Preskočiť na obsah

Portál:Biológia/Odporúčané články/2009

z Wikipédie, slobodnej encyklopédie


2006 až 2008 | 2009 | 2010

január | 1-2 február | 2-8 február | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52


január 2009

[upraviť zdroj]
3D štruktúra myoglobínu
3D štruktúra myoglobínu

Bielkoviny alebo proteíny sú vysokomolekulárne prírodné látky zložené prevažne z (istých) aminokyselín. Chemická definícia znie : kopolyméry (kombinované polyméry) z monomerných jednotiek L-alfa-aminokyselín prepojených peptidovými väzbami.

Molekulová hmotnosť jednoreťazcových bielkovín je medzi 10 000 a 100 000, u viacreťazcových bielkovín až do niekoľkých miliónov.

Často sa ako bielkovina chápe len taká bielkovina, ktorá obsahuje peptid s viac ako 100 aminokyselinami v molekule. Terminologickým opakom sú potom menšie „polypeptidy“ (v užšom zmysle) a „oligopeptidy“, ale terminológia tu nie je celkom ustálená. Polypeptid v širšom zmysle je každý väčší peptid, a teda aj napríklad každá bielkovina.

Úloha

Sú nevyhnutnými zložkami všetkých rastlinných a živočíšnych buniek a majú v nich tak z hľadiska množstva (50%), ako aj funkcie veľmi významné postavenie.

Ako enzýmy sú nenahraditeľné pri regulácii biochemických reakcií, ako hormóny pri sprostredkúvaní reakcií, ako stavebné látky v stavbe bunky, ako protilátky pri obrane organizmu a sú to aj dôležité transportné a rezervné látky. Dôležité sú aj pri zrážaní krvi a mlieka, pri druhu krvnej skupiny a pri pamäti.


1. a 2. február 2009

[upraviť zdroj]
Kukurica siata
Kukurica siata

Kukurica siata (Zea mays ssp. mays) je kultúrna plodina pôvodne domestikovaná Indiánmi na území dnešného Mexika. Je to rastlina z čeľade lipnicovitých.

História

Kukurica je veľmi stará rastlina. Spôsob jej domestikácie je jednou z najväčších záhad genetiky. Predpokladá sa, že kukurica vznikla vývojom a selekciou z teosintu (skupina amerických tráv z rodu Zea), s ktorým si však dnes kultúrna kukurica nie je vzhľadovo príliš podobná. Na rozdiel od ostatných kultúrnych plodín nie sú známe žiadne medzistupne medzi divokým predchodcom kukurice a kultúrnou plodinou. Kukurica nie je schopná samostatnej existencie bez pomoci poľnohospodára. Záhadu ešte umocňuje fakt, že dávni obyvatelia Ameriky nemali na domestikáciu kukurice príliš veľa času. Súčasné teórie predpokladajú, že kukurica "vznikla" niekedy medzi rokmi 4000-3000 pred Kr. v údolí rieky Balzas. Vedú sa spory o tom, či išlo o postupný proces alebo o šťastnú udalosť. S niektorými druhmi teosintu sa môže kukurica krížiť, kríženci majú väčšinou zníženú životaschopnosť. Napriek tomu sa predpokladá, že v Strednej Amerike dochádza k prenosu génov medzi populáciami teosintu a kukurice.


do konca 6 týždňa

[upraviť zdroj]
Stromatolity - patria medzi najstaršie formy života
Stromatolity - patria medzi najstaršie formy života

Evolučná abiogenéza je v súčasnosti prírodovedcami všeobecne najviac akceptovaná teória vzniku života, spočívajúca v postupnom a zákonitom vývoji (preto "evolučná") živej hmoty (organických zlúčenín) pôvodne z neživej hmoty. Ak navyše predpokladáme, že k tomuto vzniku došlo priamo na Zemi, hovoríme o autochtónnej (evolučnej) abiogenéze. Autorom autochtónnej evolučnej abiogenézy bol pôvodne v roku 1924 sovietsky biológ a biochemik A. I. Oparin (1894 - 1980).

Podmienky na Zemi

Planéta Zem bola od svojho vzniku až po obdobie pred približne 3,8 miliardami rokov nehostinným prostredím pre vznik života. Panovali vysoké teploty, ktoré organické zlúčeniny neznášajú, intenzívne žiarenie, kým planéta samotná bola zrejme bombardovaná veľkými objektami z vesmíru. Pred približne 3,8 miliardami rokov začali byť podmienky priaznivejšie, hoci stále odlišné od dnešných. Hlavným rozdielom bola neprítomnosť vzdušného kyslíka (O2), prípadne jeho prítomnosť v stopových množstvách. V takých podmienkach mohli na Zemi vznikať organické látky a zlúčeniny aj bez pomoci živých organizmov (tento proces sa nazýva abiotická syntéza). Syntézu organických látok tohto typu prvýkrát preukázal Stanley Miller v roku 1953, keď sa mu pomocou elektrických výbojov podarilo vytvoriť z vody, metánu a amoniaku množstvo organických látok (aminokyseliny, cukry ale aj puríny a pyrimidíny - zložky RNA a DNA). Neskôr ju potvrdili aj iné laboratóriá v rôzne modifikovaných podmienkach.


Jasoň červenooký
Jasoň červenooký

Jasoň červenooký (lat. Parnassius apollo Linnaeus, 1758) je druh motýľa z čeľade vidlochvostovité (Papilionidae). Je to vzácny a chránený druh motýľa, ktorý je jedným z najznámejších druhov hmyzu v Európe. Patrí spoločne s viac ako šesťdesiatimi ďalšími druhmi motýľov do rodu jasoň (Parnassius Latreille, 1802).

Vzhľad druhu

Jasoň červenooký patrí k najväčším denným motýľom Európy. Je bielo sfarbený, s hyalínnym tmavým lemom predných krídel. Na predných krídlach má okrem tohto lemu ešte 10 čiernych škvŕn, ktoré mávajú rôzny tvar a veľkosť, ale vo všeobecnosti sú dosť konštantne uložené. Na zadných krídlach má okrem rôzne naznačeného čierneho lemu krídel ešte štyri červené, čierno lemované škvrny, v ktorých sa zvyčajne nachádza ešte biela bodka. Pri brušku z análnej strany býva ešte niekoľko čiernych (jedna až tri), niekedy červeno vyplnených škvrniek. Tykadlá sú šedočierne, krátke a na konci ukončené čiernym kyjakovitým zhrubnutím. Povrch tela je hlavne u samčekov pokrytý oranžovo – hnedými chĺpkami. Má tri páry plnohodnotných nôh. Tento štandardný vzhľad sa môže u niektorých jedincov rôzne meniť, čo dalo základ vzniku a popisu rôznych individuálnych odchýliek a foriem. Celkove môžeme povedať, že sa ani na jednej lokalite prakticky nedajú nájsť dva celkom rovnaké jedince.


Ľuľok zemiakový
Ľuľok zemiakový

Ľuľok zemiakový (lat. Solanum tuberosum), v bežnej reči len zemiak, je viacročná hľuznatá plodina z čeľade ľuľkovitých. Zemiaky patria medzi najvýznamnejšie poľnohospodárske plodiny; väčší význam pre ľudskú výživu majú len pšenica, ryža a kukurica. Za svoju obľubu vďačia nenáročnosti na prírodné podmienky a predovšetkým mimoriadne vysokým hektárovým výnosom. Ich široké uplatnenie v európskom poľnohospodárstve na začiatku 19. storočia ochránilo Európu od cyklických hladomorov a „epidémií“ skorbutu. Český botanik a buditeľ Jan Svatopluk Presl ich vo svojom Rostlinopise považuje za „najväčší úžitok, ktorý ľudstvo z objavenia Ameriky malo“ a určite nebol ďaleko od pravdy, aspoň vo svojej dobe.

Vzhľad

Zemiak rastie ako bylina s hranatou, bohato rozvetvenou stonkou, priamou alebo poliehavou, porastenou krátkymi chĺpkami. Dorastá do výšky 60 až 100 cm, výnimočne až 1,5 m. Listy sú striedavé, mierne ochlpené, s drobnými žliazkami, stopkaté, pomerne veľké, 30 až 50 cm dlhé. Kvety sú najčastejšie biele, ružové alebo fialové so sýto žltými až oranžovými peľnicami. Plody sú zelené alebo žltozelené bobule s priemerom 2 až 4 cm obsahujúce biele semená.


úhor európsky
úhor európsky

Úhor európsky alebo úhor riečny (staršie úhor obyčajný, ešte staršie úhor sťahovavý; lat. Anguilla anguilla) je druh rýbčeľade úhorovité (Anguillidae).

Jeho typickým znakom je pretiahnuté, valcovité telo pripomínajúce skôr hada než rybu. Na rozdiel od väčšiny ostatných sladkovodných rýb nemá brušnú plutvu a chrbtová, chvostová a análna plutva splývajú do jedného celistvého lemu. V sladkých vodách je jeho sfarbenie tmavé a koža sa javí bez šupín, v období nástupu trenia sa však jeho farba mení na kovovo striebornú.

