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Abstract
Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training
samples. This makes it hard for data-driven RSs to cater to a diverse set of users due to the varying properties of these users. The
performance disparity among various populations can harm the model’s robustness with respect to sub-populations. While recent
works have shown promising results in adapting large language models (LLMs) for recommendation to address hard samples, long user
queries from millions of users can degrade the performance of LLMs and elevate costs, processing times and inference latency. This
challenges the practical applicability of LLMs for recommendations. To address this, we propose a hybrid task allocation framework that
utilizes the capabilities of both LLMs and traditional RSs. By adopting a two-phase approach to improve robustness to sub-populations,
we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying
the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach
for such users, wherein each user interaction history is contextualized as a distinct ranking task and given to an LLM. We test our
hybrid framework by incorporating various recommendation algorithms – collaborative filtering and learning-to-rank recommendation
models – and two LLMs – both open and close-sourced. Our results on three real-world datasets show improved robustness of RSs to
sub-populations (≈ 12%) and overall performance without disproportionately escalating costs.
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1. Introduction
Recommendation systems (RSs) have become an integral
part of numerous online platforms, assisting users in navi-
gating vast amounts of content to relieve information over-
load [1]. While Collaborative Filtering based RSs [2] primar-
ily rely on user-item interactions to predict users’ prefer-
ences for certain candidate items, the utilization of language
in recommendations has been prevalent for decades in hy-
brid and content-based recommenders, mainly through item
descriptions and text-based reviews [3]. Furthermore, con-
versational recommenders [4] have highlighted language as
a primary mechanism for allowing users to naturally and
intuitively express their preferences [5]. Deep recommen-
dation models are trained under the Empirical Risk Mini-
mization (ERM) framework that minimizes the loss function
uniformly for all training samples. Such models, however,
fail to cater to a diverse set of sub-populations, affecting ro-
bustness [6, 7, 8, 9, 10, 11, 12]. Empirical analysis conducted
by Li et al. [13] shows that active users who have rated
many items receive better recommendations on average
than inactive users. This inadvertent disparity in recom-
mendations requires careful scrutiny to ensure equitable
recommendation experiences for all users [14].

On the other hand, Large Language Models (LLMs) like
GPT [15], LLaMA [16], LaMDA [17], Mixtral [18] can ef-
fectively analyze and interpret textual data, thus enabling
a better understanding of user preferences. These foun-
dation models demonstrate remarkable versatility, adeptly
tackling various tasks across multiple domains [19, 20, 21].
However, the field of recommendations is highly domain-
specific and requires in-domain knowledge. Consequently,
many researchers have sought to adapt LLMs for recom-
mendation tasks [22, 23, 24, 25]. Authors in [25] outline four
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key stages in integrating LLMs into the recommendation
pipeline: user interaction, feature encoding, feature engi-
neering, and scoring/ranking. The purpose of using LLMs
as a ranking function aligns closely with general-purpose
recommendation models. The transition from traditional
library-based book searches to evaluating various products,
job applicants, opinions, and potential romantic partners
signifies an important societal transformation, emphasiz-
ing the considerable responsibility incumbent upon ranking
systems [26]. Existing works that deploy LLMs for rank-
ing [5, 27, 28, 29, 30, 31, 32, 33, 34] have proven excellence
of LLMs as zero-shot or few-shot re-rankers demonstrat-
ing their capabilities in re-ranking with frozen parameters.
These works use traditional RSs as candidate item retrieval
models to limit the candidate items that need to be ranked
by LLM due to a limited context window. Furthermore, Xu
et al. [28], Hou et al. [27] interpret user interaction histories
as prompts for LLMs and show that LLMs perform well only
when the interaction length is up to a few items, demon-
strating the ability of LLMs for (near) cold-start users. Since
adapting LLMs can raise concerns around economic and
efficiency factors, most of these works train RS on entire
datasets but randomly sample interaction histories of some
users to evaluate the performance of LLMs, questioning the
generalizability of results for all users. This leads us to two
important research questions.

• RQ1: Though LLMs have shown remarkable rank-
ing performance even in zero-shot settings, how can
we reduce the high costs associated with adapting
LLMs to support practical applicability?

• RQ2: Conventional recommendation systems are
cost-effective and can perform well on most users,
as shown by previous works; how can we prevent
performance degradation on sub-populations?

To address these RQs, we propose a task allocation strat-
egy that leverages LLM and RS’s capabilities in a hybrid
framework (Fig. 1). Our strategy operates in two phases
based on the responsible and strategic selection of tasks
for the cost-effective usage of LLMs. First, we identify the
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Figure 1: An overview of our framework that uses task allocation to adapt LLMs responsibly. We compute each user’s sparsity
index (𝑆𝐼 ), evaluate recommendations retrieved from RS using performance metric (𝑃 (𝑢𝑚)), and plot 𝑃 (𝑢𝑚) against 𝑆𝐼 .
Interaction histories of highly sparse users with low 𝑃 (𝑢𝑚) are contextualized and given to LLM for ranking. Strong users
receive RS recommendations, while weak users get LLM recommendations if LLM outperforms RS.

users with highly sparse interaction histories on whom
the ranking performance of RS is below a certain thresh-
old 𝑡𝑝. All such users are termed as weak users. In the
second phase, interaction histories of weak users are con-
textualized using in-context learning to demonstrate user
preferences as instruction inputs for LLM. While the strong
users receive the final recommendations retrieved by RS,
weak users receive the recommendations ranked by LLM
if the quality of the ranked list is better than the RS. We
test our framework based on collaborative filtering and
learning-to-rank recommendation models and our results
show the efficacy of our strategy, both with open-source
as well as closed-source LLMs, in boosting the model ro-
bustness to sub-population and data sparsity and improv-
ing the quality of recommendations. For reproducibility
and to support research community, our code is available
on https://anonymous.4open.science/r/resp-llmsRS/ and the
link to the video is https://youtu.be/uqriMZHL-Ng In short,
the following are our contributions in this paper.

