
Generative Diffusion Models for Sequential Recommendations
Sharare Zolghadr1, Ole Winther2 and Paul Jeha2

1University of Padua, Padua, Italy
2Technical University of Denmark, Copenhagen, Denmark

Abstract
Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in
sequential recommendation tasks. However, they face challenges, including posterior collapse and limited representation capacity. The
work by Li et al., 2023 is a novel approach that leverages diffusion models to address these challenges by representing item embeddings
as distributions rather than fixed vectors. This approach allows for a more adaptive reflection of users’ diverse interests and various
item aspects. During the diffusion phase, the model converts the target item embedding into a Gaussian distribution by adding noise,
facilitating the representation of sequential item distributions and the injection of uncertainty. An Approximator then processes this
noisy item representation to reconstruct the target item. In the reverse phase, the model utilizes users’ past interactions to reverse
the noise and finalize the item prediction through a rounding operation. This research introduces enhancements to the DiffuRec
architecture, particularly by adding offset noise in the diffusion process to improve robustness and incorporating a cross-attention
mechanism in the Approximator to better capture relevant user-item interactions. These contributions led to the development of a new
model, DiffuRecSys, which improves performance. Extensive experiments conducted on three public benchmark datasets demonstrate
that these modifications enhance item representation, effectively capture diverse user preferences, and outperform existing baselines in
sequential recommendation research.

Keywords
Diffusion Models, Recommender Systems, Generative Models

1. Introduction
Recommender systems are algorithms that suggest items to
users by analyzing various forms of input data. Their pri-
mary goal is to enhance the customer experience through
personalized recommendations, often based on prior im-
plicit feedback. These systems track user behaviors, such
as purchase history, viewing habits, and browsing activity,
to model user preferences. Sequential Recommendation, a
specific type of recommendation, is particularly relevant for
applications where user behavior is naturally sequential. It
focuses on predicting the next item a user will interact with
by considering the order of previous interactions.

Mainstream solutions to Sequential Recommendation (SR)
[2] represent items with fixed vectors, which have a lim-
ited ability to capture the latent aspects of items and the
diversity of user preferences. Generative models like Gen-
erative Adversarial Networks (GANs) [3] and Variational
Auto-Encoders (VAEs) [4] have been widely applied in per-
sonalized recommendations, using adversarial training and
encoder-decoder architectures, respectively, to model user
behavior and preferences. However, Diffusion Models have
shown significant advantages over GANs and VAEs, such
as greater stability and higher generation quality in various
tasks.

Diffusion Models (DMs) [5, 6, 7] have achieved state-of-
the-art results in image synthesis tasks [7, 8, 9, 10, 11]. These
models alleviate the trade-off between stability and quality
by gradually corrupting images in a forward process and
iteratively learning to reconstruct them. DMs progressively
corrupt x0 with random noise and then recover x0 from the
corrupted state x𝑇 step by step. This forward process cre-
ates a tractable posterior [6], enabling the iterative modeling
of complex distributions through flexible neural networks
in the reverse generation process.

ROEGEN@RecSys’24: The 1st Workshop on Risks, Opportunities, and
Evaluation of Generative Models in Recommender Systems, Co-located
with ACM RecSys in Bari, Italy, October 2024
$ sharare.zolghadr@studenti.unipd.it (S. Zolghadr); olwi@dtu.dk
(O. Winther); pauje@dtu.dk (P. Jeha)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

The objectives of recommender models align well with
DMs, as recommendation essentially involves inferring fu-
ture interaction probabilities from noisy historical inter-
actions, where noise represents false-positive and false-
negative items [12, 13]. This makes DMs a promising ap-
proach for accurately modeling complex interaction pat-
terns with strong representational ability. Despite their
success in other domains, applying diffusion models to rec-
ommender systems remains underexplored.

We further explore diffusion models for sequential recom-
mendation (SR) by extending the method introduced by Li
et al. (2023). Our work proposes significant enhancements
to the existing architecture, resulting in a new model, Dif-
fuRecSys1. Specifically, our contributions are as follows:

• Enhancing the Diffusion Recommender Model:
We incorporate cross-attention mechanisms within
the Approximator of the model architecture. The
model isn’t just learning temporal dependencies (the
sequential order of items) but also more complex re-
lationships between past interactions and the target
item by focusing on the most relevant past events.

• Incorporation of Offset Noise: We introduce off-
set noise into the diffusion process to increase model
robustness and effectively handle variability in user
interactions.

• Comprehensive Experimental Validation: We
conduct extensive experiments across three datasets
under various settings, demonstrating improve-
ments of DiffuRec with our extensions over standard
baselines.