Spôsob rozmnožovania úhorov bol pre ľudstvo po storočia záhadou. Najväčší posun v tomto smere nastal na konci 19. a v prvej polovici 20. storočia, kedy boli objavené jeho larvy a miesto trecieho aktu v Sargasovom mori. Dodnes však nie je biológia úhora známa v potrebnej úplnosti.

Ľudská činnosť spôsobila, že počty úhorov v európskych riekach značne poklesli. Môžu za to stavby neprekonateľných prekážok v tokoch, znečistenie, rozšírenie nepôvodných chorôb a tiež nadmerný rybolov, pretože mäso úhora je veľmi chutné a v mnohých prímorských štátoch je súčasťou tradičnej kuchyne. Z tohto dôvodu sa odborníci usilujú o jeho ochranu a umelé rozmnožovanie.


Muchotrávka zelená
Muchotrávka zelená

Muchotrávka zelená alebo muchotrávka hľuznatá (lat. Amanita phalloides) sa považuje za najjedovatejšiu a najnebezpečnejšiu hubu Európy a Severnej Ameriky. Nielenže je prudko jedovatá, ale naviac sa prvé príznaky otravy objavujú až v okamihu, keď je jed vstrebaný v organizme a sú už ťažko zasiahnuté dôležité orgány (najmä pečeň). Amatérski hubári si ju často pletú so šampiňónmi a inými druhmi jedlých húb.

Vzhľad

Klobúk je bieložltý, žltozelený až zelenohnedý, najprv takmer zvoncovito klenutý, potom plocho klenutý až napokon plocho rozložený. Hlúbik, dužnina aj lupene sú belavé (šampiňóny majú lupene svetlé až tmavo hnedé). Hlúbik (noha) je hrubý, takmer valcovitý, hore trochu stenčený, vyrastá z tzv. vajíčka (cípovito roztrhaná pošva niekedy nazývaná kalich smrti, u šampiňónov chýba) a vo svojej hornej časti má biely prstenec. Výtrusy sú mierne elipsovité s rozmermi 8–10×7–8 μm. Amanita phalloides var. alba je čisto biela.

Výskyt

Muchotrávka zelená preferuje najmä teplejšie oblasti mierneho pásma. Na severnej pologuli rastie predovšetkým v listnatých lesoch od júla do jesene. Doprevádza predovšetkým duby, ale taktiež hraby a buky. Vzácnejšie sa dá nájsť aj v borovicových lesoch.


Článkonožce (Arthropoda) sú najpočetnejší živočíšny kmeň. Je to obrovská, dosť starobylá a vnútorne veľmi diferencovaná skupina článkovaných živočíchov, ktoré fylogeneticky nadväzujú na Polychaeta. V procese fylogenézy však získali znaky, ktoré im umožnili osídliť všetky suchozemské i sladkovodné ekosystémy a vrátiť sa aj nazad do mora, z ktorého vzišli. Všade, kde sa vyvíjali, dosiahli mimoriadnu mnohorakosť foriem a prekvapujúcu diverzitu (na súši tvoria podľa niektorých odhadov dokonca až 95 % živočíšnych druhov).

Anatómia

Telo sa skladá v najjednoduchších prípadoch (Myriapoda) z hlavy a takmer rovnakých článkov, u väčšiny je však segmentácia výrazne heteronómna. Stavbu tela a telových príveskov odvodzujeme z hypotetického východiskového modelu, ktorý mal na každom segmente (okrem akronu a pygidia) 1 pár článkovaných, s takmer stopercentnou istotou dvojvetvových končatín – tomuto modelu sú najbližšie trilobity, ale nie sú mu príliš vzdialené ani primitívne Crustacea a Myriapoda; druhá skupina však už má končatiny druhotne jednovetvové. Telo vyšších článkonožcov sa primárne člení na tri oddiely: hlavu (caput), hruď (thorax) a bruško (abdomen). Končatiny sú u podstatnej väčšiny vyvinuté len na hrudi (sú to primárne kráčavé nohy), na hlave z nich vznikajú špecializované prívesky, a na brušku zanikajú alebo prekonávajú zložitú modifikáciu.


Sauropoda je skupina veľkých bylinožravých dinosaurov. Vyznačovali sa predĺženým krkom, štvornohou chôdzou, malou veľkosťou lebky a dlhým chvostom. Vyskytovali sa od konca triasu do úplného konca druhohôr po celom svete.

Vývoj

Sauropody vznikli koncom triasu. Kedy sa tak stalo, presne nevieme, keďže nie je jasné, ktorých zástupcov Sauropodomorpha už môžeme považovať za primitívne sauropody. Prvé milióny rokov, koncom triasu až začiatkom jury, sauropody spolunažívali s príbuznou skupinou Prosauropoda. Obe skupiny zastupovali zovňajškom veľmi podobné živočíchy, s podobnými proporciami a rozmermi. Už v tomto čase predstavovali sauropody veľké a mohutné živočíchy (7-10 m dlhé s váhou niekoľkých ton).

Od začiatku strednej jury existovali už len sauropody, ktoré sesterskú skupinu Prosauropoda plne nahradili. Začali dorastať do väčších veľkostí, s dĺžkou často v rozmedzí 14 až 18 metrov. Objavili sa prvé ozrutné sauropody. Skamené odltlačky stôp nájdené v Maroku (pomenované rodovým menom „Breviparopus“) svedčia o gigantickom druhu, dosahujúcom odhadujúc podľa stôp dĺžku snáď až okolo 50 metrov - pravda, ak proporciami tela zodpovedal väčšine vtedajších sauropodov (Mareš 1993, s. 124).


rok 2009

[upraviť zdroj]
Dvojzávitnica DNA v B forme
Dvojzávitnica DNA v B forme

Deoxyribonukleová kyselina alebo dezoxyribonukleová kyselina alebo kyselina de (z) oxyribonukleová, skr. DNK alebo najčastejšie DNA (angl. deoxyribonucleic acid) je prírodný polymér zložený z deoxyribonukleotidov. Patrí spolu s kyselinou ribonoukleovou (RNA) medzi nukleové (jadrové) kyseliny. Nukleové preto, lebo boli objavené v bunkovom jadre (lat. nucleus).

DNA je nositeľkou genetickej informácie bunky, riadi rast, delenie a regeneráciu bunky. Väčšinou je DNA v bunke uložená ako dvojzávitnicová špirála, ktorej vlákna majú navzájom opačnú orientáciu fosfodiesterových väzieb (sú antiparalelné). Dvojzávitnica DNA je veľmi tenká, ale zároveň dosahuje veľkú dĺžku, ktorá mnohonásobne presahuje dĺžku celej bunky. Preto je v bunke veľmi poohýbaná a zvinutá. Prokaryotické organizmy, mikroorganizmy bez bunkového jadra, majú iba jednu pre život nevyhnutnú molekulu DNA v bunke. Je umiestnená voľne v cytoplazme a jej konce sú väčšinou spojené. Eukaryotické organizmy, organizmy s jadrom, majú hlavnú časť DNA v jadre, kde tvorí niekoľko oddelených molekúl, spravidla s voľnými koncami. Okrem hlavnej DNA, označovanej ako chromozomálna DNA, majú organizmy menšie molekuly DNA uložené v bunkových organelách, alebo v krátkych do kruhu uzavretých úsekoch umiestnených v cytoplazme, tzv. plazmidoch. Genetická informácia zapísaná v DNA sa realizuje prostredníctvom dvoch základných krokov, a to transkripcie a translácie.

Základné zložky DNA, jej monoméry, sa nazývajú deoxyribonukleotidy alebo všeobecne nukleotidy. Každý nukleotid pozostáva z troch zložiek:

  1. fosfátového zvyšku kyseliny fosforečnej (PO43−),
  2. molekuly deoxyribózy,
  3. dusíkatej bázy. Dusíkaté bázy tvoriace štruktúru DNA sú štyri: adenín (A), guanín (G), cytozín (C) a tymín (T). Spájajú obe vlákna dvojzávitnice DNA pomocou vodíkových väzieb, pričom platí princíp tzv. komplementarity báz. Komplementarita znamená, že adenín sa v DNA prednostne páruje s tymínom z druhého vlákna dvojzávitnice a guanín s cytozínom.

Poradie jednotlivých dusíkových báz je kľúčové v prenose genetickej informácie. Funkčné úseky DNA, ktoré dokážu určité enzýmy prepísať do RNA, sa nazývajú gény.



Variabilita zobákov piniek na súostroví Galapágy, bola jedným z dôvodov, ktorý viedol Darwina k formulovaniu Teórie Evolúcie
Variabilita zobákov piniek na súostroví Galapágy, bola jedným z dôvodov, ktorý viedol Darwina k formulovaniu Teórie Evolúcie

(Biologická) evolučná teória / teória evolúcie alebo descendenčná teória alebo vývojová teória alebo nepresne evolucionizmus je teória, podľa ktorej celá súčasná biodiverzita (bohatosť druhov) vznikla postupným rozdeľovaním druhov na viacero nových druhov v priebehu času z generácie na generáciu. Inými slovami: Všetky dnešné organizmy sú v konečnom dôsledku príbuzné a v konečnom dôsledku vznikli z jedného alebo niekoľko málo spoločných počiatočných druhov/jedincov. Často sa dodáva, že spomínané rozdeľovanie druhov je spojené s neustálym rastom komplexity druhov/jedincov.

