cnvrg.io
Scale your machine learning development from research to production with an end-to-end solution that gives your data science team all the tools they need in one place. As the leading data science platform for MLOps and model management, cnvrg.io is a pioneer in building cutting-edge machine learning development solutions so you can build high-impact machine learning models in half the time. Bridge science and engineering teams in a clear and collaborative machine learning management environment. Communicate and reproduce results with interactive workspaces, dashboards, dataset organization, experiment tracking and visualization, a model repository and more. Focus less on technical complexity and more on building high impact ML models. Cnvrg.io container-based infrastructure helps simplify engineering heavy tasks like tracking, monitoring, configuration, compute resource management, serving infrastructure, feature extraction, and model deployment.
Learn more
Flyte
The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
Learn more
ClearML
ClearML is the leading open source MLOps and AI platform that helps data science, ML engineering, and DevOps teams easily develop, orchestrate, and automate ML workflows at scale. Our frictionless, unified, end-to-end MLOps suite enables users and customers to focus on developing their ML code and automation. ClearML is used by more than 1,300 enterprise customers to develop a highly repeatable process for their end-to-end AI model lifecycle, from product feature exploration to model deployment and monitoring in production. Use all of our modules for a complete ecosystem or plug in and play with the tools you have. ClearML is trusted by more than 150,000 forward-thinking Data Scientists, Data Engineers, ML Engineers, DevOps, Product Managers and business unit decision makers at leading Fortune 500 companies, enterprises, academia, and innovative start-ups worldwide within industries such as gaming, biotech , defense, healthcare, CPG, retail, financial services, among others.
Learn more
Predibase
Declarative machine learning systems provide the best of flexibility and simplicity to enable the fastest-way to operationalize state-of-the-art models. Users focus on specifying the “what”, and the system figures out the “how”. Start with smart defaults, but iterate on parameters as much as you’d like down to the level of code. Our team pioneered declarative machine learning systems in industry, with Ludwig at Uber and Overton at Apple. Choose from our menu of prebuilt data connectors that support your databases, data warehouses, lakehouses, and object storage. Train state-of-the-art deep learning models without the pain of managing infrastructure. Automated Machine Learning that strikes the balance of flexibility and control, all in a declarative fashion. With a declarative approach, finally train and deploy models as quickly as you want.
Learn more