RIPEMD-320
Перейти к навигации
Перейти к поиску
Эта страница требует существенной переработки. |
В статье не хватает ссылок на источники (см. рекомендации по поиску). |
RIPEMD-320 — криптографическая хеш-функция, разработанная Хансом Доббертином, Антоном Боселаерсом и Бартом Принилом в 1996 году. Размер хэша — 320 бит. Размер блока входных данных — 512 бит. Уязвимостей на текущий момент[когда?] не обнаружено. RIPEMD-320 является развитием RIPEMD-160, и предназначена для приложений, которые требуют более длинного хэша и не нуждаются в большей безопасности, чем приложения уровня RIPEMD-160.
Пример
[править | править код]RIPEMD-320("") = 22d65d5661536cdc75c1fdf5c6de7b41b9f27325ebc61e8557177d705a0ec880151c3a32a00899b8
RIPEMD-320("а") = ce78850638f92658a5a585097579926dda667a5716562cfcf6fbe77f63542f99b04705d6970dff5d
Псевдокод для RIPEMD-320
[править | править код]RIPEMD-320: определения
nonlinear functions at bit level: exor, mux, -, mux, -
f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15) f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31) f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47) f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63) f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79)
константы (шестнадцатеричные)
K(j) = 0x00000000 (0 <= j <= 15) K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2)) K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3)) K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5)) K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7)) K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2)) K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3)) K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5)) K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7)) K'(j) = 0x00000000 (64 <= j <= 79)
выбор слов в сообщении
r(j) = j (0 <= j <= 15) r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 r'(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 r'(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 r'(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 r'(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 r'(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
сумма для левого поворота
s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
первоначалыные значения (шестнадцатиричные)
h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476; h4 = 0xC3D2E1F0; h5 = 0x76543210; h6 = 0xFEDCBA98; h7 = 0x89ABCDEF; h8 = 0x01234567; h9 = 0x3C2D1E0F;
RIPEMD-320: псевдокод
for i := 0 to t-1 { A := h0; B := h1; C := h2; D = h3; E = h4; A' := h5; B' := h6; C' := h7; D' = h8; E' = h9; for j := 0 to 79 { T := rol_s(j)(A [ ] f(j, B, C, D) [ ] X[i][r(j)] [ ] K(j)) [ ] E; A := E; E := D; D := rol_10(C); C := B; B := T; T := rol_s'(j)(A' [ ] f(79-j, B', C', D') [ ] X[i][r'(j)] [ ] K'(j)) [ ] E'; A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T; if j == 15 { T := B; B := B'; B' := T; } else if j == 31 { T := D; D := D'; D' := T; } else if j == 47 { T := A; A := A'; A' := T; } else if j == 63 { T := C; C := C'; C' := T; } else if j == 79 { T := E; E := E'; E' := T; } } h0 := h0 A; h1 := h1 B; h2 := h2 C; h3 := h3 D; h4 := h4 E; h5 := h5 A'; h6 := h6 B'; h7 := h7 C'; h8 := h8 D'; h9 := h9 E'; }