Основания (химия)

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Основание (химия)»)
Перейти к навигации Перейти к поиску

Основания — химические соединения, способные образовывать ковалентную связь с протоном (основание Брёнстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса)[1]. В узком смысле, под основаниями понимают осно́вные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH[2].

Частным случаем оснований являются щёлочи — гидроксиды щелочных, щелочноземельных металлов, а также некоторых других элементов, например, таллия. Реакции оснований с кислотами называют реакциями нейтрализации.

Понятие основания сформировалось в XVII веке и было впервые введено в химию французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что эти вещества служат «основаниями» для образования солей в твёрдой форме[3].

Единая теория кислот и оснований была впервые представлена шведским физикохимиком Сванте Аррениусом в 1887 году. В рамках своей теории Аррениус определял кислоту как вещество, при диссоциации которого образуются протоны H , а основание — как вещество, дающее при диссоциации гидроксид-ионы OH[4]. Теория Аррениуса, однако, имела свои недостатки — например, она не учитывала влияние растворителя на кислотно-основное равновесие, а также была неприменима к неводным растворам[5].

В 1924 году Э. Франклином была создана сольвентная теория, согласно которой основание определялось как соединение, которое при диссоциации увеличивает число тех же анионов, которые образуются при диссоциации растворителя[4].

Современное определение

[править | править код]

С 1923 года основание стали определять в рамках теорий Брёнстеда-Лоури и Льюиса, которые широко применяются и в настоящее время.

Основание в теории Брёнстеда-Лоури

[править | править код]

В протонной теории кислот и оснований, выдвинутой в 1923 году независимо датским учёным Йоханнесом Брёнстедом и английским учёным Томасом Лоури, основанием называется соединение или ион, способный принимать (отщеплять) протон от кислоты[6]. Соответственно, кислота Брёнстеда является донором протонов, а взаимодействие кислоты с основанием сводится к передаче протона. При реакции основания Брёнстеда B с кислотой, например, с водой, основание превращается в сопряжённую кислоту BH , а кислота становится сопряжённым основанием[4]:

Основание в теории Льюиса

[править | править код]
Кислота Льюиса (А) является акцептором электронной пары основания Льюиса (В) и образует с ним ковалентную связь

Согласно электронной теории, предложенной в 1923 году американским физикохимиком Гилбертом Льюисом, основание — это вещество, способное отдавать электронную пару на образование связи с кислотой Льюиса[7]. Основаниями Льюиса могут быть амины R3N, спирты ROH, простые эфиры ROR, тиолы RSH, тиоэфиры RSR, анионы, соединения с π-связями[8]. В зависимости от орбитали, на которой расположена участвующая в реакции пара электронов, основания Льюиса подразделяют на n-, σ- и π-типы — электронные пары для этих типов расположены соответственно на несвязывающих, σ- и π-орбиталях[4].

Понятия основания в теориях Льюиса и Брёнстеда-Лоури совпадают: согласно обеим теориям основания отдают пару электронов на образование связи. Разница заключается лишь в том, куда расходуется эта электронная пара. Основания Брёнстеда за её счёт образуют связь с протоном, а основания Льюиса — с любыми частицами, имеющими вакантную орбиталь. Таким образом, существенные различия этих теорий касаются понятия кислоты, а не основания[4][8].

Теория Льюиса не предусматривает количественной оценки способности оснований реагировать с кислотами Льюиса. Однако, для качественной оценки широко применяется принцип жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО), согласно которому жёсткие кислоты предпочтительно реагируют с жёсткими основаниями, а мягкие кислоты — с мягкими основаниями. По Пирсону, жёсткими основаниями являются основания, донорный центр которых обладает низкой поляризуемостью и высокой электроотрицательностью[9][10]. Напротив, мягкими основаниями являются донорные частицы с высокой поляризуемостью и низкой электроотрицательностью[10]. Жёсткие и мягкие кислоты обладают такими же свойствами как жёсткие и мягкие основания, соответственно, с той разницей, что они являются акцепторными частицами[11].

Классификация оснований и кислот в рамках принципа ЖМКО[8][12]
Жёсткие основания Промежуточные основания Мягкие основания
OH, RO, F, Cl, RCOO, NO3, NH3, RNH2, H2O, ROH, SO42−, CO32−, R2O, NR2, NH2 Br, C6H5NH2, NO2, C5H5N RS, RSH, I, H, R3C, алкены, C6H6, R3P, (RO)3P
Жёсткие кислоты Промежуточные кислоты Мягкие кислоты
H , Li , Na , K , Mg2 , Ca2 , Al3 , Cr3 , Fe3 , B(OR)3, AlR3, AlCl3, SO3, BF3, RCO , CO2, RSO2 Cu2 , Fe2 , Zn2 , SO2, R3C , C6H5 , NO Ag , Cu , Hg2 , RS , I , Br , Pb2 , BH3, карбены