2. Related Works

2.1. Recommender Systems
In the era of information overload, recommender systems
are essential for filtering relevant information and have
been widely adopted in e-commerce, online news, and so-
cial media. A core aspect of these systems is modeling
1https://youtu.be/bEpDfAAGL2I

mailto:sharare.zolghadr@studenti.unipd.it
mailto:olwi@dtu.dk
mailto:pauje@dtu.dk
https://creativecommons.org/licenses/by/4.0/deed.en

user preferences based on past interactions. Traditional
recommender systems are generally categorized into three
main types: content-based filtering [14], collaborative fil-
tering [15, 16], and hybrid methods [17]. However, while
conventional approaches focus on static user preferences,
sequential recommender systems account for the temporal
dynamics of user behavior. These systems recognize that
user preferences evolve over time, and the order of inter-
actions provides critical context for making accurate rec-
ommendations. Early sequential recommendation models
utilized Markov chains to capture item transition probabil-
ities. These models could make recommendations based
on recent interactions by modeling the likelihood of a user
moving from one item to another. However, Markov chains
often struggle to capture long-term dependencies due to
their limited memory capacity [18].

Recurrent Neural Networks (RNNs) have been widely
adopted for sequential recommendation tasks due to their
ability to model temporal sequences. Popular variants, such
as Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRUs) effectively capture both short-term and long-
term dependencies in user behavior. These models have
significantly improved recommendation accuracy by lever-
aging sequential patterns in user interactions [19].

Attention mechanisms have further advanced sequential
recommendation systems by enabling models to focus on the
most relevant parts of the interaction history. Self-attention
models, such as the Transformer, effectively capture com-
plex dependencies within sequences, leading to state-of-
the-art performance in various sequential recommendation
tasks [2].

2.2. Generative Models
In the realm of generative modeling, the primary objective
is to approximate an unknown distribution 𝑝data(𝑥) using a
model distribution 𝑝model(𝑥). This is typically achieved by
defining 𝑝model(𝑥; 𝜃), where 𝜃 represents parameters that
are adjusted to minimize the divergence between 𝑝data and
𝑝model. A prevalent method for achieving this is maximum
likelihood estimation, which minimizes the Kullback-Leibler
(KL) divergence between the true and model distributions.

Deep generative models have recently demonstrated high-
quality sampling across various data modalities. Mod-
els such as Generative Adversarial Networks (GANs), au-
toregressive models, and Variational Autoencoders (VAEs)
have shown impressive capabilities in generating complex
data types, including images and audio. This progress has
sparked significant interest in adapting these models for
generative recommender systems. By modeling the underly-
ing generative process, such systems infer user interaction
probabilities for items that have not been interacted with.
Typically, these models assume that latent factors, such as
user preferences, drive users’ interactions with items (e.g.,
clicks).

Generative recommender models [20] can be broadly cat-
egorized into two types. First, GAN-based models employ
a generator to estimate user interaction probabilities and
rely on adversarial training for optimization [21]. How-
ever, adversarial training can be unstable, which may lead
to inconsistent performance. Second, VAE-based models
use an encoder to approximate the posterior distribution
over latent factors and aim to maximize the likelihood of
observed interactions [22]. Although VAEs generally outper-
form GANs in recommendation tasks, they face a trade-off

between tractability and representation power [23]. Sim-
ple encoders may struggle to capture heterogeneous user
preferences, while more complex models may result in in-
tractable posterior distributions [24]. Ongoing research and
innovation are crucial for advancing generative modeling
and enhancing recommendation systems.

3. Problem Statement
In sequential recommendation, let 𝑈 represent the set of
users and 𝐼 the set of items. For each user 𝑢 ∈ 𝑈 , we orga-
nize the items that the user has interacted with in chronolog-
ical order, forming a sequence 𝑆𝑢 = [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑁−1, 𝑖

𝑢
𝑁],

where 𝑖𝑢𝑛 ∈ 𝐼 denotes the item that user 𝑢 interacted with
at the 𝑛-th timestamp, and 𝑁 represents the maximum
sequence length. The task of sequential recommendation
is to predict the next item that user 𝑢 is likely to inter-
act with. During training, the model learns to maximize
the probability of recommending the target item 𝑖𝑁 based
on the user’s previously interacted items [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑁−1].