• We introduce a novel hybrid task allocation strat-
egy that combines the strengths of LLMs and tradi-
tional RSs to improve robustness to subpopulations
and data sparsity.

• Our unique method for pinpointing weak users
based upon two criteria (user activity and the re-
ceived recommendation quality below a set thresh-
old) facilitates interventions using LLMs for equi-
table recommendations.

• Our proposed framework improves the robust-
ness of traditional recommendation models by
reducing weak user count, enhancing recommenda-
tion quality, and addressing high costs associated
with adapting LLMs.

• Our experiments, both on closed-source and
open-source LLMs, show the efficacy of our frame-
work in improving the model robustness to sub-
populations by (≈ 12%) for varying levels of spar-
sity and reducing the count of weak users signifi-
cantly.

2. Related Work
Robustness in machine learning (ML) targets developing
models capable of withstanding the challenges posed by
imperfect data in diverse forms [35]. Within the paradigm
of recommendations, some existing works developed mod-
els resilient to shifts in popularity distribution [36, 37, 38],
distribution disparity in train and test datasets [39, 40], ad-
versarial and data poisoning attacks [41, 42, 43, 44, 45]. Our
work aims to tackle the recommendation model’s robustness
to data sparsity [46] and sub-populations [47].

In their research, Li et al. [13] illustrated that RSs excel
in catering to active users but fall short in meeting the over-
all needs of inactive ones. To address this inequality, they
proposed a re-ranking technique that reduced the disparity
among active and inactive users. Their results depict that
such post-processing techniques [48, 49, 50] can either harm
the average performance on advantaged users to reduce the
disparity or reduce the overall utility of models. Though
the in-processing techniques [51, 52, 53] for improving equi-
table recommendations across various sub-populations can
tackle fairness-utility trade-offs, simply adding regularizer
term results in sub-optimal performance [54]. Most of these
works have shown disparity and evaluated existing mod-
els by grouping users based on their activity, demograph-
ics, and preferences. Similarly, Wen et al. [55] developed a
Streaming-Distributionally Robust Optimization (S-DRO)
framework to enhance performance across user subgroups,
particularly by accommodating their preferences for popular
items. Different from these, our work first builds upon the
existing literature that elicits the issue of performance dis-
parities among active and inactive users and then indicates
that though inactive users receive lower-quality recommen-
dations on average, this degradation only affects a subset
of inactive users rather than all inactive users. Unlike these
works, our framework identifies weak users— inactive in-
dividuals whose preferences traditional recommendation
systems struggle to capture effectively.

Many researchers have turned to LLMs to address some of
these problems because, in recent years, LLMs have proven
to be excellent re-rankers and have often outperformed
existing SOTA recommendation models in zero-shot and



few-shot settings without requiring fine-tuning. For exam-
ple, Gao et al. [56] proposed an enhanced recommender
system that integrates ChatGPT with traditional RS by syn-
thesizing user-item history, profiles, queries, and dialogue
to provide personalized explanations to the recommenda-
tions through iterative refinement based on user feedback.
AgentCF [31], designed to rank items for users, involves
treating users and items as agents and optimizing their inter-
actions collaboratively. While user agents capture user pref-
erences, item agents reflect item characteristics and poten-
tial adopters’ preferences. They used collaborative memory-
based optimization to ensure agents align better with real-
world behaviours. While the retrieval-ranker framework
in [29] remains similar to previous works, authors gener-
ate instructions with key values obtained from both users
(e.g., gender, age, occupation) and items (e.g., title, rating,
category).

Despite the excellence of LLMs as ranking agents, adapt-
ing LLMs can involve processing lengthy queries containing
numerous interactions from millions of users. Furthermore,
each query can raise various economic and latency concerns.
Thus, all these works randomly select a few users from the
original datasets to evaluate the performance of LLMs. In
practice, this user base can involve many more users, which
questions the practical applicability of large models for rec-
ommendations. However, some recent studies have shown
the efficacy of large language models (LLMs) as re-ranking
agents to cater to queries with shorter interaction histories
compared to lengthy instructions that constitute hundreds
of interactions.