Критерий ЖМКО не имеет количественных параметров, однако основания Льюиса можно приблизительно расположить в ряды по их льюисовской основности. Например, мягкость оснований убывает в следующих рядах[8]:

Основание в общей теории Усановича

[править | править код]

В общей теории кислот и оснований, созданной М. И. Усановичем в 1939 году, основание определено как вещество, отдающее анионы (или электроны) и принимающие катионы. Таким образом, в рамках теории Усановича в понятие основания входят как основания Брёнстеда, так и основания Льюиса, а также восстановители[5]. Кроме того, само понятие основности, как и кислотности, в общей теории Усановича рассматривается как функция вещества, проявление которой зависит не от самого вещества, а от его партнёра по реакции[13].

Сила оснований

[править | править код]

Количественное описание силы оснований

[править | править код]

Теория Брёнстеда-Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb — константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон[8]. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака, выступающего как основания Брёнстеда, можно записать[4][14]:

Для многоосновных оснований используют несколько значений констант диссоциации Kb1, Kb2 и т. д. Например, фосфат-ион может протонироваться трижды:

Силу основания можно также охарактеризовать константой кислотности его сопряжённой кислоты Ka (BH ), причём произведение константы основности Kb на константу Ka (BH ) равно ионному произведению воды для водных растворов[14] и константе автопротолиза растворителя в общем случае[8].

Из последнего уравнения также следует, что сила основания тем выше, чем ниже кислотность сопряжённой ему кислоты. Например, вода является слабой кислотой и при отщеплении протона превращается в сильное основание — гидроксид-ион OH[8].

Влияние растворителя

[править | править код]

На кислотно-основное равновесие значительное влияние оказывает растворитель. В частности, для водных растворов было обнаружено, что все основания с константами основности pKb < 0 имеют одинаковые свойства (например, pH их растворов практически одинаков при равных концентрациях). Объясняется это тем, что такие основания в воде практически нацело превращаются в гидроксид-ион OH, который является единственным основанием в растворе. Так, все основания с pKb < 0 (амид натрия NaNH2, гидрид натрия NaH и др.) дают эквивалентное количество гидроксид-ионов в водных растворах, выравниваясь между собой по силе. Данное явление получило название нивелирующего эффекта растворителя. Аналогичным образом, в водных растворах выравниваются по силе и очень слабые основания с pKb > 14[15][16].

Основания с pKb от 0 до 14 в воде частично протонированы и находятся в равновесии с сопряжённой кислотой, а их свойства в растворе зависят от значения pKb. В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKb, в котором основания дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных оснований для них разный[17].

В растворителях, обладающих выраженными кислотными свойствами, все основания становятся более сильными и большее число оснований нивелируется по силе. Например, уксусная кислота уравнивает большинство известных оснований по силе со своим сопряжённым основанием — ацетат-ионом CH3COO. Напротив, основные растворители (аммиак) служат дифференцирующими растворителями для оснований[18].

Влияние строения основания

[править | править код]

Существует несколько факторов, которые определяют относительную силу органических и неорганических оснований и которые связаны с их строением. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.

  • Индуктивный эффект (эффект поля). При повышении доступности электронной пары основания его сила возрастает. По этой причине введение электронодонорных заместителей в основание способствует проявлению их основных свойств. Например, введение алкильных заместителей в молекулу аммиака приводит к более сильным основаниям, чем сам аммиак[19]. Напротив, введение акцепторных заместителей в молекулу понижает силу основания[8].
Константы основности pKb для аммиака и простейших аминов[19]
Аммиак
NH3
Метиламин
CH3NH2
Этиламин
C2H5NH2
Диметиламин
(CH3)2NH
Диэтиламин
(C2H5)2NH
Триметиламин
(CH3)3N
Триэтиламин
(C2H5)3N
4,75 3,36 3,33 3,23 3,07 4,20[К 1] 3,12[К 1]
  • Мезомерный эффект (резонансный эффект). Электронодонорные и электроноакцепторные заместители также оказывают, соответственно, положительное и отрицательное влияние на силу основания при наличии сопряжения с парой электронов центрального атома основания. В таком случае говорят о мезомерном эффекте. Данный эффект приводит к тем же последствиям, что и индуктивный: различается лишь механизм их действия. Так, пара-нитроанилин является более слабым основанием, чем анилин (pKb равны 12,89 и 9,40 соответственно) из-за акцепторного влияния нитрогруппы, которая при участии π-связей бензольного кольца находится в сопряжении с парой электронов атома азота аминогрппы и снижает её доступность[20].
Эффект сопряжения проявляется также в том случае, если электронная пара основания находится в системе сопряжения, например, с ароматической системой или двойной связью. В таком случае основания имеет меньшую силу. Например, амиды и анилины являются гораздо более слабыми основаниями, чем амины[19].
  • Корреляция с расположением атомов в периодической системе. Чем выше электроотрицательность атома, тем ниже сила основания с их участием в качестве центрального атома. Так, сила основания понижается при движении по периоду периодической системы слева направо. Также основность понижается при переходе по группе сверху вниз, что связано с увеличением радиуса основного атома и, следовательно, меньшей плотностью отрицательного заряда на нём, что в итоге снижает силу связывания положительно заряженного протона[20].