This probability is expressed as 𝑝(𝑖𝑢𝑁 | 𝑖𝑢1 , 𝑖𝑢2 , . . . , 𝑖𝑢𝑁−1).
During inference, the model predicts the probability of rec-
ommending the next item 𝑖𝑁+1 based on the entire inter-
action sequence [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑁], which can be written as

𝑝(𝑖𝑢𝑁+1 | 𝑖𝑢1 , 𝑖𝑢2 , . . . , 𝑖𝑢𝑁−1, 𝑖
𝑢
𝑁). The ultimate goal of se-

quential recommendation is to generate a ranked list of
items as candidates for the next item that user 𝑢 is most
likely to prefer.

4. Preliminaries
In this section, we provide a brief introduction to diffusion
models and sequential recommendations. Subsequently, in
Section 5 (Model Architecture), we will explain the method-
ology for adapting diffusion models to integrate with rec-
ommender systems.

4.1. Diffusion Model
Deep diffusion probabilistic models can be briefly described
as hierarchical variational autoencoders (VAEs) with a
bottom-up path defined by a diffusion process (e.g., Gaus-
sian diffusion) and a top-down path parameterized by deep
neural networks (DNNs), representing a reversed diffusion
process. Diffusion models [6] are latent variable models
characterized by the distribution:

𝑝𝜃(𝑥0) :=

∫︁
𝑝𝜃(𝑥0:𝑇) 𝑑𝑥1:𝑇 , (1)

where 𝑥1, . . . , 𝑥𝑇 are latent variables with the same dimen-
sionality as the data 𝑥0 ∼ 𝑞(𝑥0). The joint distribution
𝑝𝜃(𝑥0:𝑇) represents the reverse process and is defined as
a Markov chain with learned Gaussian transitions starting
from 𝑝(𝑥𝑇) = 𝒩 (𝑥𝑇 ; 0, 𝐼):

𝑝𝜃(𝑥0:𝑇) := 𝑝(𝑥𝑇)

𝑇∏︁
𝑡=1

𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡),

𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡) := 𝒩 (𝑥𝑡−1;𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)).

(2)

What distinguishes diffusion models from other latent
variable models is that the approximate posterior 𝑞(𝑥1:𝑇 |
𝑥0), known as the forward process or diffusion process, is

fixed as a Markov chain that gradually adds Gaussian noise
to the data according to a variance schedule 𝛽1, . . . , 𝛽𝑇 :

𝑞(𝑥1:𝑇 | 𝑥0) :=

𝑇∏︁
𝑡=1

𝑞(𝑥𝑡 | 𝑥𝑡−1),

𝑞(𝑥𝑡 | 𝑥𝑡−1) := 𝒩 (𝑥𝑡;
√︀

1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼).

(3)

Here, 𝑥𝑡 is sampled from this Gaussian distribution,
where 𝛽𝑡 controls the amount of noise added at the 𝑡-th
diffusion step, and 𝐼 is the identity matrix. The value of
𝛽𝑡 is determined by a predefined noise schedule 𝛽, which
specifies the noise amount for each step. Common noise
schedules include square-root [25], cosine [26], and linear
[5].

In the reverse phase, where the original representation 𝑥0

is unknown, a deep neural network 𝑓𝜃(·) (e.g., Transformer
[27] or U-Net [28]) is typically used to estimate 𝑥0. Given
the original representation 𝑥0 and the schedule 𝛽, training
𝑓𝜃(·) involves optimizing the variational lower bound (VLB)
on the negative log-likelihood [6]:

E[− log 𝑝𝜃(𝑥0)] ≤ E𝑞

[︂
− log

𝑝𝜃(𝑥0:𝑇)

𝑞(𝑥1:𝑇 | 𝑥0)

]︂
=

E𝑞

[︃
− log 𝑝(𝑥𝑇)−

∑︁
𝑡≥1

log
𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡)

𝑞(𝑥𝑡 | 𝑥𝑡−1)

]︃
=: ℒ. (4)

The forward process variances, 𝛽𝑡, can either be adjusted
via parameterization [4] or kept fixed as hyperparameters.
The reverse process remains effective due to the use of Gaus-
sian conditionals in 𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡), particularly when 𝛽𝑡

values are small [6]. A notable property of the forward
process is that it facilitates straightforward sampling of 𝑥𝑡

at any time step 𝑡. Using the notation 𝛼𝑡 := 1 − 𝛽𝑡 and
�̄�𝑡 :=

∏︀𝑡
𝑠=1 𝛼𝑠, we express:

𝑞(𝑥𝑡 | 𝑥0) = 𝒩 (𝑥𝑡;
√
�̄�𝑡𝑥0, (1− �̄�𝑡)𝐼), (5)

