Китайский синдром

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Китайский синдром (метафора)»)
Перейти к навигации Перейти к поиску

Кита́йский синдро́м (англ. China syndrome) — выражение, первоначально обозначавшее гипотетическую тяжёлую аварию на АЭС с расплавлением ядерного топлива и проникновением его в почву с проплавлением конструкций энергоблока. Идея имела большое влияние на общество и инженерную мысль, несмотря на то, что в реальности ни одного такого события не произошло. В процессе развития выражение приобретало и новые смысловые оттенки.

История возникновения и развития

[править | править код]

Выражение возникло в среде американских специалистов в ядерной энергетике в середине 60-х как специфически жаргонное, им иронически обозначалась настолько тяжёлая авария с расплавлением ядерного топлива, что оно будет способно прожечь корпус реактора и фундамент. Крайне малая вероятность такого события подчёркивалась названием, произошедшим от шутки, что при тяжёлой аварии на АЭС ядерное топливо способно прожечь всю Землю насквозь и дойти до Китая.

К началу 70-х выражение стало устойчивым, иногда употребляясь в серьёзной технической литературе и в статьях известных учёных, имея при этом всё тот же смысл — гипотетическую возможность тяжёлой аварии с расплавлением топлива и стеканию этой массы вниз с дальнейшим попаданием в верхние слои почвы. В обсуждении такого рода события на серьёзном уровне сыграла роль специфика ядерной энергетики — консервативный подход при проектировании АЭС был настолько ярко выражен, что учитывались и менее вероятные события, например, энергоблоки строились с сейсмостойкостью не ниже 7-8 даже в зонах, где повторяемость землетрясения с магнитудой 6,0 составляет 1 раз в 10 000 лет[1][2][3].

В 1979 году в США вышел фильм «Китайский синдром», имевший большой успех (фильм демонстрировался и в СССР). Технически наивный фильм преподносил идею «китайского синдрома» в другом значении — как реалистичную возможность развития аварии. Широкая публика впервые услышала, что ядерное топливо способно к саморазогреву до больших температур без охлаждения, первоначальный абсурдный смысл был воспринят на веру общественностью и журналистами. По иронии судьбы, через две недели после выхода на экраны кинофильма случилась реальная тяжёлая авария с частичным расплавлением активной зоны на АЭС Три-Майл-Айленд. Об этом очень быстро стало широко известно, на пресс-конференции в первый день после аварии репортёры атаковали вопросом[4][5]:

Как близко Три-Майл-Айленд подошёл к так называемому китайскому синдрому?

Невозможность доказательно ответить на этот вопрос по техническим причинам (реактор был переведён в «холодное» состояние лишь через месяц, а работы по дезактивации и исследованию активной зоны продолжались ещё долгое время), укрепили уверенность журналистов и общественности в реальной возможности такой фантастической катастрофы. Выражение стало употребляться в популистских целях в своём прямом, не абсурдном смысле.

В США началась крупномасштабная антиядерная кампания с оттенками истерии, ужасные сценарии вроде китайского синдрома подавались общественности в качестве буквальных утверждений. Однако очень скоро сторонники ядерной энергетики зацепились за нелепость подобных предположений и публично доказали их несостоятельность, используя таким образом его как оружие уже в своих руках. В этом им помогли и данные о характере повреждения топлива на Три-Майл-Айленде, которые оказались далеко не катастрофичными — не был проплавлен даже корпус реактора.

Таким образом выражение приобрело новый смысл — так стали часто называть критику ядерной энергетики, которая не имеет ни научных, ни логических обоснований[6][7][8][9].

Тем не менее оно сохранило и свой первоначальный смысл, но в прямом значении более не воспринималось всерьёз до января 2017 года, когда было произведено обследование подреакторных помещений на энергоблоке № 2 АЭС Фукусима-1. Было установлено что под реактором имеется проплавление по крайней мере фальшпола площадью 1 квадратный метр.[10]

Влияние на реальность

[править | править код]

Кроме общественных дискуссий идея имела вполне конкретное влияние на инженерную мысль.

Вскоре после Чернобыльской катастрофы боязнь проплавления топливом земли до водоносных слоёв приобрела вполне реальные формы. Академик Легасов в своих предсмертных записях так описал это:

…появился Евгений Павлович и стал говорить о возможности Китайского синдрома, о том, что эти барботеры — нижний и верхний — будут проплавлены и, что какая-то часть топлива может попасть в землю и дальше, проплавляя землю, может дойти до водоносных слоев.