For example, Hou et al. [27] trained recommendation sys-
tems to generate candidate item sets and then used user-item
interactions to develop instructions. The authors sorted
users’ rating histories based on timestamps and used in-
context learning to design recency-focused prompts. They
prompted LLMs to re-rank the candidate items retrieved
by the recommendation systems. Their analysis showed
decreased performance of LLMs if the candidate item set
had more than 20 items. ProLLM4Rec [28] adopted a uni-
fied framework for prompting LLMs for recommendation.
The authors integrated existing recommendation systems
and works that use LLMs for recommendations within a
single framework. They provided a detailed comparison
of the capabilities of LLMs and recommendation systems.
Their empirical analysis showed that while state-of-the-art
sequential recommendation models like SASRec [57] im-
prove with a growing number of interactions, LLMs start to
perform worse when the number of interactions grows. Fur-
thermore, both of these works sampled some users to eval-
uate the performance of LLMs due to the high adaptation
costs. To investigate the effectiveness of various prompting
strategies Sanner et al. [5] focused on a (near) cold-start
scenario where minimal interaction data is available. They
used various prompting techniques to provide a natural
language summary of preferences to enhance user satisfac-
tion by offering a personalized experience. By exploiting
rich positive and negative descriptive content and item pref-
erences within a unified framework, they compared the
efficacy of prompting paradigms with large language mod-
els against collaborative filtering baselines that rely solely
on item ratings.

In summary, past works suggest that despite the high
costs associated with adapting LLMs for recommendations,
these models can outperform existing recommendation mod-
els significantly. Moreover, we acknowledge that the litera-

ture shows the contrasting capabilities of both RSs and LLMs
– RSs fail to perform well on inactive users due to sparse
interaction vectors, and in contrast, LLMs can be prompted
to cater to inactive users in near cold-start settings without
requiring any fine-tuning.

Building upon these crucial insights, our framework first
aims to identify the weak users for whom RS finds it hard to
capture their preferences accurately. We then use in-context
learning to prompt LLMs to generate recommendations for
such users. While past works like ProLLM4Rec by [28], dy-
namic reflection with divergent thinking within a retriever-
reranked by [33], recency-focused prompting by [27] and
aligning ChatGPT with conventional ranking techniques
such as point-wise, pair-wise, and list-wise ranking by [58]
are all different techniques to design prompts with differ-
ent variations, our main contribution lies in the responsible
task allocation within recommendation systems and all such
techniques can be used within our framework for designing
prompts. In the next section, we discuss our methodology
in detail.

3. Methodology
We begin here by providing a formal definition of the ex-
isting problem. We then discuss our framework, which
adopts a hybrid structure by leveraging the capabilities of
both traditional RSs and LLMs. For this, we first identify
users for whom RSs do not perform well and then leverage
LLMs for these users to demonstrate user preferences using
in-context learning.

3.1. Problem Formulation
Consider a recommendation dataset 𝒟 with 𝑘 data points.
Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑀} be the set of users and
|𝑈 | = 𝑀 represents the number of users in 𝒟. Let
𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑁} be the set of all the items and |𝐼| = 𝑁
represents the number of items in 𝒟.

𝒟 = {(𝑢𝑚, 𝑖𝑛, 𝑟𝑚𝑛) : 𝑚 = 1, 2, . . . ,𝑀 ;𝑛 = 1, 2, . . . , 𝑁}
(1)

Here, the triplet 𝑑𝑚𝑛 = (𝑢𝑚, 𝑖𝑛, 𝑟𝑚𝑛) represents one
data point where a user 𝑢𝑚 provided a rating of 𝑟𝑚𝑛 to an
item 𝑖𝑛. Now, if a user 𝑢𝑚 has rated a set of items, then
let [𝑟𝑚𝑛]

𝑁
𝑛=1 denote the rating vector consisting of explicit

rating values ranging from 1 to 5 if a user provided a rating
and 0 otherwise. Additionally, 𝜃𝑟 represents the conven-
tional recommendation model. The first step to solving the
problem includes determining different criteria to catego-
rize a user as weak. This includes ranking users based on
the RS performance on each one of them. Then, the goal is
to understand user characteristics to categorize extremely
weak users. For each weak user, we contextualize interac-
tion history as a distinct recommendation task and finally
allocate these tasks to LLM.

3.2. Identifying Weak Users
We consider two criteria for identifying weak users for rec-
ommendation model 𝜃𝑟 . First, given 𝐾 users and their
associated rating vectors, we evaluate how well the model
could rank the relevant user items, often termed as positive
items above the irrelevant or negative items. Let 𝑟 denote the



rank of the relevant item, and 𝑟′ be the rank of irrelevant
items. Then,

𝛿(𝑟 < 𝑟′) (2)

denotes an indicator function that outputs one if the rank
of the relevant item 𝑟 is higher than that of the irrelevant
item 𝑟′. Let 𝑁 denote the total number of items and |𝑅| be
the set of all relevant items. Then, similar to Rendle et al.
[59], we use AUC measure to evaluate how hard it was for
𝜃𝑟 to rank items preferred by a certain user, given by

𝒫(u) = 1

|𝑅|(𝑁 − |𝑅|)
∑︁
𝑟∈𝑅

∑︁
𝑟′∈{1,...,𝑁}∖𝑅

𝛿(𝑟 < 𝑟′) (3)

Here, |𝑅|(𝑛− |𝑅|) denotes all possible pairs of relevant
and irrelevant items.

We acknowledge that various metrics like NDCG, F1,
precision and recall have been used to measure the quality
of ranking ability of recommendation models. However,
these metrics place significant importance on the outcomes
of the top-k items in the list and completely ignore the tail.
For identifying weak users, we require a metric consistent
under sampling i.e. if a recommendation model tends to give
better recommendations than another on average across all
the data, it should still tend to do so even if we only look at
a smaller part of the data. The aim of our framework is a
clear task distribution. The performance of top-k metrics
varies with 𝑘, and this might raise uncertainty as 𝑘 varies
with varying users and platforms. Nevertheless, AUC is the
only metric which remains consistent under-sampling, and
as 𝑘 reduces, all top-k metrics collapse to AUC. For more
details, we refer the readers to [60].