Proces, ktorý táto teória opisuje sa nazýva (biologická) evolúcia.

Jej základy položili okrem iného J. B. Lamarck, Ch. R. Darwin a jeho následovníci, neskôr aj filozofi H. Spencer a iní.


Machorasty (Bryophytae) sú vývojová vetva výtrusných rastlín. Sú to autotrofné, mnohobunkové a najvyššie organizované stielkaté rastliny. Spoločným znakom machorastov je antitetická rodozmena, čiže striedanie pohlavnej a nepohlavnej generácie. Prevažnú časť vegetatívneho života sú v gametofyte.

Ich telo tvorí stielka, ktorá môže byť lupeňovitá alebo diferencovaná na pakorienky (rizoidy), pabyľku (kauloid) a palístky (fyloidy). Machorasty sú väčšinou suchozemské, niektoré druhy sa však druhotne vrátili do vody. Súš osídlili približne pred 300 miliónmi rokov, väčšina fosílnych nálezov pochádza z treťohôr. Bunková stena je tvorená celulózou, ako zásobná látka im slúži škrob. Delia sa na tri oddelenia, v starších systémoch považované za triedy: pečeňovky (Hepaticae), rožteky (Anthocerotae) a machy (Muschi). Machorastov je známych asi 25 000 druhov. Veda zaoberajúca sa machorastmi sa nazýva bryológia.

Vodu získavajú prevažne z atmosféry, len veľmi málo zo substrátu. Dokážu prijať množstvo vody, ktoré sa rovná až 2,5-násobku ich hmotnosti. Niektoré druhy naproti tomu znášajú aj vyschnutie. Svetelné nároky machorastov sú vo všeobecnosti nižšie ako u cievnatých rastlín.


Schéma tráviacej rúry človeka. 1. pažerák, 2. žalúdok, 3. dvanástnik, 4. tenké črevo, 5. slepé črevo, 6. červovitý prívesok, 7. hrubé črevo, 8. konečník, 9. análny otvor
Schéma tráviacej rúry človeka. 1. pažerák, 2. žalúdok, 3. dvanástnik, 4. tenké črevo, 5. slepé črevo, 6. červovitý prívesok, 7. hrubé črevo, 8. konečník, 9. análny otvor

Tráviaca sústava (iné názvy: tráviaci trakt, tráviaci systém, tráviaca rúra, zažívacia rúra; lat. apparatus digestorius) je skupina orgánov, ktoré sa zúčastňujú príjmu, spracovania a vylučovania potravy. Väčšinou sa začína príjmacím otvorom - ústami a končí vylučovacím - konečníkom. Nachádza sa u všetkých mnohobunkovcov.

Príjem potravy

Najjednoduchším spôsobom je príjmanie živín celým povrchom tela, difúziou. Dochádza takto k príjmu tekutín s rozpustenými živinami. Používajú ju napríklad jednobunkovce (Monocytozoa), ale aj vnútrotelové parazitické živočíchy (pásomnice - Cestodes).

O niečo dokonalejšia je fagocytóza - pohltenie, ktorú používajú napríklad jednobunkovce. Ich potravou je pevná potrava, ako baktérie, sinice alebo riasy. Fagocytovaný obsah je obklopený panôžkami (biol. pseudopódium) a vzniká vakuola, ktorá sa spojí s vakuolou s tráviacimi enzýmami, splynú a vytvoria tráviacu vakuolu (organelu s tráviacou funkciou). Potrava je prijímaná celým povrchom tela, pohltenie môže nastať kdekoľvek na povrchu bunky.


Mäkkýše (lat. Mollusca) sú kmeň špirálovcov. Je to druhý najpočetnejší kmeň živočíšnej ríše – dodnes je popísaných asi 120 000 druhov, no v strednej Európe ich žije iba asi 300. Zoologická špecializácia na mäkkýše sa nazýva malakológia.

Sú to prvoúste živočíchy bez vnútornej kostry, preto ich zaraďujeme medzi bezstavovce. Majú už druhotnú telovú dutinu (coelom) a na rozdiel od mnohých iných bezstavovcov nikdy nie sú článkované. Ich telo sa obyčajne skladá z hlavy (ktorá ale môže byť redukovaná), vnútornostného vaku a svalnatej nohy (tiež môže podliehať redukcii, alebo môže byť značne pozmenená). Majú záhyb pokožky - plášť (pallium), ktorý niekedy produkuje pevnú schránku zloženú najmä z anorganickej hmoty (hlavne z uhličitanu vápenatého). Žijú v sladkých aj slaných vodách a tiež na suchej zemi. Sú bylinožravé aj dravé. Množstvo mäkkýšov má veľký hospodársky význam, pretože predstavujú doplnok potravy. Významný je aj lov a pestovanie perál.


Minerálna výživa rastlín je oblasť fyziológie rastlín, ktorá sa zaoberá nárokmi rastlín ako autotrofných organizmov na príjem anorganických látok z pôdy a atmosféry, ako aj asimiláciou (zabudovaním do organických zlúčenín).

Mechanizmus príjmu látok

Jednotlivé látky rastlina prijíma selektívne, t.j. prijíma hlavne tie, ktoré pre svoj život najviac potrebuje. Okrem oxidu uhličitého, sú všetky ostatné látky prijímané z pôdy koreňmi, ktoré sú na to dobre prispôsobené. Mnohé korene žijú navyše v symbióze s vláknami húb, ktoré im pomáhajú v príjme minerálnych látok a za to dostávajú od rastliny energeticky bohaté látky (najmä cukry).

Na príjem (ale aj vylučovanie) látok má rastlina pasívne aj aktívne mechanizmy. Medzi pasívne patria kanály, ktoré umožňujú prechod látok v smere od ich vyššej koncentrácie k nižšej. Aktívny príjem zabezpečujú prenášače, ktoré využívajú energiu ATP. Vyžitie ATP môže byť buď priamo prenášačom (primárny transport), alebo nepriame (sekundárny transport).


Krv (lat. sanguis, gr. haima) je z morfologického hľadiska mezenchýmové tkanivo, ktorého bunky (hemocyty) sa pohybujú v tekutej medzibunkovej látke (krvnej plazme). Z fyziologického hľadiska je krv rôznorodá tekutina pozostávajúca z krvných buniek a krvnej plazmy.

Medicínske termíny súvisiace s krvou môžu začínať na „hemo-“ alebo „hemato-“ a končiť na „-émia“.

Hlavnou funkciou krvi je dopravovať živiny a základné prvky (napríklad kyslík, glukózu) do tkanív a odvádzať odpadové produkty (napríklad oxid uhličitý, kyselinu mliečnu). Krv transportuje aj bunky (napríklad biele krvinky, krvné doštičky) a rôzne chemické zlúčeniny (napríklad aminokyseliny, tuky, hormóny) medzi tkanivami. Problémy s krvným zložením alebo cirkuláciou môžu viesť k poruchám funkcie tkanív a orgánov.


Diskovník múrový (Xanthoria parietina)
Diskovník múrový (Xanthoria parietina)

Lišajník (latinsky Lichen) alebo lichenizovaná huba, je symbiotické spoločenstvo huby (mykobionta) a riasy či sinice (teda fotobionta či fykobionta). Vedecký obor študujúci lišajníky sa nazýva lichenológia.

Fotobiontom je riasa alebo sinica, mykobiont je vreckatá alebo vzácne aj bazídiová huba. Vzájomné vzťahy medzi fotobiontom a mykobiontom nie sú ešte presne známe, môžu prechádzať od obojstranne výhodného zväzku až k negatívnemu (parazitizmu). Špecifický vzťah v lišajníku sa označuje ako lichenizmus.

Je známych približne 13 500 – 17 000 druhov lišajníkov a každoročne sú popisované ďalšie. Lišajníky majú svoje latinské a slovenské taxonomické názvy, pričom meno lišajníka je zároveň menom huby. Príkladom môže byť terčovka bublinatá (Hypogymnia physodes). Slovenské názvy však boli väčšinou vytvorené v 19. storočí a sú zastarané, nezodpovedajú dnešnému zaradeniu lišajníkov v systéme húb. Riasy a sinice majú svoje osobitné mená. Z celkového počtu druhov húb tvoria lichenizované huby asi 21 %.

Lišajník prijíma jedovatú síru v nezriedenej forme a je jedným z prvých organizmov, ktorý v dôsledku znečistenia umiera. To, že sa vyskytuje iba na neznečistených miestach, vedie k jeho využitiu ako bioindikátora.


Mačka domáca
Mačka domáca

Mačka domáca (Felis silvestris f. catus) je už niekoľko storočí domestikovaný poddruh mačky divej.

