans1/basis1 (all-connections fixers vars)))
(defloop triples-with-flow (fixers f2xf3-list)
"return triples ABC, with flow, to be used in the def of transitivity i.e. A->B & B->C => A->C"
(for (((list f2 x f3) in f2xf3-list))
(for ((f1 in fixers))
(when (and (member x (g1 :out f1)) ;x should flow out of f1
(member x (g1 :in f2)) ; and into f2
(not (equal f1 f2)) ;ignore loops (in hyps)
;(not (equal f1 f3)) ; BUG: don't ignore these, these are to be caught!
)
(collect (list x f1 f2 f3))))))
(defloop C/trans-with-flow1/rec1 (xf1f2f3-list)
(for ((xf1f2f3 in xf1f2f3-list))
(collect (b* (((list x f1 f2 f3) xf1f2f3))
`(IMPLIES (AND ,(trans-conn-with-flow-var (list f1 x f2))
,(trans-conn-with-flow-var (list f2 x f3)))
,(trans-conn-with-flow-var (list f1 x f3)))))))
(defun C/trans-with-flow1/rec (fixers vars)
(b* ((xf1f2f3-list (triples-with-flow fixers (all-connections fixers vars))))
(C/trans-with-flow1/rec1 xf1f2f3-list)))
(defloop triples-without-flow (fixers f2f3-list)
"return triples ABC, to be used in the def of transitivity i.e. A->B & B->C => A->C"
(for (((list f2 f3) in f2f3-list))
(for ((f1 in fixers))
(when (and (not (equal f1 f2)) ;ignore loops (in hyps)
(not (equal f2 f3))
(g1 :in f2)) ;f2 should have an input port
(collect (list f1 f2 f3))))))
(defloop C/trans1/rec1 (f1f2f3-list)
(for ((f1f2f3 in f1f2f3-list))
(collect (b* (((list f1 f2 f3) f1f2f3))
`(IMPLIES (AND ,(trans-conn-var (list f1 f2))
,(trans-conn-var (list f2 f3)))
,(trans-conn-var (list f1 f3)))))))
(defun C/trans1/rec (fixers)
(b* ((f1f2f3-list (triples-without-flow fixers (all-possible-trans-pairs fixers))))
(C/trans1/rec1 f1f2f3-list)))
(defun C/trans1 (fixers vars)
(append (C/trans1/basis fixers vars)
(C/trans-with-flow1/rec fixers vars)
(C/trans1/rec fixers)))
; One direction of def of transitivity is not enough.
; We need the other direction to avoid bogus trans
; connections which do not have any base connections.
; F_1--x-->F_3 => F_1-x->F_3 \/ \E F_2:: F_1--x-->F_2 /\ F_2--x-->F_3
(defloop C/trans-with-flow-only-if2 (f2s f1 f3 x)
(for ((f2 in f2s))
(collect (list 'AND
(trans-conn-with-flow-var (list f1 x f2))
(trans-conn-with-flow-var (list f2 x f3))))))
(defun fixers-between-with-flow (fixers f1 f3 x)
(if (endp fixers)
'()
(b* ((f2 (car fixers))
((when (or (equal f2 f1) (equal f2 f3)))
(fixers-between-with-flow (cdr fixers) f1 f3 x))
((unless (and (can-flow x f1 f2)
(can-flow x f2 f3)))
(fixers-between-with-flow (cdr fixers) f1 f3 x)))
(cons f2 (fixers-between-with-flow (cdr fixers) f1 f3 x)))))
(defloop C/trans-with-flow-only-if1 (f1xf3-list all-fixers)
(for ((f1xf3 in f1xf3-list))
(collect
(b* (((list f1 x f3) f1xf3)
(f2s (fixers-between-with-flow all-fixers f1 f3 x)))
`(IMPLIES ,(trans-conn-with-flow-var f1xf3)
(OR ,(connection-var f1xf3)
. ,(C/trans-with-flow-only-if2 f2s f1 f3 x)))))))
(defun C/trans-with-flow-only-if-direction (fixers vars)
(C/trans-with-flow-only-if1 (all-connections fixers vars) fixers))
(defun C/trans (fixers vars)
(append (C/trans1 fixers vars)
(C/trans-with-flow-only-if-direction fixers vars)
))
; [Circuit/No cycles]
; \A F_k :: ~F_k--->F_k
(defloop C/no-cycles (fixers)
(for ((f1 in fixers))
(unless (null (g1 :in f1))
(collect `(NOT ,(trans-conn-var (list f1 f1)))))))
; [Def/semantics of final-value (one dir)]
; \A F_j:F_j != F_i: F_i!x & Fj.valid => {FjxFi} /\ F_j--x-->F_i
(defloop C/final-value-def2 (other-x-fixers final-f x)
(for ((f_j in other-x-fixers))
(when (not (equal f_j final-f))
(collect `(IMPLIES
(AND ,(final-value-var (list final-f x))
,(valid-var f_j))
,(and (can-flow x f_j final-f)
(trans-conn-with-flow-var (list f_j x final-f))))))))
(defloop C/final-value-def11 (x-fixers all-x-fixers x)
(for ((final-f in x-fixers))
(append (C/final-value-def2 all-x-fixers final-f x))))
(defabbrev C/final-value-def1 (x-fixers x)
(C/final-value-def11 x-fixers x-fixers x))
(defloop C/final-value-def (vars fixers)
(for ((x in vars))
(append (C/final-value-def1 (filter-has-output fixers x) x))))
; [TheFixer is preserved by downstream]