[11]

В результате был сооружён бетонный нижний поддон фундаментной плиты реактора размерами 30 на 30 метров и толщиной 2,5 метра с возможностью охлаждения специальными трубопроводами, их защитой из графитовых плит и датчиками термоконтроля, над строительством 1,5 месяца на пределе возможностей работали шахтёры, однако эти героические усилия оказались бесполезными, так как топливо никуда не попало и сооружённую плиту ни разу не пришлось охлаждать.

Впоследствии эти работы оценивались неоднозначно. С одной стороны они были явно избыточны и нецелесообразны, а в данном случае речь шла не о материальной целесообразности, а о потерях здоровья множества людей, получивших большие дозы облучения по сути зря. С другой стороны нельзя и строго осуждать членов Правительственной комиссии, принявших это решение, избыточность этих мер им была в общем ясна:

Но, в общем, конечно, эти работы были избыточны. Но в то время можно было понять, что это всё-таки превентивная мера, на всякий случай, а вдруг действительно какая-то масса прорвется. Она и психологически довольно существенно действовала на население, как мероприятие защищающее подпочвенные воды.

[11]

Точные же данные о состоянии и поведении топлива появились лишь через несколько лет, а споры вокруг них не утихали ещё много лет, поэтому принятое решение неоднозначно[12].

Научные исследования

[править | править код]

В США с начала 70-х велись интенсивные экспериментальные и теоретические исследования по моделированию тяжёлых аварий на АЭС с реакторами PWR, особенно активно после аварии на АЭС «Три-Майл-Айленд», в результате был создан комплекс расчётных программ STCP, который моделировал в том числе взаимодействие расплавленного ядерного топлива с конструкционными материалами. В СССР приступили к исследованию китайского синдрома в авральном режиме лишь в связи с Чернобыльской катастрофой по указанию академика Велихова. Группа учёных РАН получила неоднозначные результаты:

Когда нам стало ясно, что при неблагоприятном течении аварии строительные конструкции действительно могут проплавиться, не все специалисты согласились с нашими выводами. И даже сейчас, когда известна реальная картина аварии, можно встретить «математически строгие» доказательства того, что опасности «китайского синдрома» на ЧАЭС не было. А в 1986 г. в ИАЭ при участии сотрудников разных институтов, на совещаниях специалистов и руководства Минсредмаша велись бурные обсуждения этого вопроса. В конечном итоге после анализа представленных нами результатов победила точка зрения о необходимости установки системы удержания топлива.

Сооружение ловушки расплава на Нововоронежской АЭС-2.

Долгое время после аварии был актуален вопрос о достоверности расчётов, сделанных в кратчайшие сроки в условиях хронической усталости и недостаточной информации. Некоторые зарубежные программы давали результаты, отличные от полученных советскими учёными. Критика особенно усилилась, когда стало известно, что разрушения фундамента не произошло и плита-ловушка, сооружённая под Чернобыльским энергоблоком, не понадобилась[12][13].

Проектирование реакторов

[править | править код]

Идея китайского синдрома серьёзно сказалась на разработчиках реакторных установок. Например в США в начале 80-х в так и не осуществлённом проекте реактора на расплавах солей DMSR было предусмотрено специальное защитное сооружение под реактором[14]. Опасность китайского синдрома также учитывалась при проектировании оказавшегося неудачным графито-газового реактора HTGR[15] (станцию Fort St. Vrain[англ.] с двумя реакторами этого типа закрыли через 15 лет по многочисленным техническим причинам).

Дальше всех пошли в реализации защиты от гипотетических тяжёлых аварий с расплавлением топлива российские разработчики — впервые в истории мировой ядерной энергетики на энергоблоках Тяньваньской АЭС (Китай) было реализовано уникальное устройство, так называемая ловушка расплава, предназначенное для остановки массы расплавленных топливных и конструкционных материалов даже в случае полного разрушения активной зоны. Это техническое решение прошло международную экспертизу и было признано во всём мире, в дальнейшем было модернизировано и монтируется в настоящее время на строящихся в России АЭС нового поколения (проект АЭС-2006) — Нововоронежской АЭС-2, Ленинградской АЭС-2 и Балтийской АЭС[16][17].