Po svojich predkoch zdedila vynikajúci zrak a sluch, k lovu dokonale prispôsobené telo. Ešte prednedávnom bola mačka neodmysliteľnou súčasťou každého vidieckeho domu. S rozvojom civilizácie je ale tohto vidieckeho prostredia čoraz menej a mačka stráca svoje postavenie úžitkového domáceho zvieraťa. V mestách sa pre svoju reprodukčnú schopnosť a pre potenciálne nebezpečenstvo prenosu toxoplazmózy a rozličných parazitov stáva nevítaným problémom. Na druhej strane je vďaka relatívne nenáročnej starostlivosti a schopnosti dodať príbytku teplo domova čoraz obľúbenejším domácim zvieraťom.

Predkovia mačiek

Mačkovité šelmy patria medzi cicavce. Prvé cicavce sa vyvinuli z plazov pred asi 200 miliónmi rokov. Po vymretí dinosaurov, pred približne 65 miliónmi rokov, začali cicavce získavať dominantné postavenie, ktoré si udržali dodnes. Vyvinulo sa niekoľko mäsožravých čeľadí, kam patrí aj čeľaď Miacis. Boli to šelmy veľkosti lasicevlka. V období raných treťohôr, čiže pred 60 – 35 miliónmi rokov sa jedinci z čeľade Miacidae rozšírili zo Severnej Ameriky cez Beringovu úžinu do celej Eurázie. Postupne sa z nich vyvinuli predchodcovia dnešných mäsožravých čeľadí, vrátane mačiek.


Mravcovité (lat. Formicidae) je čeľaď hmyzu z nadčeľade osy a radu blanokrídlovce. Rody z tejto čeľade, pokiaľ vôbec majú slovenské meno, sa po slovensky nazývajú mravec.

Mravce sú jednou z najúspešnejších skupín hmyzu v živočíšnej ríši, sú preto v mimoriadnom záujme vedcov myrmekológov, ekológov a biosociológov. Ich úspešnosť je pripisovaná ich sociálnemu spôsobu života a ich špecializácii. Vyvinuli sa v období explozívnej diverzifikácie hmyzích druhov, v kriede pred 110 až 130 miliónmi rokov. Sú ľahko identifikovateľné článkovanými tykadlami a charakteristickou stavbou a delením jednotlivých častí štíhleho tela.

Stavba tela

Mravce sú drobný blanokrídy hmyz, ktorého veľkosť dosahuje od niekoľkých milimetrov po niekoľko centimetrov. Ich telo je, podobne ako u mnohých iných druhov hmyzu, spevnené vonkajšou kostrou. Hmyz nemá pľúca, kyslík a ostatné plyny ako je napríklad kysličník uhličitý, prijíma povrchom tela cez prieduchy. Cievny systém hmyzu je sústredený pozdĺž jeho chrbtovej strany (dorzálna aorta) a princípom podobným ako u srdca smerom k hlave je u neho prečerpávaná telesná tekutina (hemolymfa).


Fosílna papraď rodu Neuropteris z vrchného karbónu.
Fosílna papraď rodu Neuropteris z vrchného karbónu.

Paleobotanika (z gr. paleon - starý botanikos - rastlinný), alebo fytopaleontológia je vedný odbor, zaoberajúci sa identifikáciou, rekonštrukciou a systematikou rastlín v minulosti Zeme, fylogenénzou jednotlivých skupín rastlín a tiež rekonštrukciou ich životného prostredia. Paleobotanika študuje suchozemské, ako aj vodné rastlinstvo. Príbuzný vedný odbor je palynológia, ktorá sa zaoberá štúdiom peľu a rastlinných semien.

Paleobotanika je základ pri štúdiu vývoja rastlín a tiež dôležitý prvok pri rekonštrukcii prehistorických klimatických modelov.

Vznik fotosyntézy

Samotný vznik rastlín súvisí z evolúciou fotosyntézy. V súčasnosti prevláda názor, že prvé organizmy sa vyvíjali v horúcich podmienkach (pri podmorských sopečných komínoch, v horúcich prameňoch a podobne) a boli chemoautotrofné, závislé od sopečnej činnosti. Z nich sa vyvinuli prvé fotoautotrofné organizmy, ktoré pre fotosyntézu využili svoje systémy citlivé na svetlo, ktoré boli pravdepodobne pôvodne určené na ochranu proti žiareniu (hlavne ultrafialovému).


typy epitelu
typy epitelu

Epitel (z gr. epi - na, nad a thelys - mäkký) alebo výstelka je základný typ tkaniva. Vystiela vonkajší a vnútorný povrch tela, telové a orgánové dutiny. Jeho bunky ležia tesne vedľa seba, medzi nimi je len veľmi málo medzibunkovej hmoty.

Bunky epitelov majú polárnu orientáciu. Rozlišujeme ich distálny – voľný koniec a proximálny – v tele viazaný koniec. Väčšinou nasadajú na tenkú bazálnu membránu, ktorá epitel oddeľuje od ďalších tkanív orgánu. Ich voľný povrch býva často výrazne morfologicky i funkčne špecializovaný.

Vo vývine sa epitely objavujú ako prvé tkanivá. Vznikajú zo všetkých zárodočných vrstiev – endodermu, mezodermu a ektodermu. Väčšina epitelov vzniká z endodermu a ektodermu. Mezoderm má u bezstavovcov menší podiel na vývine epitelov. Ektodermálneho pôvodu sú krycie epitely, výstelka ústnej dutiny a konečníka u stavovcov (Vertebrata) a zmyslové epitely. Endodermálneho pôvodu je tráviaca sústava a všetky žľazy (u stavovcov), ktoré k nej patria, ako aj výstelka dýchacích ciest. Mezodermálny pôvod majú gonády, obličky a výstelky obehovej a lymfatickej sústavy.


Zmiešané lesy v juhovýchodnej Číne
Zmiešané lesy v juhovýchodnej Číne

Zmiešaný les je les, v ktorom rastú ihličnany aj širokolisté dreviny. Rastie v nich najviac druhov stromov a iných rastlín a sú najmenej napadnuté škodcami pre väčšiu vzájomnú vzdialenosť zástupcov jednotlivých druhov. V Európe pokrývajú zmiešané lesy celkovú plochu 4 milióny km2.

Pojem zmiešaný les vznikol pravdepodobne v Európe a preniesol sa aj do Severnej Ameriky. Zmiešané lesy sa vyskytujú väčšinou v prechodovej zóne medzi ihličnatým a listnatým lesom, či už ide o zónu výškových vegetačných stupňov, alebo pásmo medzi tajgou a južnejšie položenými listnatými lesmi. Prirodzený zmiešaný les v teréne nezávislom od zemepisnej šírky je pomerne úzky pás so šírkou asi 200 km.

Európsky zmiešaný les

Zmiešané lesy Slovenska sú podmnožinou európskeho zmiešaného lesa, ktorého celková rozloha je 4 milióny km2. Väčšina pôvodného lesa však bola vyklčovaná a zvyšok pozmenený dlhodobou hospodárskou činnosťou. V miestach s obmedzeným zásahom človeka dosahuje výška stromov až 40 metrov a jednotlivé stromy sa dožívajú priemerne 400 rokov, kým podľahnú rozkladu alebo ich vyvráti vietor.


Mechúrniky (Coelenterata, Radiata) alebo dvojlistovce (Diblastica, Diploblastica) sú skupina resp. pododdelenie vývojového stupňa resp. oddelenia epitelovce. Sú to studenokrvné vodné živočíchy bez vnútornej kostry, v ktorých vývoji sa objavujú len dva zárodočné listy (preto dvojlistovce). Majú jednoduché vakovité až tanierovité telo, ktoré je radiálne (lúčovito), biradiálne (obojstranne lúčovito), príp. pseudobilaterálne symetrické.

Telo má podobu viac-menej modifikovanej gastruly, ktorá vzniká už normálnym spôsobom, takže na povrchu je ektoderm a vo vnútri endoderm, vystielajúci prvočrevo. V priestore medzi týmito dvoma vrstvami je rôsolovité výplnkové tkanivo - mezoglea, ktorá je s výnimkou niektorých koralov bez spikúl. Mechúrniky majú 2 morfologické štádiá – pohyblivé štádium medúzy a prisadnuté štádium polypa. U jednotlivých skupín pozorujeme buď obe štádiá, alebo len jedno z nich, čo má veľký význam pre ich systematické triedenie. Poznáme viac ako 10 000 druhov mechúrnikov.


Tučniak cisársky
Tučniak cisársky

Tučniak cisársky alebo tučniak obrovský (Aptenodytes forsteri) je najvyšší a najťažší zo všetkých žijúcich druhov a je výskytovo obmedzený na Antarktídu.

Anatómia a vzhľad

Samec a samica sú si podobní operením a veľkosťou, v dospelosti dosahujúc 122 cm výškovo a hmotnosťou 22-37 kg. Hmotnosť závisí od toho, ako ďaleko sa dostali v reprodukčnom cykle. Obaja, samci aj samice, strácajú značnú hmotnosť počas vychovávania mláďat a inkubácie vajec. Tak ako všetky druhy tučniakov, aj Tučniak cisársky má telo prispôsobené na minimalizovanie odporu pri plávaní a krídla, z ktorých sa stali tuhé, ploché plutvy. Nie je schopný letu.
Jazyk je vybavený drobnými ostňami smerujúcimi do zadnej časti, slúžiacimi na zamedzenie úniku koristi po ulovení. Dospelý jedinec má tmavočierne chrbtové perie pokrývajúce hlavu, bradu, hrdlo, chrbát, chrbtovú časť krídel a chvost. Čierne operenie je výrazne ohraničené od svetlo sfarbeného operenia na iných častiach tela. Spodná časť krídel a brucha sú biele, prechádzajúce do bledožltej na vrchu pŕs, zatiaľ čo ušné škvrny sú svetložlté. Horná čeľusť 8 centimetrového zobáka je čierna a spodná môže byť ružová, oranžová alebo fialová.