; \AF,c:sfixes(F,c): \A G : {FxG} /\ x \in Out(G): F**c /\ F--x-->G => spreserves(G,c)
; updated : do also the same for inputs [2016-03-30 Wed] But note that this is just an approx of the ground instantiation method
; C-inv-x(c,x,F1): \A G : {F1xG} & {x \in Out(G)}: F1--x-->G => spreserves(G,c)
; \AF,c:sfixes(F,c): \Ax:x\in c: {x \in Out(F)}F**c => C-inv-x(c,x,F) /\ {x \in In(F)}F**c => \E F1:{F1xF}: F1-x->F /\ C-inv-x(c,x,F1)
(defun spreserves-lit (fixer l)
(or (and (member-equal l (g1 :preserves fixer)) t)
(and (member-equal l (g1 :fixes fixer)) t)
;;output vars of fixer function disjoint from vars of lit --> it trivially preserves lit
(null (intersection-eq (g1 :out fixer) (all-vars/lit l)))
;;hack -- assume that all monadic/type literals are preserved
;;to avoid specifying too many preservation rules [2016-04-17 Sun]
;;TODO -- restrict this to defdata-type only
(and (consp l) (= (len l) 2))
))
(deffilter filter-spreserves-lit (fixers l)
(lambda (f) (spreserves-lit f l)))
(defloop C-inv-via-x-after-F (lit x F all-fixers)
(for ((G in all-fixers))
(when (and (has-output G x)
(can-flow x F G)
(not (equal F G)))
(collect `(IMPLIES ,(trans-conn-with-flow-var (list F x G))
,(spreserves-lit G lit))))))
(defloop C/TheFixer-is-preserved3/inputs (F1-lst lit x lit-fixer all-fixers)
(for ((F1 in F1-lst))
(collect `(AND ,(connection-var (list F1 x lit-fixer))
,@(C-inv-via-x-after-F lit x F1 all-fixers)))))
(defloop C/TheFixer-is-preserved2 (xs F lit all-fixers)
(for ((x in xs))
(collect (if (has-output F x)
`(IMPLIES ,(chosen-fixer-var F lit)
(AND . ,(C-inv-via-x-after-F lit x F all-fixers)))
`(IMPLIES ,(chosen-fixer-var F lit)
(OR . ,(C/TheFixer-is-preserved3/inputs
(strip-cars (connections-to-via F x all-fixers))
lit x F all-fixers)))))))
(defloop C/TheFixer-is-preserved1 (lit-fixers lit all-fixers)
(for ((F in lit-fixers))
(append (C/TheFixer-is-preserved2 (all-vars/lit lit) F lit all-fixers))))
(defloop C/TheFixer-is-preserved (lits fixers)
(for ((lit in lits))
(append (C/TheFixer-is-preserved1 (filter-sfixes-lit fixers lit) lit fixers))))
#|
; [2016-03-11 Fri] Simulate ground instantiation of preservation rules
; F.x stands for the edge coming out of F, i.e. an output of F that carries a
; value of variable x F.x is not a pvar by itself, but is used inside C(F.x,
; ...) pvar that denotes truth value of that particular constraint instance.
(defun fixer-output-x-var (f1x)
(b* (((list f1 x) f1x))
(s (g1 :name f1) "." x)))
(defloop fixer-output-x-vars (f1x-list)
(for ((f1x in f1x-list)) (collect (fixer-output-x-var f1x))))
(defloop fixer-output-x1 (fixers x)
(for ((f in fixers))
(when (has-output f x)
(collect (list f x)))))
(defloop fixer-output-x-alst (vars fixers)
(for ((x in vars))
(collect (cons x (fixer-output-x1 fixers x)))))
; Pvar C(F1.x, F2.y, F3.z)
(defun C-truth-val-var (lit vars fx-list)
;ASSUMPTION: lit is a pseudo-term
(b* ((fx-pvars (fixer-output-x-vars fx-list))
(lit-instance (acl2::subcor-var vars fx-pvars lit)))
(lit-name lit-instance)))
(defun assoc-lst (keys alist)
"give back the subset of the alist that correspond to these keys. the order
of the entries is same as the keys"
(declare (xargs :guard (and (true-listp keys)
(alistp alist))))
(if (endp keys)
nil
(b* ((entry (assoc-equal (car keys) alist)))
(if entry
(cons entry
(assoc-lst (cdr keys) alist))
(assoc-lst (cdr keys) alist)))))
(defloop connections-to (f2 xs fixers)
(for ((f1 in fixers) (x in xs))
(when (and (has-output f1 x)
(not (equal f1 f2)))
(collect (list f1 x f2)))))
(defun generate-frule-instance-clause1 (lit vars fx-list lit-fixer)
(b* ((pvar (C-truth-val-var lit vars fx-list))
(var-fx-list{} (pairlis$ vars fx-list))
(fxr-out (g1 :out lit-fixer))
(out-fx-list{} (fixer-output-x-alst fxr-out (list lit-fixer)))
((unless (subsetp out-fx-list{} var-fx-list{})) nil)
;ACHTUNG: Make sure that there is a unique fixer rule for a lit, fixer pair
;; now its possible that this lit-instance is actually "fixed", but for that we need to generate the following clause:
;; C(.. in-fx-list .. out-fx-list..) => F**C /\ Fin1-x1->F /\ ...
