Окружности Вилларсо

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Окружности Вилларсо на торе.
Анимация, показывающая разрезание тора бикасательной плоскостью и две получающиеся окружности Вилларсо

Окружности Вилларсо — пара окружностей, получаемых при сечении тора вращения «диагональной» касательной плоскостью, проходящей через центр тора. В силу симметрии тора эта плоскость касается поверхности тора дважды, то есть является бикасательной.

Названы в честь французского астронома и математика Ивона Вилларсо.

Семейства параллелей, меридианов и два семейства окружностей Вилларсо вкупе составляют четыре попарно трансверсальных семейства окружностей на торе.[1]. Таким же свойством — иметь четыре попарно трансверсальных семейства окружностей — обладают циклиды Дюпена (конформные образы тора вращения).

Формулу для окружностей можно получить перемножением уравнений двух пересекающиеся окружности радиуса и ():

,
,

то есть в виде:

.

Это уравнение четвёртого порядка задаёт две пересекающиеся окружности и, очевидно, является формулой торического сечения. В точках пересечения окружностей пересекаются кривые, принадлежащие одновременно плоскости сечения и поверхности тора. Поэтому в этих точках секущая плоскость касается поверхности тора.

Примечания

[править | править код]
  1. Математический фильм «Dimensions», комментарий к главам 7 и 8 Архивная копия от 29 сентября 2009 на Wayback Machine.

Литература

[править | править код]
  • Yvon Villarceau, Antoine Joseph François. Théorème sur le tore (фр.) // Nouvelles Annales de Mathématiques[англ.] : magazine. — Paris: Gauthier-Villars, 1848. — Vol. 7 Série 1. — P. 345—347.
  • Coxeter, H. S. M. Introduction to Geometry (англ.). — 2/e. — Wiley, 1969. — P. 132—133. — ISBN 978-0-471-50458-0.