Past works [13] have shown that active users that pro-
vide more ratings receive better recommendations than the
inactive users on average. However, only a few inactive
users might receive irrelevant recommendations individ-
ually (Fig. 3). Thus, we evaluate each user’s activity. Let
a user 𝑢 rated |𝑅| items out of a total of 𝑁 items. Then
sparsity index 𝒮𝐼 associated with a given user 𝑢 can be
calculated as:

𝒮𝐼(𝑢) =
|𝑅|
𝑁

(4)

If this value falls above a certain threshold 𝑡𝑠, the user
is considered as inactive. Combining with the weak user
identification, we obtain,

Definition 1. Given dataset 𝒟 and a recommendation
model 𝜃𝑟 , we say that a user 𝑢𝑚 is extremely weak if the
likelihood of 𝜃𝑟 being able to rank the relevant items above
the irrelevant items is below 𝑡𝑝 and the rating vector [𝑟𝑚𝑛]
has extremely high sparsity. i.e., above 𝑡𝑠

𝒫(𝑢𝑚) ≤ 𝑡𝑝 && 𝒮𝐼(𝑢) > 𝑡𝑠 (5)

It is important to note that a higher AUC value implies
better performance, and the value always lies between 0 to
1. Further, we use 𝑡𝑠 = 𝑎𝑣𝑔(𝒮𝐼(𝐷)), the average sparsity
of all users in 𝒟 i.e.,
𝑎𝑣𝑔(𝒮𝐼(𝐷)) = 1/𝑚 *

∑︀𝑚
𝑗=1 𝒮𝐼(𝑢𝑗) for determining this

threshold.

Figure 2: Instruction template for contextualizing interaction
histories of weak users.

3.3. Designing Natural Language
Instructions for Ranking

Closest to our work, Hou et al. [27] formalized the recom-
mendation problem as a conditional ranking task consider-
ing sequential interaction histories as conditions and uses
the items retrieved by traditional RS as 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 items.
While we aim to design the conditional ranking tasks, our
approach differs significantly from theirs as instead of using
LLMs as a re-ranking agent for all users; we instruct LLM
with the preferences of weak users preferences (sorted in
descending order of decreased preference). This technique is
detailed below.

For each user, we use in-context learning to instruct
LLM about user preferences conditions and assign the task
of ranking the candidate items. For a user 𝑢, let ℋ𝑢 =
{𝑖1, 𝑖2, . . . , 𝑖𝑛} depict the user interaction histories sorted
in decreasing order of preference and 𝒞𝑢 = {𝑖1, 𝑖2, . . . , 𝑖𝑗}
be the candidate items to be ranked. Then, each instruction
can be generated as a sum of conditions and candidate items,
i.e.,

ℐ𝑢 = ℋ𝑢 + 𝒞𝑢 (6)

In-context learning: We use in-context learning to pro-
vide a demonstration of the user preferences to LLM using
certain examples. As suggested by Hou et al. [27], providing
examples of other users may introduce extra noise if a user
has different preferences. Therefore, we sort every weak
user’s preferences based on explicit user ratings. For exam-
ple, "User {𝑢𝑠𝑒𝑟_𝑖𝑑} liked the following movies in decreasing
order of preference where the topmost item is the most pre-
ferred one: 1. Harry Potter, 2. Jurassic Park . . . ". This forms
the condition part of the instruction. We then select items
which served as test items for recommendation models as
candidate items and instruct LLM to rank them in decreas-
ing order of preference as "Now, rank the following items in
decreasing order of preference such that the top most movie
should be the most preferred one: Multiplicity, Dune . . . ".

It is important to note that while the presentation order
in conditions plays a significant role in demonstrating user
preferences to LLM, we deliberately shuffle the candidate
items to test the ability of LLM to rank correctly. Since LLMs
can generate items out of the set, we specially instruct to
restrict recommendations to the candidate set. Fig. 2 shows
the final template of the instruction given to LLM for a
particular user. We use the same template for all identified
weak users to contextualize their past interactions into a
ranking task.



Algorithm 1 Hybrid LLM-RecSys Algorithm for Ranking

1: Input: 𝒟𝑡𝑟𝑎𝑖𝑛: training dataset; 𝒟𝑡𝑒𝑠𝑡: test dataset;
𝒰 : set of users; 𝒮𝐼 : Sparsity index for all users; 𝜃𝑟 :
recommendation algorithm; 𝜃𝑙: large language model,
𝑡𝑠: sparsity threshold, 𝑡𝑝: performance threshold.

2: Output: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑝𝑟𝑒𝑑𝑠𝑡𝑟𝑜𝑛𝑔 : ranked lists of items for
strong users, 𝑟𝑎𝑛𝑘𝑒𝑑_𝑝𝑟𝑒𝑑𝑤𝑒𝑎𝑘: ranked lists of items
for weak users.