Примечания

[править | править код]
  1. Ralph E. Lapp. Thoughts on Nuclear Plumbing (англ.) // The New York Times. — 1971. — No. December 12. — P. E11.
  2. prof.Alexander Sesonske(Purdue University). Nuclear Power Plant Design Analysis. — Oak Ridge, Tennessee: United States Atomic Energy Commission, 1973. — P. 258. — 487 p. — ISBN 0 87079 009 9.
  3. Alvin M.Weinberq. The safety of nuclear power (англ.). Technical Report. United States Department of Energy (14 ноября 1972). Дата обращения: 18 октября 2010. Архивировано 29 апреля 2012 года.
  4. Rogovin, Mitchell[англ.]. Three Mile Island: A report to the Commissioners and to the Public, Volume I (англ.). — Nuclear Regulatory Commission, Special Inquiry Group, 1980. Архивировано 30 ноября 2010 года. Архивированная копия. Дата обращения: 31 октября 2010. Архивировано 30 ноября 2010 года.
  5. Ed Rutkowsky. A look back at Three Mile Island (англ.) // The Synergist. — 2009. — No. 3. — P. 34—37. Архивировано 27 сентября 2011 года.
  6. J.Samuel Walker. Three Mile Island: A Nuclear Crisis in Historical Perspective. — Berkeley: University of California Press, 2004. — P. 2. — 231 p. — ISBN 0 520 239 40 7. Архивировано 5 марта 2016 года.
  7. D.H.Sterrett(Duke Power Company). Risk and cost comprasion of energy technologies for central electic power generation (англ.) // Proceedings of the American Nuclear Society/European Nuclear Society Topical Meeting. — Knoxville, Tennessee, 1980. — Vol. 1.Thermal Reactor Safety. — P. 317—318.
  8. Safety of Nuclear Power Reactors (англ.). World Nuclear Association (13 сентября 2010). Дата обращения: 18 октября 2010. Архивировано 29 апреля 2012 года.
  9. Rod Liddle. Let's Go Nuclear (англ.) // The Spectator. — 2004. — No. August 21. (недоступная ссылка)
  10. "Photo Special: Radiation level at Fukushima reactor highest since 2011 disaster - The Mainichi". The Mainichi (англ.). Архивировано 6 февраля 2017. Дата обращения: 6 февраля 2017.
  11. 1 2 В.А.Легасов. Об аварии на Чернобыльской АЭС. Дата обращения: 18 октября 2010. Архивировано 10 марта 2016 года.
  12. 1 2 «Китайский синдром». Чернобыльская авария. Создание объекта «Укрытие». Институт проблем безопасного развития атомной энергетики РАН. Дата обращения: 18 октября 2010. Архивировано 3 мая 2009 года.
  13. Р.В.Арутюнян(Институт проблем безопасного развития атомной энергетики АН СССР). «Китайский синдром» // Природа. — Наука, 1990. — № 11. — ISSN 0032-874X. Архивировано 2 июля 2010 года.
  14. J.R.Engel, H.F.Bauman, J.F.Dearing, W.R.Grimes, H.E.McCoy, W.A.Rhoades. Conceptual design characteristics of a denatured molten-salt reactor with once-through fueling (англ.). Technical Report. Oak Ridge National Lab (1 июня 1980). Дата обращения: 18 октября 2010. Архивировано 8 февраля 2012 года.
  15. Harold M. Agnew(General Atomic Company). Nuclear Power — In Perspective (англ.) // 7th annual energy conference and exhibition. February 20-22. — Knoxville, Tennessee: WATTec, 1980. — P. 73—82.
  16. В.В.Безлепкин. Евростандарт для ЛАЭС-2 // Атомная стратегия. — Санкт-Петербург: ОВИЗО, 2007. — № 3(29). — С. 19—20. Архивировано 13 августа 2011 года.
  17. В.Н. Минеев, А.С. Сидоров, Ю.А. Зейгарник, А.С. Власов, О.М. Трактуев. Внутренняя ловушка расплава активной зоны ядерного реактора // Теплоэнергетика. — М.: МАИК «Наука/Интерпериодика», 2005. — № 1. — С. 51—53. — ISSN 0040-3636.