;; C(F1x1,F2x2,Fy1,Fy2, F3z) => F**C /\ F1-x1->F /\ F2-x2->F /\ F3.valid
;; No need for F3.valid. INVARIANT: at the least vars(F) \superset of vars(Lit)
(fxr-in (g1 :in lit-fixer))
(in-fx-list{} (assoc-lst fxr-in var-fx-list{})))
`(IMPLIES ,pvar
(AND ,(chosen-fixer-var lit-fixer lit)
,@(connection-vars (connections-to lit-fixer
(strip-cars in-fx-list{});x1 x2 ..
(strip-cdrs in-fx-list{});Fin1 Fin2 ..
))))))
(defloop generate-frule-instance-clause (lit vars fx-list lit-fixers)
(for ((lit-fixer in lit-fixers))
(thereis (generate-frule-instance-clause1 lit vars fx-list lit-fixer))))
(defun get-input-args (F prule)
(declare (ignorable prule))
(g1 :in F))
#|
(defun match-p (term pat)
(declare (xargs :guard (and (pseudo-termp term)
(pseudo-term pat))))
(b* (((mv yesp ?sigma) (acl2::one-way-unify pat term))
(- (cw "~| x0 matches ~x1 with Sigma ~x2~%" term pat sigma))
)
yesp))
(defloop matches-some-rule (term rules)
(for ((rule in rules))
(if (match-p term (get-concl rule))
(return rule))))
|#
(defun matches-prule (prule x) (declare (ignorable prule x)) nil)
;; Example arguments
;; (C x y1 y2 z) (x y1 y2 z) ((F0 x) (G1 y1) (G2 y2) (F3 z)) (implies (C x y1 y2 z) (C x (G1 x y1 y2) (G2 x y2) z))
(defun generate-prule-instance-clause1 (lit vars fx-list prule)
(b* ((pvar (C-truth-val-var lit vars fx-list))
(var-fx-list{} (pairlis$ vars fx-list))
((unless (matches-prule prule var-fx-list{})) nil)
;ACHTUNG: Make sure that there is a unique prule for a lit, fixer pair
;; now its possible that this lit-instance is actually "preserved", but for that we need to generate the following clause:
; Cxy1y2z => CxG(xy1y2)z
; : {spreserves(G,C)} C(F0.x,G.y1,G.y2,F3.z) => F3.valid /\ F0-x->G /\ \E F1,F2:{F1y1G},{F2y2G}: F1-y1->G /\ F2-y2->G /\ C(F1.x,F1.y1,F2.y2,F3.z)
; Cxy1y2z => CxG1(xy1y2)(G2xy2)z
; : {prule for C} C(F0.x,G1.y1,G2.y2,F3.z) =>
; F3.valid /\ F0-x->G1 /\ F0-x->G2 /\ \E F1,F2:{F1y1G1},{F2y2G2}: F1-y1->G1 /\ F2-y2->G2 /\ C(F0x,F1.y1,F2.y2,F3.z)
; Cxyz => CxG(wy)z or Cxyz => CxG(x'y)z (free variable) TODO -- NOT SUPPORTED for now!!
; : {spreserves(G,C)} C(F1.x,G.y,F3.z) => F3.valid /\ \E F2:{F2yG}:F2-y->G /\ C(F1.x,F2.y,F3.z)
(input-var-pfxr-alist (get-prule-input-alist prule)) ;can have duplicate keys
(inputs-only (remove-duplicates-eq (strip-cars input-var-pfxr-alist)))
(in-fx-list{} (assoc-lst inputs-only var-fx-list{}))
(output-var-pfxr-alist (get-prule-output-alist prule))
(outputs-only (strip-cars output-var-pfxr-alist))
(disjoint-vars (set-difference-eq vars (union$ inputs-only outputs-only)))
(disjoint-var-fx-list{} (assoc-lst disjoint-vars var-fx-list{}))
(fixers-assigning-vars-disjoint (strip-cars (strip-cdrs disjoint-var-fx-list{})))
(- (cw "~| input-var-pfxr-alist:~0 output-var-pfxr-alist:~x1 fixers-assigning-vars-disjoint:~x2, ~%" input-var-pfxr-alist output-var-pfxr-alist fixers-assigning-vars-disjoint))
)
`(IMPLIES ,pvar
(AND ,@(pvars/valid fixers-assigning-vars-disjoint)
,@(connections-vars (compose-conns in-fx-list{} input-var-pfxr-alist))
,(exist-inputs-to-pfxrs lit vars fx-list output-var-pfxr-alist)))))
(defloop generate-prule-instance-clause (lit vars fx-list lit-prules)
(for ((prule in lit-prules))
(append (generate-prule-instance-clause1 lit vars fx-list prule))))
(defun filter-rules/lit (lit prules)
(declare (ignorable lit F))
(car prules))
(defun C-truth-val-f/p/other-inst3 (lit vars f1xf2yf3z fixers prules)
(b* ((lit-instance (acl2::subcor-var vars (fixer-output-x-vars f1xf2yf3z) lit))
;; TODO ACHTUNG -- what if a lit-instance matches multiple rules??
