Обработка изображений — любая форма обработки информации, для которой входные данные представлены изображением, например, фотографиями или видеокадрами. Обработка изображений может осуществляться как для получения изображения на выходе (например, подготовка к полиграфическому тиражированию, к телетрансляции и т. д.), так и для получения другой информации (например, распознание текста, подсчёт числа и типа клеток в поле микроскопа и т. д.). Кроме статичных двухмерных изображений, обрабатывать требуется также изображения, изменяющиеся со временем, например, видео.

История

править

Ещё в середине XX века обработка изображений была по большей части аналоговой и выполнялась оптическими устройствами. Подобные оптические методы до сих пор важны, в таких областях как, например, голография. Тем не менее, с резким ростом производительности компьютеров, эти методы всё в большей мере вытеснялись методами цифровой обработки изображений. Методы цифровой обработки изображений обычно являются более точными, надёжными, гибкими и простыми в реализации, нежели аналоговые методы. В цифровой обработке изображений широко применяется специализированное оборудование, такое как процессоры с конвейерной обработкой инструкций и многопроцессорные системы. В особенной мере это касается систем обработки видео. Обработка изображений выполняется также с помощью программных средств компьютерной математики, например, MATLAB, Mathcad, Maple, Mathematica и др. Для этого в них используются как базовые средства, так и пакеты расширения Image Processing.

Большинство методов обработки одномерных сигналов (например, медианный фильтр) применимо и к двухмерным сигналам, которыми являются изображения. Некоторые из этих одномерных методов значительно усложняются с переходом к двухмерному сигналу. Обработка изображений вносит сюда несколько новых понятий, таких как связность и ротационная инвариантность, которые имеют смысл только для двухмерных сигналов. В обработке сигналов широко используются преобразование Фурье, а также вейвлет-преобразование и фильтр Габора. Обработку изображений разделяют на обработку в пространственной области (преобразование яркости, гамма коррекция и т. д.) и частотной (преобразование Фурье, и т. д.). Преобразование Фурье дискретной функции (изображения) пространственных координат является периодическим по пространственным частотам с периодом 2pi.

Обработка изображений для воспроизведения

править

Типичные задачи

править

Обработка изображений в прикладных и научных целях

править

Типичные задачи

править
  • Распознавание текста
  • Обработка спутниковых снимков
  • Машинное зрение
  • Обработка данных для выделения различных характеристик
  • Обработка изображений в медицине
  • Идентификация личности (по лицу, радужке, дактилоскопическим данным)
  • Автоматическое управление автомобилями
  • Определение формы интересующего нас объекта
  • Определение перемещения объекта
  • Наложение фильтров
  • Обработка изображений в целях охраны (камеры видеонаблюдения)

См. также

править

Примечания

править
  1. Слюсар, В.И. Методы передачи изображений сверхвысокой четкости. Первая миля. Last mile. – 2019, №2. 46—61. (2019). Дата обращения: 8 мая 2019. Архивировано 8 мая 2019 года.

Литература

править
  • Потапов А. А., Пахомов А. А., Никитин С. А., Гуляев Ю. В., Новейшие методы обработки изображений. — M.: Физматлит, 2008. — 496 с. ISBN 978-5-9221-0841-6
  • К. Айсманн, У. Палмер, Ретуширование и обработка изображений в Photoshop, 3-е издание. M: Вильямс, 2008. — 560 с. ISBN 978-5-8459-1078-3
  • Степаненко О. С., Сканеры и сканирование. Краткое руководство. — M.: Диалектика, 2005. — 288 с. ISBN 5-8459-0617-2
  • Д. В. Иванов, А. А. Хропов, Е. П. Кузьмин, А. С. Карпов, В. С. Лемпицкий, Алгоритмические основы растровой графики, 2007. Учебное пособие.
  • Дьяконов В. П., MATLAB 6.5 SP1/7/7 SP1/ Работа с изображениями и видеопотоками. — M.: СОЛОН-Пресс, 2010. — 400 с. ISBN 5-98003-205-2
  • Гонсалес Р., Вудс Р., Цифровая обработка изображений. — М.: Техносфера, 2005, 2006. — 1072 с. ISBN 5-94836-028-8
  • Слюсар В. И. Методы передачи изображений сверхвысокой четкости. //Первая миля. Last mile. — 2019, № 2. — С. 46 — 61. [1]

Ссылки

править
  • Ident Smart Studio (экспертная система предметно-независимого распознавания образов)