Efficient training can be achieved by optimizing the ran-
dom terms ofℒ using stochastic gradient descent. To further
enhance training stability, we can reduce variance by rewrit-
ing ℒ (4) as:

E𝑞

[︃
𝐷𝐾𝐿 (𝑞(𝑥𝑇 | 𝑥0) ‖ 𝑝(𝑥𝑇))⏟ ⏞

ℒ𝑇

+

∑︁
𝑡>1

𝐷𝐾𝐿 (𝑞(𝑥𝑡−1 | 𝑥𝑡, 𝑥0) ‖ 𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡))⏟ ⏞
ℒ𝑡−1

− log 𝑝𝜃(𝑥0 | 𝑥1)⏟ ⏞
ℒ0

]︃
,

(6)

Equation (6) leverages KL divergence to compare
𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡) against the forward process posteriors, which
are tractable when conditioned on 𝑥0:

𝑞(𝑥𝑡−1 | 𝑥𝑡, 𝑥0) = 𝒩 (𝑥𝑡−1; �̃�𝑡(𝑥𝑡, 𝑥0), �̃�𝑡𝐼), (7)

where

�̃�𝑡(𝑥𝑡, 𝑥0) :=

√
�̄�𝑡−1𝛽𝑡

1− �̄�𝑡
𝑥0 +

√
𝛼𝑡(1− �̄�𝑡−1)

1− �̄�𝑡
𝑥𝑡,

�̃�𝑡 :=
1− �̄�𝑡−1

1− �̄�𝑡
𝛽𝑡,

(8)

Thus, all KL divergences in Equation (6) are Gaussian
comparisons, which can be calculated exactly using closed-
form expressions, rather than high-variance Monte Carlo
estimates.

The loss function in Equation (6) is organized into three
components: 𝐿𝑡, 𝐿𝑡−1, and 𝐿0. Component 𝐿𝑡 aims to
bring 𝑞(𝑥𝑡 | 𝑥0) close to a standard Gaussian distribution.
Component 𝐿𝑡−1 minimizes the KL divergence between the
forward process posterior and 𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡), which is gen-
erated by the deep neural network for the reverse process.
The last Component 𝐿0 applies negative log-likelihood for
the final prediction. This variational lower bound (VLB) loss
could lead to unstable model training. To address this, each
𝐿𝑡 can be further simplified to:

𝐿𝑡,simple = E𝑡,𝑥0,𝜖

[︁⃦⃦
𝜖− 𝜖𝜃

(︀√
𝛼�̄�𝑥0 +

√
1− 𝛼�̄�𝜖, 𝑡

)︀⃦⃦2
]︁
,

(9)
where 𝜖 ∼ 𝒩 (0, 𝐼) is sampled from a standard Gaussian dis-
tribution for noise injection and diffusion, and 𝜖𝜃(·) serves
as an approximator instantiated by a deep neural network,
such as a Transformer or U-Net.

4.2. Sequential Recommendation
Let 𝑅 ∈ R𝑚×𝑛 represent the user-item interaction matrix,
where𝑚 is the number of users and𝑛 is the number of items.
Each entry 𝑟𝑢𝑖 indicates the interaction (e.g., rating or click)
between user 𝑢 and item 𝑖. Each user 𝑢 has a sequence of
interacted items 𝑆𝑢 = [𝑖1, 𝑖2, . . . , 𝑖𝑇=𝑁𝑢], where 𝑁𝑢 is the
length of the sequence. Items are embedded into a latent
space using an embedding matrix 𝐸 ∈ R𝑛×𝑑, where 𝑑 is
the dimensionality of the embedding. The embedding of
item 𝑖 is denoted as 𝑒𝑖 = 𝐸[𝑖].

RNNs are used to model the sequential nature of user
interactions. For a sequence 𝑆𝑢, the hidden state ℎ𝑡 at time
step 𝑡 is updated as

ℎ𝑡 = RNN(ℎ𝑡−1, 𝑒𝑖𝑡), (10)

where 𝑒𝑖𝑡 is the embedding of the item at time 𝑡, and ℎ𝑡−1

is the hidden state from the previous time step.
The self-attention mechanism can be used to weigh the

importance of each item in the sequence. The attention
score 𝛼𝑡𝑗 between item 𝑖𝑡 and item 𝑖𝑗 is computed as

𝛼𝑡𝑗 =
exp(𝑒⊤𝑖𝑡𝑒𝑖𝑗)∑︀𝑇𝑢

𝑘=1 exp(𝑒
⊤
𝑖𝑡
𝑒𝑖𝑘)

, (11)

where exp denotes the exponential function.
The attended representation 𝑧𝑡 is then

𝑧𝑡 =

𝑇𝑢∑︁
𝑗=1

𝛼𝑡𝑗𝑒𝑖𝑗 . (12)

The model predicts the next item �̂�𝑇𝑢+1 based on the final
hidden state ℎ𝑇𝑢 or the attended representation 𝑧𝑇𝑢 as

𝑦 = 𝑊ℎ𝑇𝑢 + 𝑏, (13)

where 𝑊 and 𝑏 are learned parameters, and 𝑦 is the pre-
dicted score vector for the next item.