(C1 (generate-frule-instance-clause lit vars f1xf2yf3z (filter-sfixes-lit fixers lit)))
((when C1) C1)
(C2s (generate-prule-instance-clause lit vars f1xf2yf3z (filter-rules/lit lit prules))) ;TODO also filter not-variable-disjoint
((when C2) C2))
`((NOT ,(C-truth-val-var lit vars f1xf2yf3z)))))
(defloop C-truth-val-f/p/other-inst2 (f1xf2yf3z-list lit vars fixers prules)
(for ((f1xf2yf3z in f1xf2yf3z-list))
(collect (C-truth-val-f/p/other-inst3 lit vars f1xf2yf3z fixers prules))))
(defloop singletonize (xs)
;"convert (x1 x2 ... xn) to ((x1) (x2) (x3) ... (xn))"
(for ((x in xs)) (collect (list x))))
(defloop cross-product/binary (A1 A2)
(for ((a in A1))
(for ((b in A2))
(collect (list a b)))))
; (cross-product/binary A1 '()) == (cross-product/binary '() A1) == NULL != (singletonize A1)
(defun generate-all-tuples (A-list)
"Given Lists A1,A2,...,An generate all n-tuples (a1,...,an) where ai \in Ai"
(if (endp A-list)
'()
(if (endp (cdr A-list))
(singletonize (car A-list))
(if (endp (cddr A-list))
(cross-product/binary (car A-list) (cadr A-list))
(cross-product/binary (car A-list)
(generate-all-tuples (cdr A-list)))))))
;(memoize 'cross-product/binary)
;(memoize 'generate-all-tuples)
(defun C-truth-val-f/p/other-inst1 (lit vars fixers prules)
(b* ((vars-fx-list-alist (fixer-output-x-alst vars fixers))
(all-possible-f1xf2yf3z (generate-all-tuples (strip-cdrs vars-fx-list-alist))))
(C-truth-val-f/p/other-inst2 all-possible-f1xf2yf3z lit vars fixers prules)))
(defloop C-truth-val-f/p/other-inst (lits fixers prules{})
(for ((lit in lits))
(C-truth-val-f/p/other-inst1 lit (collect-vars lit) fixers (g1 lit prules{}))))
|#
; TODO -- Make sure there arent two copies of a fixer instance. Is that
; possible? That would create confusion among connections. No that is not
; possible, there is no concept of "occurrences" or instances of
; fixer-instances.
;; [2016-04-02 Sat]
;; [2017-08-18 Fri] Modified data structure from lits-lst to flits{}
;; term->flits{} added.
; term->flits{} is an alist from each cterm to an alist {(fixername1 . flits_1) ..}
; It corresponds to DNF form, i.e., a sum of products i.e. at least one
; flits_i should be sat, and in flits_i, every lit should be sat.
; [2016-04-02 Sat] Create a pvar holding truth-value of each term
; term->flits{} := ((Rfxgxy . ((Rw1gxy w1=fx) (Rw1w2 w1=fx w2=gxy))) ...)
; Rfxgxy.TRUE => (Rw1gxy.isSAT /\ w1=fx.isSAT) \/ (Rw1w2.isSAT /\ w1=fx.isSAT /\ w2=gxy.isSAT)
(defloop C/sat-lits (lits fixers)
(for ((l in lits))
(collect (b* ((cs (pvars/chosen-fixer (list l) (filter-sfixes-lit fixers l)))
((when (= 1 (len cs)))
`(IMPLIES ,(pvar/sat-lit l)
,(car cs))))
`(IMPLIES ,(pvar/sat-lit l)
(OR . ,cs))))))
(defloop sat-literals-lst (flits{})
(for ((fname-lits in flits{}))
(collect (b* ((cs (pvars/sat-lit (cdr fname-lits)))
((when (= 1 (len cs))) (car cs)))
`(AND . ,cs)))))
(defloop C/sat-terms (term->flits{})
(for ((term--lits{} in term->flits{}))
(collect (b* ((cs (sat-literals-lst (cdr term--lits{}))))
(if (= 1 (len cs))
`(IMPLIES ,(pvar/sat-term (car term--lits{}))
,(car cs))
`(IMPLIES ,(pvar/sat-term (car term--lits{}))
(OR . ,cs)))))))
; [# Satisfied constraints]
; \Sigma_i \E F_j : sfixes(F_j,c_i) : F_j**c_i
(defun bool->0/1 (b) (declare (xargs :mode :logic)) (if b 1 0))
(defloop num-sat-literals1 (terms)
(for ((term in terms))
(collect `(BOOL->0/1 ,(pvar/sat-term term)))))
(defun num-sat-literals (terms)
`( . ,(num-sat-literals1 terms))) ;SIGMA
;; And now for the macro that connects all of the above together
(defun indices-of-len1 (n acc)
(if (zp n)
acc
(b* ((n (1- n)))
(indices-of-len1 n (cons n acc)))))
(defun indices-of-len (n)
(indices-of-len1 n '()))
(defun pvars-g-bindings (vars fixers lits terms)
(b* ((pvars (pvars-fn vars fixers lits terms))
(n (len pvars))
(g-booleans (make-list n :initial-element :g-boolean))
(indices (indices-of-len n))
(g-boolean-forms (pairlis$ g-booleans indices)))
(defdata::list-up-lists pvars g-boolean-forms)))
; To compute a substitution from a SAT assignment
; 1. From connection var assignment, get an adjacency list with backward edges
; 2. For each variable, get its final fixer and start from there and go backwards building its assignment entry
(defun make-bedges-adjlist1 (connvar-edges conn-var-table ans)
"given edges in form of symbols F1xF2, return an adjacency list with
backward edges of the form (fixer-name . flow-var).