Ľudské srdce a pľúca
Ľudské srdce a pľúca

Srdce (latinsky: cor, grécky: καρδια – kardia) je dutý svalový orgán, ktorý pumpuje krv cez obehovú sústavu (kardiovaskulárny systém) vďaka rytmickým sťahom (kontrakciám).

Uloženie srdca

U cicavcov je srdce uložené v hrudníku medzi pľúcami, hrudnou kosťou (os sternum) a bránicou. Zvonka je kryté väzivovým obalom, ktorý sa nazýva osrdcovník (perikard). Vo vnútri perikardu sa nachádza tenká dvojitá membrána. V tomto úzkom dvojitom vaku sa nachádza perikardiálny priestor vyplnený malým množstvom tekutiny (liquor pericardii), ktorá chráni srdce pred trením a nárazmi.

Stenu srdca tvoria tri vrstvy:

  • endokard – blana tvorená jednou vrstvou plochých endotelových buniek, ktorá vystiela vnútro dutiny srdca a tvorí srdcové chlopne,
  • myokard– srdcový sval, osobitný druh priečne pruhovaným svalstvom (pozri aj srdcová svalovina),
  • epikard – lesklá blana, ktorá pokrýva povrch srdca, predstavuje vlastne vnútornú vrstvu perikardu.


sinice
sinice

Sinice (lat. Cyanophyta alebo Cyanophyceae) alebo cyanobaktérie (lat. Cyanobacteria) sú skupina baktérií schopných produkovať kyslík prostredníctvom fotosyntézy podobne ako rastliny. Sú to gramnegatívne, jednoduché, prokaryotické, fototrofné organizmy. Slovenský názov tejto skupiny pochádza zo slova sinný, čiže modrý. Staršie sa označovali ako modrozelené riasy napriek ich prokaryotickej povahe, ktorá ich približuje viac k baktériám ako k rastlinám.

Telá siníc sú jednobunkové či vláknité, najčastejšie modrozeleno sfarbené a v mnohých ohľadoch typicky prokaryotické: obsahujú kruhovú molekulu DNA, bakteriány typ ribozómov a chýbajú u nich zložitejšie membránové štruktúry. Fotosyntetické farbivá sa nachádzajú v špeciálnych útvaroch, fykobilizómoch alebo tylakoidoch. K hlavným pigmentom účastniacich sa fotosyntézy patria chlorofyl a (niekedy tiež b, c, alebo d) a allofykocyanín, fykocyanín, fykoerytrín a ďalšie. Sinice sa rozmnožujú nepohlavne, a to buď bunkovým delením či fragmentáciou vlákien.

Vyskytujú sa veľmi často vo vodnom prostredí, ale aj v pôde a neraz aj v extrémnych podmienkach, ako sú púšte či polárne oblasti. Veľmi často vstupujú do symbiotických vzťahov. Okrem endosymbioticky vzniknutých plastidov je možné sa stretnúť s mnohými prípadmi, kedy sinice pomáhajú svojmu partnerovi fixovať dusík či uhlík.


Schéma spätnoväzbovej regulácie.
Schéma spätnoväzbovej regulácie.

Homeostáza (homeo - rovnaký, stasis - nehybnosť) je stav, pri ktorom vnútorné prostredie živého organizmu zostáva v určitých limitoch, ktoré umožňujú jeho normálne fungovanie. Prvýkrát tento termín použil americký fyziológ Walter B. Cannon (1871 - 1945), keď si uvedomil , že svalstvo sa musí nejak zbavovať po námahe nadbytočného tepla a kyseliny mliečnej.

Telová tekutina

Dôležitou súčasťou homeostázy je regulácia objemu a zloženia telových tekutín - vodných roztokov, ktoré tvoria vnútorné i vonkajšie prostredie buniek. Správna funkcia buniek je totiž životne závislá od presnej regulácie zloženia tekutiny, ktorá ich obklopuje. Tekutinu v bunkách nazývame vnútrobunková (odb. intracelulárna; intra - v,), tekutinu, ktorá bunky obklopuje mimobunková (odb. extracelulárna; extra - vonku). Extracelulárna tekutina, ktorá vyplňuje úzke prietory medzi bunkami tkanív, sa nazýva vmedzerená (odb. intersticiálna; inter - medzi)). Extracelulárna tekutina v krvných cievach sa nazýva krvná plazma.


Ryby alebo kostnaté ryby alebo pravé ryby (Osteichthyes, Neoteleostomi, Euteleostomi) sú taxón (trieda, podstupeň) čeľustnatcov zo stupňa Teleostomi.

Medzi kostnaté ryby sa zaraďujú výlučne vodné stavovce. Ich končatiny sú vyvinuté primárne vo forme dvoch párov plutiev (prsných a brušných plutiev). Pokožka rýb obsahuje k telu priliehajúce útvary odvodené zo zamše - šupiny, ktoré môžu byť dvoch základných typov: ganoidné a leptoidné. Majú zuby a lebku zloženú z veľkého počtu kostí. V nervovej sústave má dominantné postavenie stredný mozog. Urogenitálny a tráviaci systém vyúsťujú z tela samostatne (nemajú kloaku). Dýchanie zabezpečujú žiabre, ale u niektorých skupín sa vyskytujú aj pomocné dýchacie orgány: plynový mechúr, ktorý skúži aj na nadľahčovanie rýb, pľúcne vaky, alebo tzv. labyrint (čeľaď Belontiidae).

Veda o rybách sa nazýva ichtyológia (gr. ichthys = ryba; logos = veda). Patrí sem 26 899 žijúcich druhov (stav začiatok roka 2006), čo z rýb robí najväčší taxón medzi chordátmi. Veľkosť ich tela sa pohybuje od 7-10 mm (najmenšie známe druhy) do 8-15 metrov.


Chrbtica človeka - bočný pohľad
Chrbtica človeka - bočný pohľad

Chrbtica (lat. columna vertebralis) je názov osovej kostry (teda osovej časti kostry) stavovcov. Inými slovami je to súhrn stĺpovito usporiadaných stavcov (odtiaľ pochádza latinský, anglický a nemecký názov chrbtice - "stavcový stĺp").

Chrbtica živočíchov

U rýb nahrádza chordu (chrbtovú strunu) a pozostáva z veľkého množstva nediferencovaných stavcov, ktoré niekedy u jedného jedinca majú rôzne veľkosti. U obojživelníkov je spravidla len 9 stavcov, ale napríklad niektoré mloky majú 63 stavcov. U plazov sa chrbtica delí na prednú, krížovú a chvostovú časť. U vtákov je chrbtica tvorená rôznym počtom značne pozmenených stavcov. Krčná časť má 26 stavcov, začiatok hrudnej časti 3-10 stavcov (u niektorých vtákov je časť z nich zrastená). Koniec hrudnej časti spolu s ostatnými stavcami (okrem zadných chvostových) sú zrastené a tvoria mohutnú krížovú kosť pevne zrastenú s panvou. Zadné chvostové stavce sú značne zredukované (5-8 voľných stavcov a tzv. pygostyl). U cicavcov sa chrbtica skladá zo stáleho počtu stavcov v krčnej (7, z toho prvé dva sú atlas a axis), bedrovej (6) a krížovej časti (4 stavce zrastené do krížovej kosti), ale počet stavcov v hrudnej (12-15) a najmä chvostovej (3-5) časti je rôzny.


List - miesto kde prebieha 99,9 % fotosyntézy u rastlín.
List - miesto kde prebieha 99,9 % fotosyntézy u rastlín.

Fotosyntéza (z gréc. fós = svetlo, synthesis = viazanie) je biochemický proces zachytávania energie slnečného žiarenia a jej využitie na fixáciu oxidu uhličitého v zelených rastlinách a niektorých prokaryotoch za vzniku sacharidov. Je druh asimilácie oxidu uhličitého.

Pri fotosyntéze sa v bunkách rastlín, rias a niektorých prokaryotov mení prijatá energia svetelného žiarenia na energiu chemickej väzby a vznikajú organické látky z anorganických. Organizmy, ktoré zaisťujú svoju potrebu energie pomocou fotosyntézy sa nazývajú autotrofné resp. fotoautotrofné.

Fotosyntéza sa pokladá z hľadiska existencie súčasného života za najdôležitejší proces na Zemi. Pri fotosyntéze sa vytvárajú organické látky, ktoré spotrebúvajú pri svojej výžive heterotrofné organizmy. Fotosyntetizujúce organizmy za rok fixujú cca 17,4×1010 ton uhlíka. Súbežne s procesom väzby CO2 sa do atmosféry uvoľňuje kyslík - v množstve až 5×1010 ton - čím sa udržuje jeho pre život potrebná koncentrácia vo vzduchu.