5. Model Architecture
The DiffuRec framework is shown in Figure 1. The input to
the model is the embedding 𝑒𝑛+1 of the target item 𝑖𝑛+1.

Figure 1: Overview of the diffusion process for sequential recommendation: (A) Injecting noise into the target item after 𝑠
diffusion steps; (B) Generating new item representation based on user history and the last target item; (C) Reverse phase for
target item reconstruction; (D) Rounding phase to map the continuous target representation to discrete item indices.

According to the diffusion model detailed in Section 4.1,
we aim to reverse this process to retrieve the target item
from the historical sequence 𝑆. To achieve this, we intro-
duce noise into the target item embedding 𝑒𝑛+1 via the
diffusion process, which involves multiple samplings from
Gaussian distributions (Equation 3). The noised target item
representation 𝑥𝑠, which has undergone 𝑠 diffusion steps,
is considered as the distribution representation sampled
from 𝑞(·). Consequently, 𝑥𝑠 can still encapsulate multiple
latent aspects of the item. Next, we use 𝑥𝑠 to adjust the new
representation of each historical item embedding in 𝑆, lever-
aging the target item’s guidance as additional semantic sig-
nals. The resulting representations 𝑍𝑥𝑠 = [𝑧1, 𝑧2, . . . , 𝑧𝑛]
are then input into the approximator 𝑓𝜃(·). The model is
trained to ensure the reconstructed �̂�0 from the approxima-
tor closely matches the target item embedding 𝑒𝑛+1. In the
reverse phase, we start by sampling the noised target item
representation 𝑥𝑡 from a standard Gaussian distribution,
𝑥𝑡 ∼ 𝒩 (0, 𝐼). Similar to the diffusion process, the adjusted
representations 𝑍𝑥𝑡 (obtained using 𝑥𝑡) are fed into the
well-trained approximator 𝑓𝜃(·) for �̂�0 estimation. Follow-
ing Equation (2), the estimated �̂�0 and 𝑥𝑡 are utilized to
reverse 𝑥𝑡−1 through 𝑝(·). This iterative process continues
until 𝑥0 is reached. It is important to note that the reverse
phase is stochastic, which models the uncertainty in user
behavior. Finally, a rounding function maps the reversed
continuous representation 𝑥0 into discrete candidate item
indices for predicting the target item �̂�𝑛+1. We present three
versions of the Diffusion Recommender Model: 1) a baseline
based on previous work [1], 2) a model with cross-attention
in the approximator, and 3) a model with both offset noise
and cross-attention. We compare the performance of all
models to assess the effectiveness of each component.

5.1. Approximator
The transformer is employed as the backbone of the approx-
imator 𝑓𝜃(·) to generate �̂�0, leveraging its effectiveness in
modeling sequential dependencies during both the diffusion

and reverse phases:

�̂�0 = 𝑓𝜃(𝑍𝑥) = Transformer([𝑧0, 𝑧1, . . . , 𝑧𝑛]). (14)

To enhance the representation of the user’s historical
interactions with the last target item, we employ cross-
attention. Instead of summing the last target item and
timestep embedding with the historical interactions embed-
ding, as shown in Equation (15), we utilize cross-attention,
as depicted in Equation (16):

𝑧𝑖 = 𝑒𝑖 + 𝜆𝑖 ⊙ (𝑥+ 𝑑), (15)

𝑧𝑖 = CrossAttention(𝑒𝑖, 𝜆𝑖 ⊙ (𝑥+ 𝑑)), (16)

In Equation (16), ⊙ denotes element-wise multiplication,
and 𝑑 represents the step embeddings that incorporate spe-
cific information for each diffusion and reverse step. In the
diffusion phase, 𝑥 is the noised target item embedding 𝑥𝑠.
In the reverse process, 𝑥 refers to the reversed target item
representation, i.e., 𝑥 = 𝑥𝑠 for 𝑠 = 𝑡, 𝑡− 1, . . . , 2, 1.

Figure 2: The architecture of approximation using cross-
attention between the last target item and the user’s historical
interactions.