Initially ans has all fixers mapped to their in-list"
(if (endp connvar-edges)
ans
(b* ((connvar (car connvar-edges))
((list from var to) (g1 connvar conn-var-table))
(in-list (g1 to ans))
(in-list1 (substitute (cons from var) var in-list))
(ans1 (put-assoc-equal to in-list1 ans)))
(make-bedges-adjlist1 (cdr connvar-edges) conn-var-table ans1))))
(defloop fixer-in-list-map (fixer-inst-table)
(for ((entry in fixer-inst-table))
(collect (b* (((cons f1-name f1-alist) entry)
(f1-in-list (g1 :in f1-alist)))
(cons f1-name f1-in-list)))))
(defun make-bedges-adjlist (connvar-edges conn-var-table fixer-inst-table)
(make-bedges-adjlist1 connvar-edges conn-var-table (fixer-in-list-map fixer-inst-table)))
(defloop filter-true-vars (sat-A vars)
"given sat-assignment sat-A, filter from vars, those that are assigned T"
(for ((x-v in sat-A))
(when (and (cadr x-v)
(member-eq (car x-v) vars))
(collect (car x-v)))))
(defloop final-fixer (x fvars final-value-var-table)
(for ((fvar in fvars))
(when (equal x (cadr (g1 fvar final-value-var-table)))
(return (car (g1 fvar final-value-var-table))))))
(defthm alists-measure-decreases-on-remove1-assoc
(implies (assoc-equal key alist)
(< (len (remove1-assoc-equal key alist))
(len alist))))
(include-book "ordinals/lexicographic-ordering-without-arithmetic" :dir :system)
(defun dag-term-at (fx b-adjlist fxri{} flag)
"given a acyclic adjlist (with backward edges), and (f . x),
find the term/expression at that node.
Note:Each node is a function symbol and the backward-edges are in order of
the inputs to that node."
(declare ( xargs :mode :logic
:measure (acl2::llist (len b-adjlist) (acl2-count fx)) :well-founded-relation acl2::l<))
;(declare (xargs :measure (acl2-count b-adjlist) :hints (("Goal" :in-theory (disable acl2-count))))
(if (eq flag :node)
(b* (((cons f x) fx)
((unless (assoc-equal f b-adjlist))
(er hard? 'dag-term-at "~| ~x0 not found in adjlist!~%" f))
(adj-in-nodes (g1 f b-adjlist))
(b-adjlist1 (remove1-assoc-equal f b-adjlist))
(in-terms (dag-term-at adj-in-nodes b-adjlist1 fxri{} :nodes))
(fxri-data (g1 f fxri{}))
(out-list (g1 :out fxri-data))
(x-pos (position x out-list))
(In (g1 :In fxri-data))
;(in-terms (cdr (strip-mv-nth term1)))
(fxr-b (g1 :fixer-let-binding fxri-data))
(fxr-term (cadr (assoc-eq x fxr-b)))
(actual-term (if fxr-b ;to let fixer-regression still run
(acl2::sublis-var (pairlis$ In in-terms) fxr-term)
(cons f in-terms)))
(dag-term (if (null in-terms)
;;enum exp -- record these so that we can easily find them for Cgen
(list :enum f :out x)
actual-term))
)
(if (and (null fxr-b) ;fixer-regression! HACK
(consp out-list)
(consp (cdr out-list)))
;;take care of mv expressions here only for fixer-regression!