3: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑝𝑟𝑒𝑑← 𝜃𝑟(𝒟𝑡𝑟𝑎𝑖𝑛)
4: for each user 𝑢𝑚 ∈ 𝒰 do
5: Calculate 𝒫(𝑢𝑚) using Eq. 3
6: Calculate 𝒮(𝑢𝑚) using Eq. 4
7: if 𝒫(𝑢𝑚) < 𝑡𝑝 && 𝒮𝐼(𝑢𝑚) then
8: 𝒰𝑤𝑒𝑎𝑘 ← 𝑢𝑚

9: else
10: 𝒰𝑠𝑡𝑟𝑜𝑛𝑔 ← 𝑢𝑚

11: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑝𝑟𝑒𝑑𝑠𝑡𝑟𝑜𝑛𝑔 ← 𝑟𝑎𝑛𝑘𝑒𝑑_𝑝𝑟𝑒𝑑[𝑢𝑚]
12: end if
13: end for
14: for each 𝑢𝑖 ∈ 𝒰𝑤𝑒𝑎𝑘 do
15: Generate instruction ℐ𝑢𝑖 using Eq. 6
16: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑙𝑖𝑠𝑡𝑢𝑖 = 𝜃𝐿(ℐ𝑢)
17: 𝑟𝑎𝑛𝑘𝑒𝑑_𝑙𝑖𝑠𝑡𝑤𝑒𝑎𝑘 ← 𝑟𝑎𝑛𝑘𝑒𝑑_𝑙𝑖𝑠𝑡𝑢𝑖

18: end for

3.4. Our Framework
This section discusses the workflow adopted by our frame-
work as depicted in Fig. 1 and corresponding algorithm 1.
Initially, the model takes input as the training 𝒟𝑡𝑟𝑎𝑖𝑛 and
test dataset𝒟𝑡𝑒𝑠𝑡, a set of users 𝒰 , a recommendation model
𝜃𝑟 , large language model 𝜃𝑙 and two thresholds: sparsity
threshold 𝑡𝑠 and performance threshold 𝑡𝑝 which depict the
minimum sparsity and performance values for user to be
classified as strong user. It is important to note that splitting
data will not yield a mutually exclusive set of users in both
sets, but item ratings for each user in𝒟𝑡𝑟𝑎𝑖𝑛 will differ from
those in 𝒟𝑡𝑒𝑠𝑡.

The algorithm begins by training the recommendation
model 𝜃𝑟 on the training set 𝒟𝑡𝑟𝑎𝑖𝑛 and provides ranked
items for all users. Using 𝒟𝑡𝑒𝑠𝑡, we test the ranking ability
of the model for each user by evaluating 𝒫(𝑢𝑚) using Eq. 3.
Further, each user is also assigned a sparsity score 𝒮𝐼(𝑢)
evaluated using Eq. 4. If 𝒫(𝑢) has a value less than 𝑡𝑝 and
the sparsity index 𝒮𝐼(𝑢) for a particular user falls below 𝑡𝑠,
the user is termed as a weak user. While previous works
have shown that, on average, inactive users receive poor
performance, we pinpoint weak users by evaluating both
the sparsity and performance.

For all such weak users, we convert rating histories from
𝒟𝑡𝑟𝑎𝑖𝑛 as conditionsℋ𝑢 using in-context learning and use
test items as candidate items 𝒞𝑢 for testing purposes. How-
ever, in practice, these candidate items can be replaced by
unobserved items. The final instructions are generated by
combining conditions and candidate items as depicted by
(Eq.6). These instructions are given to the LLM, which pro-
vides a ranked list of items for each user. For all the strong
users, the recommendations presented are the ones ranked
by the conventional recommendation model. However, the
weak users receive final ranked lists generated by the LLM.

Table 1
Datasets statistics

ML-1M ML-100k Book-Crossing
# Users 6,041 943 6,810
# Items 3,952 1,682 9,135

# Interactions 1,000,209 100,000 114,426
Sparsity 95.81% 93.7% 99.82%
Domain Movies Movies Books

4. Experiments
This section discusses our experimental setup with details of
the datasets and models used, followed by the implementa-
tion details of all these models and various metrics used. We
finally present empirical results and a comparative analysis
of various recommendation models and LLMs.

4.1. Experimental Setup
4.1.1. Datasets.

To test the effectiveness of our framework, we conducted ex-
periments on three real-world datasets: ML-1M1, ML100k2,
and Book-Crossing (B-C)3. Both ML100k and ML1M are
movie-rating datasets, and book-crossing is a book-rating
dataset. We select three datasets with varying levels of spar-
sity for evaluating robustness to data sparsity- ML100k has
the least sparsity, and Book-Crossing has the highest spar-
sity (for exact values, refer to table 1). All these datasets have
explicit user preference in the form of ratings ranging from
0− 5 for movie ratings and 0− 10 for book ratings dataset.
We do not filter out users from ML1M and ML100k as each
user has rated at least 20 movies in both these datasets. For
consistency, we filter out users with less than 20 ratings
from the Book-Crossing dataset. While both movie-ratings
datasets have clustering based on sensitive attributes like
age and gender, this paper aims to boost performance on
all weak users irrespective of the sensitive features. Thus,
following the protocol adopted by [13], we divided users
based on their activity or the number of items rated. Any
user who has rated items below a certain threshold 𝑡𝑠 is
termed an inactive user, and all those above this threshold
are active users. We calculated the number of items rated
on an average by all the users and used this average value as
a threshold; this threshold can always vary and be set to dif-
ferent values per application. Table 1 presents the statistics
of all three datasets.