  • Гибридизация. Сила органических оснований понижается, если центральный атом связан с другим атомом кратными связями. Так, при переходе от аминов к иминам и нитрилам основность уменьшается. Это объясняется тем, что электронная пара в этих соединениях располагается на sp3-, sp2- и sp-гибридных орбиталях атома азота соответственно, то есть в данном ряду электронная пара приближается по характеру к s-электронам, приближаясь к атомному ядру и становясь менее доступной[19].

Супероснования

[править | править код]

Основания в органической химии

[править | править код]

Комментарии

[править | править код]
  1. 1 2 С одной стороны, наличие третьей алкильной группы в триметиламине и триэтиламине должно увеличивать их основность. С другой стороны, с добавлением третьего заместителя резко уменьшается способность сопряжённых кислот (CH3)3NH и (C2H5)3NH к гидратации, что уменьшает их устойчивость и суммарно понижает основность аминов.

Примечания

[править | править код]
  1. IUPAC Gold Book — base. Дата обращения: 18 апреля 2013. Архивировано из оригинала 30 апреля 2013 года.
  2. Рудзитис Г. Е., Фельдман Ф. Г. Химия. Неорганическая химия. Органическая химия. 9 класс. — 13-е изд. — М.: Просвещение, 2009. — С. 10. — ISBN 978-5-09-021-625-8.
  3. William B. Jensen, The Origin of the Term Base, Journal of Chemical Éducation • 1130 Vol. 83 No. 8 août 2006
  4. 1 2 3 4 5 6 7 Химическая энциклопедия / Под ред. И. Л. Кнунянца. — М.: Большая Российская энциклопедия, 1992. — Т. 2. — С. 393—395. — ISBN 5-85270-039-8.
  5. 1 2 Золотов Ю. А., Дорохова Е. Н., Фадеева В. И. и др. Основы аналитической химии. Книга 1. Общие вопросы. Методы разделения / Под ред. Ю. А. Золотова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1999. — С. 118. — ISBN 5-06-003558-1.
  6. IUPAC Gold Book — Brønsted base. Дата обращения: 18 апреля 2013. Архивировано 30 апреля 2013 года.
  7. IUPAC Gold Book — Lewis base. Дата обращения: 18 апреля 2013. Архивировано 30 апреля 2013 года.
  8. 1 2 3 4 5 6 7 8 Москва В. В. Понятие кислоты и основания в органической химии // Соросовский образовательный журнал. — 1996. — № 12. — С. 33—40. Архивировано 5 октября 2013 года.
  9. IUPAC Gold Book — hard base. Дата обращения: 18 апреля 2013. Архивировано 30 апреля 2013 года.
  10. 1 2 Химическая энциклопедия, 1992, т. 2, с. 145.
  11. IUPAC Gold Book — hard acid. Дата обращения: 18 апреля 2013. Архивировано 30 апреля 2013 года.
  12. Золотов и др., 1999, с. 152.
  13. Кусаинова К. М. Нет ни кислот, ни оснований! Об одной полузабытой теории и её творце // Химия и жизнь. — 2004. — № 6. — С. 40—44. Архивировано 27 июня 2013 года.
  14. 1 2 Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Изд. 2-е, испр. и доп. — Ленинград: Химия, 1978. — С. 232—236.
  15. Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия. — 3-е изд. — М.: Бином. Лаборатория знаний, 2010. — Т. 1. — С. 40. — ISBN 978-5-94774-614-9.
  16. Неорганическая химия / Под ред. Ю. Д. Третьякова. — М.: Академия, 2004. — Т. 1. — С. 89—94. — ISBN 5-7695-1446-9.
  17. Золотов и др., 1999, с. 123—125.
  18. Танганов Б. Б. Химические методы анализа. — Улан-Удэ: Издательство ВСГТУ, 2005. — С. 8—14. — ISBN 5-89230-037-4. Архивировано 22 февраля 2016 года.
  19. 1 2 3 4 Сайкс П. Механизмы реакций в органической химии = A Guidebook to Mechanism in Organic Chemistry / Под ред. Я. М. Варшавского. — 3-е изд.. — М.: Химия, 1977. — С. 82—91.
  20. 1 2 Марч Дж. Органическая химия. Реакции, механизмы и структура. Т. 1 / Пер. с англ. З. Е. Самойловой, под ред. И. П. Белецкой. — М.: Мир, 1987. — С. 340—346.