(list 'MV-NTH (kwote x-pos)
(list 'MV-LIST (kwote (len out-list)) dag-term))
dag-term))
(let ((fxs fx))
(if (endp fxs)
'()
(cons (dag-term-at (car fxs) b-adjlist fxri{} :node)
(dag-term-at (cdr fxs) b-adjlist fxri{} :nodes))))))
(defun strip-mv-nth (term)
(case-match term
(('MV-NTH & ('MV-LIST & exp)) exp)
(('MV-NTH & exp) exp)
(& term)))
(defloop soln-sigma (vars fvars final-value-var-table fxri{} b-adjlist)
(for ((x in vars))
(collect (b* ((ffixer-nm (final-fixer x fvars final-value-var-table))
(soln-term (dag-term-at (cons ffixer-nm x) b-adjlist fxri{} :node)))
(cons x soln-term)))))
(defloop invert-alist (alist)
(declare (xargs :guard (alistp alist)))
(for ((x.y in alist)) (collect (cons (cdr x.y) (car x.y)))))
(include-book "simple-graph-array")
(defun let-binding->dep-graph-alst (vt-lst ans)
"Walk down the var-term list vt-lst and add edges.
Build graph alist in ans"
(if (endp vt-lst)
ans
(b* (((list var term) (car vt-lst))
(fvars (all-vars term)));only non-buggy for terms
(let-binding->dep-graph-alst
(cdr vt-lst)
(cgen::union-entry-in-adj-list var fvars ans)))))
(defun get-ordered-alst (keys alst ans)
(declare (xargs :guard (and (true-listp keys) (alistp ans) (alistp alst))))
"accumulate entries of alist in ans in the order of keys"
(if (endp keys)
ans
(let ((at (assoc-equal (car keys) alst)))
(if at
(get-ordered-alst (cdr keys) alst (append ans (list at)))
(get-ordered-alst (cdr keys) alst ans)))))
(defun do-let*-ordering1 (vars vt-lst debug-flag)
(declare (xargs :guard (symbol-alistp vt-lst)
:mode :program))
(b* ((dep-g (let-binding->dep-graph-alst vt-lst
(cgen::make-empty-adj-list vars)))
(sorted-vars (cgen::approximate-topological-sort dep-g debug-flag)))
(get-ordered-alst (reverse sorted-vars) vt-lst nil)))
(defloop subst-common-subterms-with-corr-vars (alist es)
"specialized function for convert-to-let*-binding"
(for ((e in es)) (collect (acl2::sublis-expr (remove1-assoc-equal e alist) e))))
(defun dlist-to-alist (dlist)
(pairlis$ (strip-cars dlist) (strip-cadrs dlist)))
;; (defun flatten-mv-nth-term (exp ans)
;; (cond ((or (variablep exp) (quotep exp)) (mv exp ans))
;; ((eq (ffn-symb exp) 'MV-NTH)
;; (b* ((f-exp (third exp))
;; ((unless (consp f-exp)) (mv exp ans))
;; (f-nm (car f-exp))
;; (new-var-nm (s f-nm "-OUT"))
;; ((mv f-exp1 ans) (flatten-mv-nth-term f-exp ans)))
;; (mv (list 'MV-NTH (second exp) new-var-nm) (put-assoc-equal new-var-nm f-exp1 ans))))
;; (t (b* (((cons f args) exp)
;; (mv args1 ans) (flatten-mv-nth-terms args ans))
;; (mv (cons f args1) ans)))))
;; (defun flatten-mv-nth-terms/alist1 (x-exps ans)
;; (if (endp x-exps)
;; ans
;; (b* (((cons x exp) (car x-exps))
;; ((mv exp1 ans) (flatten-mv-nth-term exp ans)))
;; (flatten-mv-nth-terms/alist1 (cdr x-exps) (append ans (list (cons x exp1)))))))
;; (defun flatten-mv-nth-terms/alist (A)
;; (flatten-mv-nth-terms/alist1 A '()))
(mutual-recursion
(defun replace-enum-exp-with-out-var/term (e)
(cond ((proper-symbolp e) e)
((quotep e) e)
(t (if (and (consp e) (eq (car e) :enum))
(nth 3 e) ;get the out var
(cons (car e)
(replace-enum-exp-with-out-var/terms (cdr e)))))))
(defun replace-enum-exp-with-out-var/terms (es)
(if (endp es)
'()
(cons (replace-enum-exp-with-out-var/term (car es))
(replace-enum-exp-with-out-var/terms (cdr es))))))
(defloop remove-x=x-bindings (dlist)
(for ((x--xval in dlist))
(append (and (not (equal (car x--xval) (cadr x--xval)))
(list x--xval)))))
(defun convert-to-let*-binding (A)
(declare (xargs :guard (symbol-alistp A) :mode :program))
(b* (;(A (flatten-mv-nth-terms A))
(exp->var-map (invert-alist A))
(svals (subst-common-subterms-with-corr-vars exp->var-map (strip-cdrs A)))
(svals (replace-enum-exp-with-out-var/terms svals))
(vars (strip-cars A))
(let*-b (acl2::listlis vars svals))
(let*-b (remove-x=x-bindings let*-b))
(let*-b (do-let*-ordering1 vars let*-b nil))
)
let*-b))
(defun soln-sigma-top (sat-assignment vars fxri{})
(b* ((fixers (strip-cdrs fxri{}))
(pvars/valid (filter-true-vars sat-assignment (pvars/valid fixers)))
;;ignore fixers that are not valid
(valid-var-table (valid-var-table fixers))
(valid-var-table/true (cgen::assoc-lst pvars/valid valid-var-table))
(fixer-names/valid (strip-cdrs valid-var-table/true))
(fxri{}/valid (cgen::assoc-lst fixer-names/valid fxri{}))
(conn-var-table (connection-var-table vars fixers))
(final-value-var-table (final-value-var-table vars fixers))
(fixers/valid (strip-cdrs fxri{}/valid))
(connvar-edges (filter-true-vars sat-assignment
(pvars/conn fixers/valid vars)))
(bedges-adjlist (make-bedges-adjlist connvar-edges conn-var-table
fxri{}/valid))
(final-value-vars (filter-true-vars sat-assignment
(pvars/final vars fixers/valid)))
;;INvariant -- each variable should have atleast one
;;"fixer"/enum, o.w. we cant make a soln-sigma for vars
(- (assert$ (= (len vars) (len final-value-vars)) "Invariant broken: Some var does not have a final-value expression!"))