4.1.2. Baselines and Models.

Our hybrid framework uses both traditional recommenda-
tion systems and LLMs. Thus, we include two different
types of recommendation models: (i) Collaborative-filtering
based: Neural Collaborative Filtering (NCF) [61] as well as
ItemKNN [62]; and (ii) Learning-to-rank model- Bayesian
Personalized Ranking (BPR) [59]. While these models iden-
tify weak users and generate candidate items, LLMs are fur-
ther deployed to improve the performance of such users. We
use both open (Mixtral-8x-7b-instruct) and closed-sourced
(GPT-3.5-turbo)to test the capability of the proposed frame-
work. It is important to note that the Collaborative Filtering
models are mostly used to capture the long-term preferences

1https://grouplens.org/datasets/movielens/1m/
2https://grouplens.org/datasets/movielens/100k/
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/



(a) ItemKNN (ML1M) (b) NCF (ML1M) (c) BPR (ML1M)

(d) ItemKNN (ML100k) (e) NCF (ML100k) (f) BPR (ML100k)

(g) ItemKNN (B-C) (h) NCF (B-C) (i) BPR (B-C)

Figure 3: AUC vs Sparsity scatter plots for illustrating the performance (measured using AUC- x-axis) for all users in ML1M,
ML100k and Book-Crossing (B-C) dataset on three different algorithms.

of users. We acknowledge that existing works (refer to Sec-
tion 2) have used sequential recommendation models for
comparing the performance of LLMs. These works also use
recommendation models as candidate retrieval models and
then use LLMs to rerank the candidate items. However, se-
quential models are used to predict the next item according
to the recently bought items. We test our framework mainly
on long-term user preferences and use collaborative filter-
ing models not only for candidate item retrieval but also
for recommending top-k items to strong users. However,
we believe that any existing model adopting this retrieval-
reranker strategy can adopt our framework. For space con-
straints, we present an evaluation of our framework only
on NCF, ItemKNN and BPR. In line with existing litera-
ture [27, 28], we design instructions by randomly sampling
20 rated items to demonstrate the user’s preferences to the
LLM. Furthermore, existing works do not discuss the re-
sponsible adaptation of LLMs, and the underlying task of
retrieval-reranker of such models remains consistent and
can thus use our framework.

4.1.3. Implementation details.

For ease of reproducibility, we use the open-source rec-
ommendation library RECBOLE [63] for implementing
all recommendation models and API calls for access to
LLMs 45. Each dataset is split into train (80%), test (10%)
and validation set (10%). We carefully use the valida-
tion set to tune all recommendation models’ hyperparam-
eters. For BPR, we search for optimal learning rate in
[5𝑒−5, 1𝑒−4, 5𝑒−4, 7𝑒−4, 1𝑒−3, 5𝑒−3, 7𝑒−3] and in
[5𝑒−7, 1𝑒−6, 5𝑒−6, 1𝑒−5, 1𝑒−4, 1𝑒−3] for NCF. Addi-
tionally, we use [64, 32, 16] as MLP hidden size for all layers
and search optimal dropout probability within [0.0, 0.1, 0.3]
for NCF. Two hyperparameter for ItemKNN involve 𝑘

4https://platform.openai.com/docs/api-reference
5https://www.llama-api.com/

(neighborhood size) in [10, 50, 100, 200, 250, 300, 400] and
𝑠ℎ𝑟𝑖𝑛𝑘 (normalization parameter to calculate cosine dis-
tance) in [0.0, 0.1, 0.5, 1, 2]. We adopt the protocol pre-
sented by a recently released toolkit RGRecSys [64] for eval-
uating robustness to sub-population using NDCG and AUC.
We emphasize that the use of AUC to measure the hard-
ness associated with each user for a given recommendation
model is because of the consistency property of AUC. We
use the popular CatBoost6 library that offers AUC implemen-
tation for ranking and also report final NDCG@10 scores.
Furthermore, we set the temperature to 0 in GPT-3.5-turbo
to minimize the generation of out-of-list items and hallu-
cinations. However, as per our observations, setting the
temperature to 0 in Mixtral-8x7b-instruct, the model out-
puts the list in the same order in which it was given input
to it. Hence, we set the temperature to 1 and removed the
items which were not originally present in the candidate
list. We now discuss our empirical inferences as we conduct
experiments following these details.

4.2. Empirical Evaluation
4.2.1. Comparative analysis.

The first phase begins by identifying the inactive users. For
this, we calculate the average sparsity of all users in the
dataset and identify users above this threshold as inactive
users. However, one can use different values for this thresh-
old like [13] used only top 20% of the sparse users for anno-
tating the inactive users. We then evaluate the AUC score
using equation 3 to measure the performance of RS on all
these users. In line with the findings of Li et al. [13], RS
performs significantly well on active users as compared to
inactive users. For instance-by-instance analysis of every
user, we then plot AUC scores against the sparsity index as

6https://github.com/catboost/



Table 2
Tabular illustration of the overall comparison of results in terms of ranking quality measured using AUC and NDCG@10 for
two collaborative filtering based (Neural Collaborative Filtering, ItemKNN) and one learning-to-rank models in comparison to
their usage within our framework along with one open-sourced LLM (GPT-3.5-turbo) and one close-sourced LLM (Mixtral-
8x7b-instruct).