Cross-attention allows the model to dynamically weigh
the importance of historical interactions to the last target
item, enabling a more nuanced aggregation of information.

This improves the model’s ability to capture relevant context
and relationships, leading to better item representation, a
multi-head attention Transformer is used to predict the
next item in the sequence. According to Equation (16), 𝜆𝑖

is sampled from a Gaussian distribution, 𝜆𝑖 ∼ 𝒩 (𝛿, 𝛿),
where 𝛿 is a hyperparameter that defines both the mean
and variance. During the diffusion phase, 𝜆𝑖 determines the
level of noise injection.

In the diffusion phase, a step-index 𝑠 is randomly sampled
from a uniform distribution over the range [1, 𝑡], where 𝑡
represents the total number of steps. Conversely, in the
reverse phase, 𝑠 ranges from 𝑡 to 1. Consequently, both
the corresponding step embedding and the sequence item
distribution are fed into the approximator for model training
(see Equation (15)). Ultimately, the representationℎ𝑛 of item
𝑖𝑛 generated by the final layer is used as �̂�0.

5.2. Diffusion Phase
The offset noise technique was implemented to enhance
the robustness and diversity of generated items in a diffu-
sion model. The conventional approach in diffusion models
involves sampling noise from a standard normal distribu-
tion, 𝒩 (0, 𝐼), where the mean is zero and the variance is
one. However, this approach can make the model sensitive
to mean shifts in the input data, potentially limiting the
diversity and quality of generated outputs.

To address this issue, an offset term was introduced in
the noise distribution. Specifically, the noise was sampled
from a distribution with a constant offset term, denoted as:

𝜖offset ∼ 𝒩 (0.1𝛿𝑐, 𝐼), (17)

instead of the standard normal distribution. This offset is
applied only during the training or forward process. During
inference or the reverse process, noise is still sampled from a
standard normal distribution. Here, 𝛿𝑐 represents a constant
value, and the scaling factor 0.1 adjusts the mean of the
noise distribution.

During training, we randomly sample a diffusion step 𝑠
for each target item, specifically 𝑠 = ⌊𝑠′⌋with 𝑠′ ∼ 𝑈(0, 𝑡).
𝑥𝑠 is generated via:

𝑞(𝑥𝑠|𝑥0, 𝑠) = 𝒩 (𝑥𝑠;
√
𝛼�̄�𝑥0, (1− 𝛼�̄�)𝐼). (18)

We derive 𝑥0 through one-step diffusion from the target
item embedding:

𝑞(𝑥0|𝑒𝑛+1) = 𝒩 (𝑥0;
√
�̄�0𝑒𝑛+1, (1− 𝛼0)𝐼). (19)

Utilizing the reparameterization trick with 𝜖 ∼ 𝒩 (0.1𝛿𝑐, 𝐼),
𝑥𝑠 can be generated as follows:

𝑥𝑠 =
√
�̄�𝑠𝑥0 +

√
1− �̄�𝑠𝜖. (20)

The diffusion process or model training is detailed in Algo-
rithm 1.

5.3. Reverse Phase
In the reverse phase, our goal is to iteratively reconstruct
the target item representation 𝑥0 from a purely Gaussian
noise 𝑥𝑡. However, obtaining 𝑥0 directly at each reverse
step is infeasible. Thus, we utilize a well-trained approxima-
tor to generate �̂�0 as an estimate of 𝑥0, specifically 𝑥0 = �̂�0.
The reverse phase is detailed in Algorithm 2. Subsequently,

Algorithm 1: Training (Diffusion Phase)

Input: User interactions 𝑋 , Initial parameters 𝜃
Output: Optimized parameters 𝜃

1 Sample a batch 𝑋 ⊆ 𝑋 ;
2 for all 𝑥0 ∈ 𝑋 do
3 Sample 𝑡 ∼ 𝒰(1, 𝑇), 𝜖 ∼ 𝒩 (0.1𝛿𝑐, 𝐼);
4 𝑥𝑡 ← 𝑞(𝑥𝑡|𝑥0), 𝜆𝑖 ∼ 𝒩 (𝛿, 𝛿);
5 (𝑧1, . . . , 𝑧𝑛)←

(𝑒1 + 𝜆1(𝑥𝑠 + 𝑑𝑠), . . . , 𝑒𝑛 + 𝜆𝑛(𝑥𝑠 + 𝑑𝑠));
6 �̂�0 ← 𝑓𝜃(𝑧1, . . . , 𝑧𝑛);
7 Update 𝜃 via 𝐿CE(�̂�0, 𝑖𝑛+1);

