Pojdi na vsebino

Talesov izrek

Iz Wikipedije, proste enciklopedije

Tálesov izrèk [tálesov ~] je izrek (imenovan v čast Talesu) v ravninski geometriji, ki pravi, da je obodni kot nad premerom krožnice pravi; če imamo torej premer AC neke krožnice in od A in C različno točko B na njenem obodu, je kot ABC pravi kot.

Talesov izrek

Točka O je središče krožnice; ker je OA = OB = OC, sta ΔOAB in ΔOBC enakokraka trikotnika in od tod sledi enakost kotov OBC = OCB in BAO = ABO. Označimo γ = BAO and δ = OBC.

Vsota kotov v trikotniku OAB je 180°

2γ γ ′ = 180°

in tudi v trikotniku OBC

2δ δ ′ = 180°

velja pa tudi

γ ′ δ ′ = 180°

Seštejemo prvi enačbi in odštejemo tretjo ter dobimo:

2γ γ ′ 2δ δ ′ − (γ ′ δ ′) = 180°

iz česar sledi

γ δ = 90°

Q.E.D.

Uporaba

[uredi | uredi kodo]
Konstrukcija tangente

Izrek uporabimo pri konstrukciji tangente na krožnico k, ki gre skozi točko P. Določimo točko H tako da je OH = HP (razpolovišče daljice OP). Krog (H, OH) seka krožnico k v točkah T in T', ki sta dotikališči tangent.

Glej tudi

[uredi | uredi kodo]