ML1M ML100K Book-Crossing

AUC AUC
(Weak Users) NDCG@10 NDCG@10

(Weak Users) AUC AUC
(Weak Users) NDCG@10 NDCG@10

(Weak Users) AUC AUC
(Weak Users) NDCG@10 NDCG@10

(Weak Users)
ItemKNN 0.47032 0.23776 0.66792 0.58226 0.45616 0.24778 0.66792 0.58226 0.43309 0.25909 0.75197 0.65098

ItemKNN + GPT-3.5-turbo 0.58142 0.51776 0.82643 0.70352 0.59781 0.51953 0.82643 0.82598 0.61629 0.49713 0.86212 0.77101
ItemKNN + Mixtral-8x7b-instruct 0.56035 0.51708 0.70147 0.69276 0.59972 0.52327 0.70147 0.82438 0.55203 0.47215 0.85904 0.76183

NCF 0.47805 0.22945 0.78795 0.59801 0.48311 0.25182 0.78795 0.67734 0.51852 0.29004 0.78370 0.66148
NCF + GPT-3.5-turbo 0.58935 0.52122 0.80317 0.71723 0.60831 0.50814 0.80317 0.82603 0.61946 0.50513 0.88219 0.78133

NCF + Mixtral-8x7b-instruct 0.57211 0.52100 0.79178 0.70741 0.61174 0.50903 0.79178 0.82306 0.59901 0.49897 0.86254 0.78001
BPR 0.57957 0.37824 0.88833 0.73998 0.51629 0.17020 0.88833 0.71944 0.53310 0.24426 0.80405 0.70289

BPR + GPT-3.5-turbo 0.65397 0.51997 0.90098 0.82117 0.6387 0.51435 0.90098 0.82452 0.62145 0.50998 0.88173 0.81933
BPR + Mixtral-8x7b-instruct 0.64174 0.51972 0.89742 0.82998 0.64910 0.52135 0.89742 0.81761 0.61625 0.50081 0.87798 0.80284

shown in Fig. 3 for all three datasets using three different rec-
ommendation algorithms: ItemKNN, NCF, and BPR. While
ItemKNN and NCF are collaborative filtering algorithms,
the overall scatterplot for BPR shows better AUC scores as
compared to the other two algorithms. This is because of
the inherent nature of learning-to-rank models like BPR,
which rank user preferences better. This figure shows that
though RS performs poorly on inactive users on average,
not all inactive users receive poor-quality recommendations.
We thus use our definition 5 to identify such users and mark
them as weak. It might be interesting to explore why not
all inactive users receive poor performance. We leave this
exploratory study for future work.

For the second phase, we design instructions for these
weak users using the approach discussed inSection 3. Our
results in Table 2 show that LLMs perform significantly well
on these users. Using LLM and base RS models yields the
best results for all three datasets. Our results show improve-
ment in both AUC and NDCG@10 for weak users, thus
demonstrating improved robustness to the sub-population
of weak users. This further leads to an overall improved
ranking quality. We also highlight that previous works
like [34, 27] show that close-source models perform much
better than open-source. However, understanding the prop-
erties of users for which LLMs inherently perform well (like
we provide a mechanism of finding weak users) and respon-
sibly assigning tasks to large models improve performance
using open-source as well as closed-source models. Our re-
sults show that Mixtral-8x-7b-instruct can perform almost
equally well on weak users in all the datasets and base mod-
els. Furthermore, as observed for the ML100k dataset, this
open-source model can outperform GPT-3.5-turbo when
evaluated on AUC. It should be noted that AUC mainly eval-
uates the discriminatory ability of model to rank positive
items over negative and NDCG focuses on the user’s sat-
isfaction with the ranked list, considering both relevance
and position. The reason for this can be associated with
dataset sparsity. As shown in Table 1, the sparsity of the
ML100k dataset is lesser (≈ 93%) compared to the other
two datasets. While Mixtral is a good choice when datasets
are small and more dense, GPT-3.5-turbo performs well for
extremely sparse datasets. Yet, it is important to note that
in either case, the margin of the performance of both these
LLMs is not significant, and thus, even open-source models
can give a comparable performance. Nevertheless, usage of
GPT model yields best NDCG@10 scores for all datasets.

4.2.2. Reduction in weak user count.

For analyzing the variations in the count of weak users,
we counted a number of weak users identified in the first

phase whose interactions were contextualized and given
to LLMs as the base for comparison with LLMs using the
same threshold 𝑡𝑝. We evaluated AUC on the rankings
obtained by LLM for these users. It was noted that a few
users continued being hard even for LLM if the AUC lied
below 𝑡𝑝. Fig. 4 shows that when used with large models,
the count of weak users in recommendation systems drops
significantly. In highly sparse datasets like that of Book-
Crossing and ML1M, GPT-3.5-turbo reduced the number of
weak users by≈ 87% and Mixtral-8x7b-instruct by≈ 85%.
On the contrary, when the dataset is dense like ML100k,
Mixtral-8x7b-instruct can reduce the count by ≈ 99% and
the closed-source model by ≈ 88%. While the reduction
ability of GPT-3.5-turbo remains consistent over all datasets,
the open-source models yield better performance for less
sparse datasets yet improve the robustness of RS to sub-
populations.