8 While not converged do Repeat above steps;

following Equation (2), the reverse process proceeds by ap-
plying the reparameterization trick:

�̂�0 = 𝑓𝜃(𝑍𝑥𝑡), 𝑥𝑡−1 ← 𝑝(𝑥𝑡−1 | �̂�0, 𝑥𝑡), (21)

𝑥𝑡−1 = �̃�𝑡(𝑥𝑡, �̂�0) + �̃�𝑡𝜖
′, (22)

where

�̃�𝑡(𝑥𝑡, �̂�0) =

√
�̄�𝑡−1𝛽𝑡

1− �̄�𝑡
�̂�0 +

√
�̄�𝑡(1− �̄�𝑡−1)

1− �̄�𝑡
𝑥𝑡,

�̃�𝑡 =
1− �̄�𝑡−1

1− �̄�𝑡
𝛽𝑡.

(23)

After generating 𝑥𝑡−1 using 𝜖′ ∼ 𝒩 (0, 𝐼), repeat the
reverse process until reaching 𝑥0.

Algorithm 2: Inference (Reverse Phase)
Input: Sequence (𝑖1, . . . , 𝑖𝑛), Target 𝑥𝑡 ∼ 𝒩 (0, 𝐼)
Output: Predicted item 𝑖𝑛+1

1 for 𝑠 = 𝑇, . . . , 1 do
2 𝜆𝑖 ∼ 𝒩 (𝛿, 𝛿);
3 (𝑧1, . . . , 𝑧𝑛)←

(𝑒1 + 𝜆1(𝑥𝑠 + 𝑑𝑠), . . . , 𝑒𝑛 + 𝜆𝑛(𝑥𝑠 + 𝑑𝑠));
4 �̂�0 ← 𝑓𝜃(𝑧1, . . . , 𝑧𝑛), 𝜖′ ∼ 𝒩 (0, 𝐼);
5 𝑥𝑠−1 ← �̃�𝑠(�̂�0, 𝑥𝑠) + �̃�𝑠 · 𝜖′;
6 𝑖𝑛+1 ← Rounding(𝑥0)

5.4. Loss Function and Rounding
Following previous works [29, 30, 31], we adopt the cross-
entropy loss during the diffusion phase for model optimiza-
tion as follows:

𝑦𝑖 =
exp(�̂�0 · 𝑒𝑛+1)∑︀
𝑖∈𝐼 exp(�̂�0 · 𝑒𝑖)

, (24)

𝐿𝐶𝐸 = − 1

|𝑈 |
∑︁
𝑢∈𝑈

log 𝑦𝑢, (25)

where �̂�0 is reconstructed by the Transformer-based ap-
proximator, and · denotes the inner product operation.

During the inference phase, the task is to map the reversed
target item representation 𝑥0 into the discrete item index
space for the final recommendation. To achieve this, we
compute the inner product between 𝑥0 and all candidate
item embeddings 𝑒𝑖 and subsequently select the item index
corresponding to the maximum value as the recommended
result. This process can be formalized as follows:

𝑖𝑛+1 = arg max𝑖∈𝐼Rounding(𝑥0) = 𝑥0 · 𝑒𝑇𝑖 . (26)

6. Experiment
In this section, we conduct experiments on three real-world
datasets to address the following research question:

RQ1) Does modifying the baseline Diffusion Recom-
mender Model (DiffuRec) enhance performance?

RQ2) How does the proposed DiffRecSys framework com-
pare to competitive methods?

RQ3) What are the weaknesses of the DiffRecSys model,
and what solutions can be proposed to address them?

6.1. Dataset
For the experiments conducted in this study, we utilized the
RecBole framework [32], a comprehensive and unified tool
for benchmarking recommender systems. RecBole provides
an extensive collection of preprocessed datasets, which facil-
itated consistent and efficient data preparation. Specifically,
we employed RecBole to download and preprocess the re-
quired datasets, available at https://github.com/RUCAIBox/
RecSysDatasets, ensuring compatibility and comparability
across various recommendation models. The standardized
environment of RecBole, along with its support for vari-
ous algorithms and evaluation metrics, enabled a fair and
reliable assessment of model performance. We conducted
experiments on three public benchmark datasets. Two sub-
categories of the Amazon dataset (Beauty and Toys) were
selected, both comprising user reviews of products. Addi-
tionally, we utilized the MovieLens 1M dataset (ML1M), a
widely recognized benchmark dataset containing approxi-
mately 1 million user ratings on movies.