Z chemického hľadiska sa fotosyntéza vyjadruje všeobecnou rovnicou:

12 H2O 6 CO2 ⊟ C6H12O6 6 O2 6 H2O


Štruktúra lipidu. Obrázok naľavo je zväčšenina pravého obrázku.
Štruktúra lipidu. Obrázok naľavo je zväčšenina pravého obrázku.

Lipidy (z gréc. slova lipos - tuk) sú látky rastlinného alebo živočíšneho pôvodu, málo rozpustné alebo nerozpustné vo vode. Lipidy sú estery vyšších karboxylových kyselín (nasýtených alebo nenasýtených) a alkoholov, respektíve ich derivátov. Patria do skupiny nepolárnych molekúl biogénneho pôvodu.

Z biochemického hľadiska sú lipidy estery (prípadne zložené amidy) vyšších karboxylových kyselín (mastných kyselín) a alkoholov.

Karboxylové kyseliny

Pozri aj: Karboxylová kyselina

Nepolárnou zložkou lipidov sú vyššie monokarboxylové kyseliny. Môžu to byť

  1. alifatické nasýtené karboxylové kyseliny (zdrojom sú živočíšne tuky)
    • s lineárnym reťazcom (CH3-(CH2)n-COO)
    • s rozvetveným reťazcom (kys. izovalérová (CH3)2CH-CH2-COO)
  2. alifatické nenasýtené karboxylové kyseliny
    • s jednou dvojitou väzbou (kys. palmitoolejová)
    • s dvomi dvojitými väzbami (kys. linolová)
  3. aromatické karboxylové kyseliny (kys. hydrokarpová)
  4. hydroxykarboxylové kyseliny (kys. ricínoolejová)


Spermia oplodňujúca vajíčko je začiatkom vzniku nového jedinca s jedinečnou genetickou výbavou
Spermia oplodňujúca vajíčko je začiatkom vzniku nového jedinca s jedinečnou genetickou výbavou

Pohlavné rozmnožovanie alebo sexuálne rozmnožovanie alebo generatívne rozmnožovanie je rozmnožovanie, pri ktorom vzniká dcérsky organizmus, ktorý zvyčajne nesie konbináciu genetického materiálu dvoch iných (rodičovských) organizmov. Pri pohlavnom rozmnožovaní väčšinou vzniká organizmus s novou, unikátnou genetickou výbavou, ktorá nikdy nie je úplne totožná s genetickou výbavou rodičov. Pohlavné rozmnožovanie výrazne urýchľuje priebeh evolúcie.

V prípade pohlavného rozmnožovania je často nevyhnutné splynutie dvoch špecializovaných buniek - gamét. Ich splynutím vzniká zygota, oplodnené vajíčko, ktoré sa ďalej mitoticky delí a stáva sa z neho embryo. Gaméty zvyčajne nesú polovičnú (haploidnú) sadu chromozómov. Splynutím dvoch gamét vzniká opäť úplná (diploidná) chromozómová sada. Keďže pri bežnom delení buniek je väčšinou genetická výbava materských a dcérskych buniek rovnaká, pohlavné bunky vznikajú iným spôsobom ako telové (somatické) bunky a to redukčným delením - meiózou. Existujú aj prípady, pri ktorých pohlavné bunky nevznikajú meiózou, pretože jedinec má vo všetkých somatických bunkách polovičnú sadu chromozómov (napr. gametofyt machu, alebo samec včely).

Pri izogamii sú gaméty rovnakej veľkosti a tvaru. Naopak pri oogamii je samičia pohlavná bunka vajíčko výrazne väčšia a tvarovo odlišná ako samčia pohlavná bunka spermia.


Vnútorná stavba kosti.
Vnútorná stavba kosti.

Kosť (lat. os) alebo kostné tkanivo je najtvrdšie podporné tkanivo alebo oporný orgán sformovaný z tohto tkaniva. Nachádza sa u mnohých živočíchov. Kostné tkanivo tvorí podstatnú časť kostry stavovcov.

Kosti spolu vytvárajú štruktúru a tvar tela, ochraňujú vnútorné orgány a spolu so svalmi zabezpečujú pohyb. Sú tvorené z väčšej časti anorganickou hmotou a menšej časti organickou (bunky, organické molekuly).

Proces tvorby kosti sa všeobecne nazýva osteogenéza, proces premeny tkaniva na kosť sa nazýva osifikácia. Náuka o kostiach sa nazýva osteológia.

Minerálne látky

Základná kostná hmota je silne mineralizovaná, čím toto tkanivo získava značnú tvrdosť. Hlavnými minerálnymi zložkami kosti sú:

Minerálna zložka predstavuje až 65 % hmotnosti kosti. Prítomnosť vlákien kolagénu dodáva kostnému tkanivu potrebnú pružnosť. Okrem podpornej funkcie slúži kostné tkanivo ako zásobáreň minerálnych látok, ktoré sú podľa potreby vydávané do krvného obehu


Vulkanická emisia
Vulkanická emisia

Kyslý dážď vzniká následkom úniku oxidu siričitého a oxidov dusíka do atmosféry, kde prejdú chemickými premenami a sú rozpustené v kvapkách vody v oblakoch. Kvapky padajú na zem vo forme dažďa, alebo snehu, čo môže zvýšiť kyslosť pôdy a ovplyvniť chemickú rovnováhu v jazerách a vodných tokoch. Pojem kyslý dážď je niekedy použitý vo všeobecnejšom význame, ktorý zahŕňa všetky formy kyslého spádu - mokrý spád, kedy kyselinotvorné plyny a častice sú splachované dažďom a inými zrážkami, a suchý spád, keď sa plyny a častice ukladajú na povrch Zeme bez prítomnosti zrážok.

Počiatkom 19. storočia, vynálezca menom Janakan objavil chemickú podstatu kyslého dažďa (UofT Acid Rain Catalogue, 1997). Zistil, že kyslý dážď sa dá definovať ako akýkoľvek výskyt zrážok s neobvykle nízkou hodnotou pH (Brimblecombe, 1996). Pri typickej koncentrácii CO2 vo vzduchu sa oxid uhličitý rozpúšťa vo vode za vzniku slabej kyseliny uhličitej, s hodnotou pH približne 5,6 (Seinfeld and Pandis, 1998). Preto sa kyslý dážď niekedy definuje hodnotou pH < 5,6. Prirodzené zdroje kyslosti však spôsobujú, že v rôznych oblastiach sú hodnoty pH dažďa v rozsahu 4,5 až 5,6 s priemernou hodnotou 5,0, takže dážď s hodnotou pH < 5 je vhodnejšou definíciou.

Kyslý dážď urýchľuje zvetrávanie uhličitanových hornín a urýchľuje aj koróziu budov. Prispieva tiež ku kyslosti riek, potokov a ničí stromy vo vyšších polohách. Na boj s týmto javom sa vynakladá v súčasnosti značné úsilie.


Za rastliny (Plantae, zast. Vegetabilia) sa spravidla považujú eukaryotické organizmy, ktoré majú primárne (na rozdiel od živočíchov a húb) autotrofný spôsob výživy. Zjednodušene povedané ide teda o organizmy, ktoré budujú a vyživujú svoje telo spravidla premenou anorganických látok na organické.

Z predchádzajúcej definície vyplýva, že dnes rastliny a živočíchy vymedzujeme skôr z hľadiska výživovej fyziológie, čiže nie tak ako prv jednoducho intuitívne (všetko zelené a nepohybujúce sa), či jednoducho ako hlavnú taxonomickú jednotku - ríšu. Veda, ktorá sa rastlinami zaoberá je botanika.

Zo systematického hľadiska dnes rastliny spravidla tvoria ríšu v rámci domény eukaryoty. Znamená to, že ich bunky majú jadro obklopené jadrovou membránou a ďalšie znaky typické pre eukaryoty, napr. bunkové organely. Organela chloroplast sa dokonca vyskytuje výlučne u rastlín a prebieha v nej fotosyntéza, nevyhnutný proces pre existenciu všektých ostatných eukaryotov. Fotosyntézy sú schopné iba rastliny a niektoré baktérie. Rastliny sú jedinou autotrofnou eukaryotickou ríšou (aj keď v symbióze s inými organizmami môžu byť autotrofné aj huby alebo živočíchy). Napriek tomu sú vo výžive smaostatné len do určitej miery, pretože mnoho z nich rastie v médiu (napríklad v pôde), na ktorého tvorbe sa podieľajú iné skupiny organizmov. Ďalšie rastliny napriek autotrofii nedokážu prežiť bez symbiózy s inými organizmami (príkladom sú stromy a huby, ktoré žijú v mykoríznej symbióze).


Savana
Savana

Ekosystém (z angl. ecosystem z ecology system) je ucelená časť prírody (biosféry), ktorá nie je uzavretá a komunikuje s ostatnými časťami prírody. Je to základná jednotka funkčného celku živej prírody Zeme. Príkladom ekosystému je napr. listnatý les, alebo vlhké nekosené lúky. V ekosystéme dochádza k prenosu a obehu hmoty, energie a informácií.