(A (soln-sigma vars final-value-vars final-value-var-table
fxri{}/valid
bedges-adjlist)))
A))
(defun make-GL-SAT-encoding (vars lits term->flits{} fxri{})
; return (mv bindings hyp concl-hyp)
; (declare (xargs :mode :program :stobjs (state)))
(b* ((fixers (strip-cdrs fxri{}))
(terms (strip-cars term->flits{}))
(bindings (pvars-g-bindings vars fixers lits terms))
(hyp `(AND . ,(pvars-type-constraints vars fixers lits terms)))
(concl-hypothesis `(AND . ,(append
(C/atleast-one-final-value vars fixers)
;;(C/atmost-one-final-value vars fixers)
(C/final-value-implies-valid vars fixers)
(C/connection-implies-valid fixers vars)
(C/atmost-one-input-conn fixers vars)
(C/atleast-one-input-conn fixers vars)
(C/trans fixers vars)
(C/no-cycles fixers)
(C/final-value-def vars fixers)
(C/TheFixer-is-preserved lits fixers)
(C/TheChosenFixer lits fixers)
;; [2016-09-07 Wed] added for optimization purposes
(C/valid-fixes-at-least-one-lit fixers lits)
(C/sat-lits lits fixers)
(C/sat-terms term->flits{})))
))
(mv bindings hyp concl-hypothesis)))
(defun fixers-sat-glcp-query (num-sat-lits top-hyps bindings trhyp concl-hyp vl state)
(declare (xargs :mode :program :stobjs (state)))
(b* (((mv start-sat-query state) (acl2::read-run-time state))
(concl `(IMPLIES ,concl-hyp
(NOT (EQUAL ,(num-sat-literals top-hyps)
,num-sat-lits))))
(ctx 'fixers-sat-glcp-query)
((er trconcl) (acl2::translate concl t t nil ctx (w state) state))
(concl-vars (collect-vars trconcl))
(missing-vars (set-difference-eq concl-vars (strip-cars bindings)))
(- (and missing-vars
(let ((msg (acl2::msg "~
The following variables are present in the theorem but have no symbolic object ~
bindings:
~x0~%" missing-vars)))
(cw? (normal-output-flag vl) "**** ERROR ****~%~@0~%" msg))))
((when missing-vars) (mv :missing-vars nil state))
(param-bindings nil)
(trparam nil)
(config (gl::make-glcp-config
:abort-ctrex t
:abort-vacuous t
:n-counterexamples 1))
((acl2::local-stobjs gl::interp-st)
(mv err ans gl::interp-st state))
((mv erp ?val gl::interp-st state)
(gl::glcp nil (list bindings param-bindings
trhyp trparam trconcl
concl config)
gl::interp-st state))
;if no error, return as it is, o.w. below report sat assignment
((mv end-sat-query state) (acl2::read-run-time state))
(- (cw? (verbose-stats-flag vl)
"~|Cgen/Note: GL/SAT Engine: Time taken = "))
((mv err & state) (if (verbose-stats-flag vl)
(pprogn (print-rational-as-decimal (- end-sat-query start-sat-query)
(standard-co state)
state)
(princ$ " seconds" (standard-co state) state)
(newline (standard-co state) state)
(newline (standard-co state) state)
(value :invisible))
(value nil)))
((when err) (mv err nil gl::interp-st state))
((unless erp) (mv :unsat nil gl::interp-st state))
(x (car (@ gl::glcp-counterex-assignments))) ;only pick the first
(sat-A (gl::glcp-obj-ctrex->obj-alist x)))
(mv nil sat-A gl::interp-st state)))
(defun fixers-maxsat-glcp-query-loop (n top-hyps bindings trhyp concl-hyp mode vl state)
(declare (xargs :mode :program :stobjs (state)))
(if (zp n)
(mv :unsat nil 0 state) ;nothing satisfied
(b* (((mv erp A state) (fixers-sat-glcp-query n top-hyps bindings trhyp concl-hyp vl state))
((unless erp) ;got sat assignment
(prog2$
(cw? (verbose-stats-flag vl) "~|Got a sat assignment for #literals = ~x0~%" n)
(mv nil A n state)))
((when (eq mode :sat)) ;don't continue maxsat loop if in this mode
(mv erp A n state))
)
(fixers-maxsat-glcp-query-loop (1- n) top-hyps bindings trhyp concl-hyp mode vl state))))
; fxri{} is the fixer instance metadata table
(defun fixers-maxsat-glcp-query (vars lits term->flits{} relevant-hyps fxri{} mode vl state)
(declare (xargs :mode :program :stobjs (state)))