In addition, we noted that a single query takes ≈ 8 sec-
onds in GPT-3.5-turbo and ≈ 11 seconds in Mixtral-8x7b-
instruct. This shows each user query’s high processing
times and inference latency. Thus, it is crucial to use these
models responsibly by identifying what they are good at.
Considering the example of the smallest dataset of ML100k,
which consists of 943 users. Our strategy for identifying
weak users results in only 330 weak users (worst case by
ItemKNN), which leads to an overhead of 2, 640 seconds
in using GPT-3.5-turbo in addition to the training time of
base RS models, which is significantly less than the 7, 544
seconds if used for all the users.

5. Discussion
In this work, we implemented a novel approach for respon-
sible adaptation of LLMs for ranking tasks. As suggested
by Burnell et al. [65], the involvement of AI in high-stake
decision-based applications (like ranking models for job rec-
ommendations) requires instance-by-instance evaluation
instead of aggregated metrics for designing responsible AI
models. Our results in Fig. 3 show that many inactive users
receive recommendations of poor quality by traditional RS.
Some inactive users still receive recommendations com-
parable to the active users, but this might be due to high
similarity scores with active users that existing models can
still capture their preferences effectively. We leave this as
an exploratory study for future work. However, the overall
performance scores on active users remain better than those
of inactive users. Building upon these weak instances, our
framework emphasizes on instance-by-instance evaluation
of users. While we group users based on activity and then
evaluate the performance of inactive users, our approach
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Figure 4: Comparative analysis of reduction in the count of weak users

pinpoints to weak users whose preferences remain hard for
traditional RS to capture effectively. We believe that our
framework inherently addresses the issue of group fairness.
Though we do not group users based on demographics, our
framework can also be extended to these scenarios where
instead of activity, user demographics can be used to group
users and then within the marginalized groups, the interac-
tion histories of users who receive poor performance can be
contextualized and given to LLM. However, irrespective of
the demographics, our framework mainly addressed the ro-
bustness to data sparsity and sub-population of weak users,
which inherently tackles the fairness issue.

This framework further helped reduce the number of
queries which needed to be given to the LLM. Since most
existing works (refer to Section 2) randomly select a few
users out of all the users present in the dataset to evalu-
ate the performance of LLMs, our framework provides a
systematic way of selecting users for which LLMs can be
used. Leveraging the capabilities of LLMs for weak users,
our work emphasizes the importance of low-cost traditional
RSs as well. We also observed that in some cases (Fig. 4),
LLM might not be able to perform well on every weak user.
This opens up new research opportunities for understanding
similarities and differences within the identified weak users
on which LLM does and does not perform well. Further,
one can think of various prompting strategies to prompt the
model to capture the preferences of extremely weak users
effectively. Past works have developed various prompting
strategies, which can all be tested to observe which strate-
gies remain effective for which types of users. Nevertheless,
the main goal of this paper remains to emphasise the im-
portance of responsible adaptation of LLMs by strategically
selecting tasks for which these models inherently perform
well. It is also important to note that for weak users, we still
obtain candidate items from traditional RS, as has been done
in most past works (refer to Section 2). This helped in reduc-
ing the candidate set from thousands of unrated items to a
few, which were given to the LLM to then rank. While this
approach ensures that the results obtained by RS for weak
users are utilized for generating candidate items instead of
discarding such results directly, thus maximizing the usage
of RSs even for weak users, it has a limitation. Traditional
RSs perform worse on these users, and the candidate items
might not capture the true preference of weak users. When
we give these candidate items to LLM for ranking, the results
might deviate further from true preferences. This issue can
be the one reason that LLMs might not perform well on all
weak users. One can, thus, further investigate the relation

of candidate items to the performance of LLMs on certain
users. If the candidate items are already non-preferred items
by users, LLM might inherently find it difficult to perform
well.

Our work, thus, represents a foundational step towards
responsibly adapting LLMs while emphasizing the impor-
tance of traditional models, particularly focusing on address-
ing the challenges posed by sub-populations with sparse
interaction histories. Our instance-by-instance evaluation
approach, inspired by the imperative highlighted by recent
studies in high-stakes decision-based AI applications, under-
scores the necessity of a nuanced understanding of individ-
ual user needs and preferences. While our framework em-
phasizes the importance of leveraging traditional recommen-
dation systems alongside LLMs, we acknowledge the need
to further explore the performance variations among weak
users and the impact of candidate item selection on LLM
effectiveness. Moving forward, our work lays the ground-
work for continued research into refining the adaptation of
LLMs, ensuring their responsible deployment across diverse
user populations and application scenarios.

6. Conclusion
In this paper, we presented a hybrid framework that aims to
improve the robustness of RS to sub-populations by lever-
aging LLMs. Our approach first utilized user activity to
identify inactive users and then measured the performance
of various RSs on these users to pinpoint weak users on
which RSs find it hard to perform well. In doing so, this pa-
per represents a novel stride towards improving robustness
to sub-populations (irrespective of sensitive attributes) in
RSs through efficient and responsible adaptation of LLMs
without requiring any fine-tuning. While we evaluated our
framework for the long-term preference of users using vari-
ous collaborative filtering and learning-to-rank models, our
model can be extended to various recommendation models.
Our work particularly examines the importance of evalu-
ating various user properties in the responsible adaptation
of generative models within the recommendation domains.
This paper opens numerous research directions for further
exploration including developing prompting strategies for
extremely weak users on which LLMs can not perform well.
We further aim to explore other factors that can aid in the
responsible adaptation of large models and improve the
robustness and fairness of the challenges within recommen-
dation systems.
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