Nie je špecifikované, akú približnú veľkosť má mať ekosystém, a tak sa za ekosystém môže považovať hoci aj celá biosféra alebo naopak, napr. aj tráviaca sústava psa (vyskytujú sa tu rôzne baktérie, nálevníky, atď...), mláka, ktorá sa čas od času vytvorí po daždi, alebo aj celý oceán. Stanoviť hranice ekosystému je veľmi ťažké. Vo všeobecnosti sa stanovujú tam, kde sa vyskytuje veľa nespojitostí, ako napr. v typoch pôdy, povodiach alebo hĺbke vodných nádrží, či v distribúcií organizmov. Často sú ekosystému hodnotené tak, ako často sa vyskytujú základné štruktúre prvky.

Termín ekosystém sa prvýkrát objavil v roku 1935 v publikácií Brity ecologist. Autor bol Arthur Tansley. Termín však vytvorili už v roku 1930. Použil ho kolega Tansleyho, Roy Clapham, keď sa snažil nájsť vhodné slovo naznačujúce fyzické a biologické prostredie ako jedinú jednotku.

Ekosystémy, ktoré sa vyznačujú spoločnými znakmi, sa volajú bióm.


Krokodíl dlhohlavý (staršie aj krokodíl americký;lat. Crocodylus acutus) je druh krokodíla z čeľade krokodílovité. Je najrozšírenejším zo štyroch druhov amerických krokodílov.

Rozšírenie

Obýva pobrežie Atlantického a Tichého oceánu na území Belize, Kolumbie, Kostariky, Dominikánskej republiky, Ekvádoru, Salvádoru, Guatemaly, Haiti, Hondurasu, Nikaragui, Mexika, Panamy, Peru, Spojených štátov a Venezuely). Množí sa aj na Kube, Jamajke a Hispaniole. Na Floride v USA sa počet voľne žijúcich krokodílov dlhohlavých odhaduje na zhruba 2 000 jedincov. Vďaka ilegálnemu lovu a strate svojho prirodzeného biotopu je v mnohých oblastiach krokodíl dlhohlavý považovaný za ohrozeného. Oficiálne je však v Červenom zozname IUCN zaradený do kategórie zraniteľných druhov.


Prvok Paramecium aurelia v optickom mikroskope
Prvok Paramecium aurelia v optickom mikroskope

Prvoky (Protozoa) alebo jednobunkovce (Monocytozoa) sú „živočíšne“ (teda spravidla heterotrofné, pohyblivé a podobne) eukaryotické jednobunkové organizmy. Tradične patria aj medzi Protista.

Charakteristika

Sú to drobné organizmy, veľké od tisícin milimetra po niekoľko milimetrov, prípadne centimetrov; voľným okom je však viditeľné len malé percento druhov. Telo je zložené z jednej bunky, ktorá vykonáva funkcie celého organizmu. U niektorých druhov však vidíme tendenciu vytvárať agregácie rovnakých (Gonium, Pandorina), ale i kolónie diferencovaných buniek (Volvox), a práve tu niekde prebieha prirodzená hranica medzi jednobunkovými a mnohobunkovými eukaryotickými organizmami.

História

Prvoky boli objavené až po vynáleze mikroskopu Anthony von Leuvenhookom (1675). V 18. storočí boli nazývané animacula infusoria – „zvieratká z nálevov“. Ich systematické postavenie bolo dlho nejasné a nie je celkom jasné ani dnes. V minulosti prevládali dva extrémne názory – prvoky boli považované buď za larválne štádiá neznámych (vyhynutých?) živočíchov, alebo za „zmenšeniny“ bežných zvierat s príslušnými orgánmi ako sú oči, ústa so zubami, atď. Bol to dôsledok nedokonalej optiky a mikroskopovacej techniky.


Schéma chloroplastu, pod číslom 11 je chloroplastová DNA
Schéma chloroplastu, pod číslom 11 je chloroplastová DNA

Plastidová DNA (pDNA) je súhrnné označenie pre DNA nachádzajúcu sa v plastidoch, čiže vo zvláštnych organelách niektorých eukaryotických buniek. Niekedy sa používa aj konkrétnejší termín chloroplastová DNA (cpDNA či ctDNA), ktorý označuje DNA len v chloroplastoch, v plastidoch s pretrvávajúcou fotosyntetickou funkciou. Plastidová DNA Tvorí súčasť mimojadrovej dedičnosti, podobne ako mitochondriálna DNA.

U všetkých plastidových DNA ide o pozostatok prokaryotického genómu (nukleoidu) sinice, ktorá bola kedysi v procese eukaryogenézy pohltená eukaryotickou bunkou. Niekedy vznikajú plastidy sekundárnou endosymbiózou, ktoré však obsahujú tiež genóm sinice. Zvláštnosťou u niektorých skupín je tzv. nukleomorf – zvyškový genóm iného eukaryota po sekundárnej endosymbiotickej udalosti. Veľkosť pDNA je veľmi rozmanitá. Redukované plastidové genómy sa nachádzajú najmä u druhov, ktoré stratili svoju fotosyntetickú funkciu.

Plastidy sú špeciálne organely, ktoré sú prítomné v niektorých eukaryotických bunkách, čiže v bunkách so zložitejšou štruktúrou a istou vnútornou hierarchiou. Pôvodnou funkciou plastidov je fotosyntéza, hoci poznáme aj plastidy neschopné fotosyntetizovať.


Furcifer pardalis
Furcifer pardalis

Chameleónovité (lat. Chamaeleonidae) je čeľaď infraradu leguány.

Výskyt

Táto čeľaď sa pravdepodobne vyvinula vo Východnej Afrike, odkiaľ sa rozšírila okrem územia celej Afriky aj na Madagaskar, Kanárskych ostrovoch, na ostrove Maurícius, Zanzibare, Arabský polostrov, Áziu a juh Európy (hlavne Cyprus, Kréta, Malta, Sicília, Španielsko, Portugalsko), kde sa vyskytujú druhy Chamaeleo Chameleon a Chamaeleo africanus.

Chameleóny obývajú všetky druhy tropických a horských dažďových pralesov, savany, vyskytujú sa aj na okrajoch polopúští a stepí. Väčšina druhov žije na stromoch a kroch, niektoré malé druhy prežívajú na zemi pod napadaným lístím.

Opis

V čeľadi Chamaeleontidae je v súčasnosti asi 150 druhov chameleónov. Absolútne presný počet sa nedá určiť, nakoľko sú zverejňované nové revízie systematického členenia ich druhov a a poddruhov. Jednotlivé druhy chameleónov môžu dosahovať rôznu veľkosť.


Louis Pasteur (čítaj lui pastör) (* 27. december 1822, Dole – † 28. september 1895, Villeneuve l´Etang pri Paríži) bol francúzsky chemik, biológ a lekár. Zakladateľ mikrobiológie, lekárskej imunológie a stereochémie.

Význam

Učinil objavy na poli kryštalografie, stanovil princípy závislosti medzi molekulárnou stavbou a jej kryštalickou mriežkou, tým objasnil princíp polarizácie svetla. Vynašiel pasterizáciu, objasnil fermentačný proces, zasadil sa za zavedenie očkovania, pripravil vakcínu proti besnote. Taktiež objavil princíp profylaxie proti baktériam.

Jeho vedecké práce a štúdia pomohli mnohým nasledujúcim vedcom, napríklad aj Alexandrovi Flemingovi.


Prieduch (na tomto obrázku preduch rajčiny) je dôležitou štruktúrou transpirácie
Prieduch (na tomto obrázku preduch rajčiny) je dôležitou štruktúrou transpirácie

Transpirácia je výdaj čistej (destilovanej) vody rastlinou vo forme vodnej pary. Túto vlastnosť má každá živá suchozemská rastlina. Transpirácia sa skutočňuje v dôsledku poklesu vodného potenciálu medzi transpirujúcim povrchom a priľahlou vrstvou vzduchu. Najintenzívnejšie transpirujú listy.

Transpiráciou sa rastlina zbavuje prebytočnej vody a ochladzuje sa. Intenzita transpirácie závisí od množstva vonkajších a vnútorných podmienok (vek rastliny, druh, obsah vody v bunkách a iné). Ak faktory okolitého prostredia (veľká vlhkosť vzduchu) neumožňujú, aby prebiehala transpirácia, rastlina prejde na výdaj vody v kvapalnom skupenstve: gutáciu. Tanspiráciu rozdeľujeme na kutikulárnu a prieduchovú. Transpirovaná voda sa v rastline nahrádza vodou prijatou koreňmi.

Kutikulárna (pokožková) transpirácia

Voda z listov sa vyparuje cez kutikulu. Je zvyčajne oveľa menej intenzívna, ako prieduchová transpirácie a na rozdiel od prieduchovej je neregulovateľná. Znížením vlhkosti vzduchu z 95 % na 50 % sa kutikulárna transpirácia zvýši 5 až 6-krát.