(b* (((when (or (null vars)
(null lits)
(null term->flits{})
(null relevant-hyps)
)) ;pathological cases
(mv :null nil state)); abort, treat as error
(ctx 'fixers-maxsat-glcp-query)
((mv start-code-gen state) (acl2::read-run-time state))
((mv bindings hyp concl-hyp)
(make-GL-SAT-encoding vars lits term->flits{} fxri{}))
((mv end-code-gen state) (acl2::read-run-time state))
(- (cw? (debug-flag vl) "~|concl-hyp is ~x0~%" concl-hyp))
(- (cw? (verbose-stats-flag vl)
"~|Cgen/Note: fixer-sat-encoding: Time taken = "))
((er &) (if (verbose-stats-flag vl)
(pprogn (print-rational-as-decimal (- end-code-gen start-code-gen)
(standard-co state)
state)
(princ$ " seconds" (standard-co state) state)
(newline (standard-co state) state)
(newline (standard-co state) state)
(value :invisible))
(value nil)))
((er trhyp) (acl2::translate hyp t t nil ctx (w state) state))
((mv erp sat-A ?n state)
(fixers-maxsat-glcp-query-loop (len relevant-hyps)
relevant-hyps ;[2016-05-04 Wed] only count these
bindings trhyp concl-hyp
mode
vl state))
((when erp) ;unsat or error, abort
(mv erp nil state))
(terms (strip-cars term->flits{}))
(fixers (strip-cdrs fxri{}))
(all-basis-pvars (append (pvars/chosen-fixer lits fixers)
(pvars/final vars fixers)
(pvars/conn fixers vars)
(pvars/valid fixers)
(union-equal (pvars/sat-term terms)
(pvars/sat-lit lits))))
(pvars/true (filter-true-vars sat-A all-basis-pvars))
(sat-A/true (acl2::listlis pvars/true (make-list (len pvars/true) :initial-element 't)))
(- (cw? (debug-flag vl) "True pvars: ~x0~%" (filter-true-vars sat-A (pvars-fn vars fixers lits terms))))
(- (cw? (verbose-stats-flag vl) "SAT Assignment: ~x0~%" sat-A/true))
)
(mv nil sat-A/true state)))
(defun fxri-let*-soln/gl (flits term->flits{} relevant-terms fxri{} vl state)
;; return (mv erp (list let*-binding satisfied-terms) state)
(declare (xargs :stobjs (state)))
(b* ((flits-vars (acl2::all-vars1-lst flits '()))
(- (acl2::tshell-ensure))
((mv erp sat-A state)
(fixers-maxsat-glcp-query flits-vars
flits
term->flits{}
relevant-terms
fxri{}
:maxsat ;maxsat loop
vl state))
((when (equal :null erp))
(value (list nil nil)))
((when (equal :unsat erp))
(progn$
(cw? (verbose-flag vl)
"~| Cgen/Note: GL query is UNSAT. No fixer arrangement found for~%")
(cw? (verbose-flag vl) "~| ~x0~%" relevant-terms)
(value (list nil nil))))
(rterms-pvars/sat (pvars/sat-term relevant-terms))
(rterms-pvars/true (filter-true-vars sat-A rterms-pvars/sat))
(rterms/true (strip-cdrs (cgen::assoc-lst rterms-pvars/true
(pairlis$ rterms-pvars/sat relevant-terms))))
(ssigma (soln-sigma-top sat-A flits-vars fxri{}))
(let*-soln0 (convert-to-let*-binding ssigma)))
(mv erp (list let*-soln0 rterms/true) state)))
(include-book "cgen-state")
(defttag t)
(defattach (fxri-let*-soln fxri-let*-soln/gl) :skip-checks t)
(defttag nil)
(in-theory (disable Implies))
;; Backend/GL engine interface -- We have as inputs, the literals (of
;; desired shape), the dynamic fixer-instance table with the relevant
;; metadata instantiated and also weights for each literals to be
;; used in the MAX-SAT encoding. We return either :UNSOLVABLE or the
;; assignment/arrangement A that maximises the objective function.
;; # BEGIN_SRC lisp
;; (defun fixer-arrangement (lits fixer-instance-table frule-instances prule-instances litWeight{} state)
;; "Given lits (of a certain shape), the fixer-instance-table
;; comprising of fixers relevant to lits, and literal weights, find an
;; arrangement A (i.e. a substitution of fixer terms to variables of
;; lits) that maximizes Sum(lit|A == t * litWeight{lit})."
;; (mv boolean (or :unsolvable A) state))
;; # END_SRC
|