Polinom
U matematici, polinom je izraz koji je sačinjen od jedne ili više promenljivih konstanti, korišćenjem operacija sabiranja, oduzimanja, množenja, i stepenovanja pozitivnim celim stepenima. Na primer, je polinom. Treba imati u vidu da deljenje izrazom koji sadrži promenljivu u opštem slučaju nije dozvoljeno kod polinoma.[1]
Pregled
urediPolinomi su sačinjeni od gradivnih elemenata koji se nazivaju monomi, a oni se sastoje od konstante (koja se naziva koeficijentom), pomnožene jednom ili više promenljivih (koje se obično predstavljaju slovima).[2] Svaka promenljiva može imati konstantan pozitivan ceo broj kao eksponent. Eksponent nad promenljivom u monomu je jednak stepenu te promenljive u monomu. Kako je , stepen promenljive bez zapisanog eksponenta je jedan. Monom bez promenljivih se naziva konstantnim monomom, ili prosto konstantom. Stepen konstante je 0. Koeficijent monoma može biti bilo koji broj, uključujući razlomke, iracionalne i negativne brojeve.
Na primjer,
je monom. Koeficijent je -5, a promenljive su x i y. Stepen promenljive x je dva, a stepen promenljive y je jedan.
Stepen celog monoma je zbir stepeni svake promenljive u njemu. U gornjem primeru je stepen jednak 2 1 = 3.
Polinom predstavlja zbir jednog ili više monoma. Na primer, ovo je jedan polinom:
Sastoji se od tri monoma: prvi je stepena dva, drugi je stepena jedan, a treći je stepena nula.
Polinom se obično zapisuje tako da monomi višeg stepena dolaze pre onih nižeg stepena. U prvom monomu, koeficijent je 3, promenljiva je x, a eksponent je dva. U drugom monomu, koeficijent je -5. Treći je konstanta. Stepen polinoma je najveći stepen nekog njegovog monoma. Na primer, gornji polinom ima stepen dva.
Polinom stepena jedan se naziva linearni, polinom stepena dva se naziva kvadratni, a onaj stepena tri se naziva kubni.
Polinom sačinjen od jednog monoma se i sam naziva monom. Polinom sačinjen od dva monoma je binom, dok je onaj sačinjen od tri monoma naziva trinom.
Polinom čiji term najvišeg stepena ima koeficijent 1 je moničan.
Izraz koji se može transformisati u polinom kroz niz primena komutativnih, asocijativnih, i distributivnih zakona se obično i sam smatra polinomom.
Na primer
se smatra polinomom, jer je ekvivalentno . Koeficijent je .
Ali,
nije polinom, jer uključuje deljenje promenljivom, kao što u opštem slučaju nije ni
jer ima promenljivu za eksponent.
Kako se oduzimanje može posmatrati kao sabiranje sabiraka suprotnog znaka, a stepenovanje konstantnim pozitivnim brojem se može posmatrati kao ponovljeno množenje, polinomi se mogu konstruisati od konstanti i promenljivih primenom samo operacija sabiranja i množenja.
Polinomijalna funkcija je funkcija definisana vrednošću polinoma. Na primer, funkcija f definisana kao
je polinomijalna funkcija. Polinomijalne funkcije su važna klasa glatkih funkcija. Izraz glatko dolazi iz matematičke analize. Znači da je uvek moguće naći izvod polinomijalne funkcije, koliko god puta, i koliko god često. Glatka funkcija opisuje izgled grafika polinomijalne funkcije.
Elementarna svojstva polinoma
uredi- Zbir dva polinoma je polinom
- Proizvod dva polinoma je polinom
- Izvod polinoma je polinom
- Primitivna funkcija polinoma je polinom
Polinomi se koriste da aproksimiraju druge funkcije, kao što su sinus, kosinus, i eksponencijalna funkcija.
Svi polinomi imaju prošireni oblik, u kome se koristi distributivni zakon da se uklone sve zagrade. Neki polinomi imaju rastavljen oblik u kome je polinom zapisan kao proizvod polinoma sa realnim koeficijentima. Na primer, polinom
je jednak, i predstavlja prošireni oblik polinoma
- ,
koji je zapisan u rastavljenom obliku.
Svaki polinom jedne promenljive je ekvivalentan polinomu oblika
- .
Ovo se nekad uzima za definiciju polinoma jedne promenljive.
Računanje vrednosti polinoma se sastoji od dodeljivanja neke brojevne vrednosti svakoj promenljivoj, i izvršavanja odgovarajućih množenja i sabiranja. Ovo računanje se ponekad efikacnije sprovodi korišćenjem Hornerove šeme
- .
U elementarnoj algebri, se izučavaju metodi za rešavanje svih polinomijalnih jednačina jedne promenljive prvog i drugog stepena. Kada su u pitanju polinomijalne jednačine, promenljiva se često naziva nepoznatom. Broj rešenja polinomijalne jednačine ne može da premaši stepen polinoma, i tačno je jednak ovom stepenu ako se ubroji multiplicitet rešenja, kao i kompleksna rešenja. Ova činjenica je osnovna teorema algebre.
Sabiranje polinoma
urediOvaj članak zahtijeva sređivanje kako bi ispunio Wikipedijine standarde kvaliteta. Pomozite u njegovom poboljšanju tako što ćete ga urediti. |
Polinome sabiramo po pravilu sabiranja i sličnih monoma. U zbiru dva polinoma prvo se oslobodimo zagrada pred kojima je znak sabiranja " " i to tako da zagrade ostavimo a članove polinoma prepišemo , a onda saberemo slične monome u polinomu. Ako se u izrazu pojavljuje više zagrada, onda se prvo oslobodimo male, pa srednje, a onda velike zagrade.
Primer 1: Saberi polinome : P(x)=4x²-5x 2 P(x)=2x²-7x-1
Zbir ova dva polinoma pišemo: P(x)=(4x²-5x 2) (2x²-7x-1) =4x²-5x 2 2x²-7x-1 =6x²-12x 1=Q(x)
Primer 2: Pod sumom dva polinoma f(x) i g(x) podrazumjevamo polinom oblika: f(x) g(x) = (a0 b0 ) (a1 b1 ) x ... (an bn ) xn
Primer: f(x) = 3 5x - 8x² g(x) = x - 2x² 5x³ f(x) g(x) = 3 6x - 10x² 5x³
Primer 3: Pod razlikom dva polinoma f(x) i g(x) podrazumjevamo polinom oblika: f(x) - g(x) = (a0 - b0 ) (a1 - b1 )x ... (an - bn )xn
Primer: f(x) = 3 5x - 8x² g(x) = x - 2x² 5x³ f(x) - g(x) = 3 4x - 6x² - 5x³
Povezano
urediNapomene
uredi- ↑ Peter H. Selby, Steve Slavin, Practical Algebra: A Self-Teaching Guide, 2nd Edition, Wiley, ISBN 978-0471530121
- ↑ Edukacija.rs. „POLINOMI – ZADACI I LEKCIJE”.