Živočíchy (Animalia) alebo zast. mnohobunkovce (Polycytozoa, Metazoa; hovorovo a najmä ak sú väčšie: zvieratá) sú mnohobunkové eukaryotické organizmy živiace sa prevažne heterotrofne a spravidla schopné aktívneho pohybu aspoň v niektorej fáze svojho života (hoci niektoré druhy zostávajú na jednom mieste po celý život - sú prisadnuté). Inými slovami sú to všetky mnohobunkové eukaryoty, ktoré nie sú klasifikované ako rastliny, huby ani Chromista.

V minulosti pojem živočíchy zahŕňal často aj prvoky (jednobunkovce, Monocytozoa, Protozoa).

Živočíšna bunka

Živočíšna bunka je najmenšou stavebnou a funkčnou jendotkou živočíchov. Napriek veľkej rozmanitosti, ktoré živočíchy dosahujú, ich bunky nesú mnohé spoločné znaky. Na rozdiel od rastlín, húb a baktérií živočíšne bunky nikdy nie sú obalené bunkovou stenou. Povrch bunky ohraničuje cytoplazmatická membrána, pod ktorou sa nachádza cytoplazma. Genetická informácia je uložená v bunkovom jadre v podobe chromozómov, ktoré môžu byť v haploidnom alebo diploidnom stave. Na jadro je napojené endoplazmatické retikulum.


Dinosaury (Dinosauria) je nadrad plazov rôznej veľkosti, ktorí predstavovali pred 200 až 65 miliónmi rokov (teda počas takmer celých druhohôr) dominantné postavenie. Išlo väčšinou o suchozemské stavovce.

Vlastnosti

Napriek enormnej rôznorodosti je nadrad charakterizovaný napríklad týmito anatomickými znakmi: absencia postfrontálnych kostí, takmer alebo úplne otvorené acetabulum a bedrová jamka s dutinou. Podľa niektorých odborníkov však mohli poniektoré znaky vzniknúť až druhotne ako prispôsobenie dvojnohej chôdzi. Medzi ďalšie znaky dinosaurov patria napríklad zuby, ktoré sa im vymieňali po celý život (pokiaľ zuby druhotne nestratili).

Napriek skutočnosti, že dinosaury bývajú tradične ponímané ako plazy, kam z vývojového hľadiska aj patria, disponovali mnohými pre plazy netypickými znakmi. Ich nohy totiž netrčali do strán, ale boli umiestnené pod telom ako u dnešných cicavcov a vtákov, čo je energeticky oveľa výhodnejšie. Všetky dostupné dôkazy tiež svedčia o aktívnom a nezriedka vysoko organizovanom spôsobe života. Plazie ponímanie dinosaurov narúšajú aj stále ďalšie a ďalšie nálezy operených dinosaurov.


Mitochondrie cicavcov po elektrónovým mikroskopom
Mitochondrie cicavcov po elektrónovým mikroskopom

Mitochondria alebo chondriozóm je organela, ktorá je obalená dvojitou membránou, ktorá má vlastnú genetickú sústavu, a ktorá sa vo veľkom množstve vyskytuje v cytoplazme eukaryotických buniek. Slúži prevažne na získavanie energie tzv. bunkovým dýchaním (aeróbnou oxidáciou). Mitochondrie sa však podieľajp aj na ďalších procesoch, ako je bunková diferenciácia, bunková smrť a kontrola bunkového cyklu a rastu. Na druhej strane poruchy ich funkcie môžu mať za následok rôzne mitochondriálne choroby.

V prokaryotických bunkách sa mitochondrie nenachádzajú a enzýmy potrebné na získavanie energie sa v nich nachádzajú v plazmatickej membráne alebo jej záhyboch. Vo veľa baktériách ich funkciu vykonávajú mezozómy, ktorých funkcia nie je celkom objasnená.

Zo živočíšnych somatických (telových) eukaryotických buniek chýbajú iba u extrémne špecializovaných parazitov, napr. Haemosporidia a Microspora. U Pelomyxozoa ich funkciu vykonávajú symbiotické baktérie.


Mačka domáca
Mačka domáca

Anatómia mačky domácej popisuje stavbu tela mačky domácej a s ňou súvisiace vlastnosti. Mačka domáca patrí svojím zoologickým zaradením medzi malé mačkovité šelmy. Má predĺžené telo, na pomerne nízkych nohách, s krátkym krkom a širokou, pomerne krátkou hlavou, stredne dlhým chvostom a krátkou, rovnou a priľahlou srsťou. U ušľachtilých plemien mačiek sú potom zámerne vyšľachtené niektoré odlišné telesné tvary a znaky.

Mačka je predátor. Jej telo je prispôsobené k lovu. Dokonale vyvinuté zmyslové orgány jej umožňujú zaznamenať korisť na väčšiu vzdialenosť a obratne ju chytiť. Telo mačky je plné sily, elegantné a dokáže vyvinúť veľkú rýchlosť a vysoko skákať. Má ostré zuby a drápy, lapenú korisť dokáže rýchlo zabiť.

Kostra a chrup

O ohybnosť, rýchlosť a pohyblivosť mačky sa stará 244 kostí a 512 svalov. Chrbticu tvorí 7 krčných, 13 hrudných, 7 bederných stavcov, kosť krížová (3 stavce zrastené) a 20 až 26 stavcov chvosta. U bezchvostých mačiek stavce chvosta chýbajú, alebo sú vyvinuté len prvé štyri. Stavce chrbtice sú spojené tak, že mačka sa dokáže prakticky ohnúť až o 180 stupňov.

Mačka došľapuje na spodné plochy prstov, ktoré majú pružné vankúšiky. Tie umožňujú mačke elegantnú a hlavne tichú chôdzu. Prsty a vankúšiky sú v chovateľskej terminológii označované spoločne „labka alebo tlapka“. Na hrudných končatinách má mačka po päť a na panvových po štyri zatiahnuteľné pazúry. S výnimkou geparda vedia všetky mačkovité šelmy zatiahnuť pazúry.


Papraď samčia
Papraď samčia

Cievnaté rastliny (lat. Tracheophyta, niekedy stotožňované s vyššími rastlinami - Cormobionta) sú mnohobunkové zelené rastliny, u ktorých sú vyvinuté vodivé pletívá súvisiace s adaptáciou na súš. Primárne sú to teda suchozemské fotosyntetizujúce rastliny, z ktorých niektoré sa druhotne vrátili do vody, alebo stratili chlorofyl a stali sa heterotrofnými.

Na rozdiel od stielkatých rastlín je telo cievnatých rastlín už rozlíšené na dve základné časti: koreň a výhonok. Výhonok sa môže ďalej deliť na stonku a listy, pričom tieto časti môžu byť zmenené (metamorfované) alebo zakrpatené. Cievne zväzky v tele sú rozdelené na drevitú časť (xylém) a lykovú časť (floém). Cievy umožňujú prúdenie vodných roztokov v rastline a to hlavne v podobe transpiračného prúdu (od koreňov k vrcholu rastliny) a asimilačného prúdu (z listov do koreňov). Ich telá sú väčšinou chránené pokožkou - epidermou, ktorá obsahuje prieduchy a ktorá môže byť ešte pokrytá kutikulou. Ďalším znakom, ktorý ich oddeľuje od nižších rastlín, je prevládajúci sporofyt v životnom cykle.

Prvé cievnaté rastliny sa na Zemi objavili asi pred 420 miliónmi rokov. Boli to rýniorasty (Rhyniophyta).


Hlavonožce (lat. Cephalopoda) sú trieda schránkovcov. Sú to bilaterálne súmerné morské mäkkýše s priamym vývinom.

Považujú sa za klasický príklad konvergentného vývoja v živočíšnej ríši. Vo viacerých aspektoch sa veľmi priblížili anatomickej úrovni evolučne najpokročilejších živočíchov – stavovcom. Noha je premenená na svalový lievik s vencom ramien alebo tenkých tentakúl. Schránku majú len fylogeneticky starobylé hlavonožce, u vyšších je silná tendencia k jej redukcii. Veľká hlava je zrastená s premenenou nohou v jeden celok. Majú veľmi dobre rozvinuté zmysly, hlavne hmat, čuch a zrak. Všetky hlavonožce sú predátory a žijú prevažne samotársky bez sociálnych prejavov.

V roku 2004 bolo odhadom známych 1000 až 1200 druhov. Počet vymretých hlavonožcov je však mnohonásobne vyšší, približne viac než 11 000 druhov.


Zvonček jesenícky (lat. Campanula gelida) je stenoendemická, kriticky ohrozená vytrvalá bylina z čeľade zvončekovitých, rastúca v Hrubom JeseníkuČesku.

Vyvinul sa diferenciáciou izolovanej populácie zvončeka Scheuchzeroveho (Campanula scheuchzeri), alpského druhu, ktorý sa rozšíril do oblasti Sudet v priebehu niektorého z chladnejších období, pravdepodobne poslednej ľadovej doby. Je blízky príbuzný s krkonošským endemitom zvončekom českým (Campanula bohemica). Niekedy sa označuje ako jeho poddruh a uvádza sa ako zvonček český jesenícky (Campanula bohemica subsp. gelida). Oba druhy sú súčasťou príbuzenského komplexu Campanula rotundifolia agg.