6.2. Experiment Setup
For the training, validation, and test splits, we adopt a se-
quential split approach. Specifically, for all datasets, given
a sequence 𝑆 = {𝑖1, 𝑖2, . . . , 𝑖𝑛}, the most recent interac-
tion (𝑖𝑛) is used for testing, the penultimate interaction
(𝑖𝑛−1) is used for validation, and the earlier interactions
({𝑖1, 𝑖2, . . . , 𝑖𝑛−2}) are used for training.

To assess the performance of sequential recommender
systems, we evaluate all models using HR@K (Hit Rate)
and NDCG@K (Normalized Discounted Cumulative Gain).
HR@K measures the proportion of times the true item is
among the top-K recommendations, while NDCG@K eval-
uates the ranking quality of the top-K items, taking into
account the position of the correct items. The experimental
results are reported for the top-K list with 𝐾 set to 5, 10, and
20. We treat all reviews or ratings as implicit feedback (i.e.,
user-item interactions) and chronologically organize them
by their timestamps. The maximum sequence length is set
to 100 to balance capturing sufficient historical information
with computational efficiency for the MovieLens-1M, Ama-
zon Beauty, and Amazon Toys datasets. These datasets ex-
hibit considerable diversity in sequence lengths and dataset
sizes, covering a broad range of real-world scenarios. Ad-
ditionally, we filter out unpopular items and inactive users
who have fewer than five associated interactions.

For training, we employ the Adam optimizer with an
initial learning rate of 0.001, a weight decay of 0.0001, and
a learning rate decay step that reduces the learning rate
starting at epoch 30, with the total number of epochs set
to 41. Transformer parameters are initialized using Xavier
initialization, and the number of blocks is set to 4.

We use the standard Transformer architecture and con-
figuration as described by [27], which includes multi-head
self-attention, a feed-forward network with ReLU activa-
tion, layer normalization, dropout, and residual connections.
To enhance the model’s representation capacity, we stack
multiple Transformer blocks.

Both the embedding dimension and hidden state size are
fixed at 128, with a batch size of 1024. Dropout rates for the
Transformer block and item embeddings are set to 0.1 and
0.3, respectively, across all datasets. For the hyperparameter
𝜆, values are sampled from a Gaussian distribution with a
mean of 0.001 and a standard deviation of 0.001. The total
number of reverse steps 𝑡 is set to 32. For the noise sched-
ule 𝛽, a truncated linear schedule is used where the noise
variance decreases linearly over the steps. The baseline
model and two other variants are evaluated across multiple
experimental runs, typically more than five, with average
results reported. Statistical significance is assessed using a
Student’s t-test.

6.3. Main Results (RQ1)
To evaluate the efficacy of our proposed modifications, we
conducted a series of experiments on three distinct datasets.
The experimental setup was designed to compare the per-
formance of the baseline model (DiffuRec [1]) with two en-
hanced models: one incorporating cross-attention alone and
another combining cross-attention with Offset Noise. Each
experiment was repeated five times with different random
seeds to ensure the robustness and reliability of the results.
Our objective was to determine whether these modifications
led to performance improvements.

Comprehensive details of the experimental configurations
and the average outcomes for each model are provided in
Tables 1, 2, and 3.

Table 1
Comparison of DiffuRec and its Variants

Model Version Cross Attention Offset Noise

DiffuRec (Baseline) - -
Modified Version 1 ✓ -
Modified Version 2 ✓ ✓

Table 2
Convergence Training Time in Seconds

Model Movielens Toys Beauty

Baseline 65312.18 7458.10 8734.22
Modified V1 30612.66 4470.52 6776.10
Modified V2 27283.95 4623.85 6468.38

According to the results shown in Table 4, these subtle
modifications led to a significant average accuracy improve-
ment of 1.5% compared to the baseline model. For each
dataset, the p-values from the paired t-tests were below the
conventional significance threshold of 0.05, indicating that
the performance differences between the extended mod-
els (Modified V1 and Modified V2) and the baseline (Dif-
fuRec) are statistically significant across all datasets and
metrics tested. Furthermore, the new variants not only out-
performed the baseline but also reduced training time by
approximately two-thirds, underscoring the effectiveness
of our enhancements.

https://github.com/RUCAIBox/RecSysDatasets
https://github.com/RUCAIBox/RecSysDatasets

Table 3
Average Performance and Standard Deviation Over Multiple Ex-
periments: Modified Versions vs. DiffuRec (Baseline)

Dataset Metric Modified V1 Modified V2 DiffuRec

Beauty

HR@5 0.0669±0.0018 0.0667±0.0014 0.0557
HR@10 0.0974±0.0021 0.0980±0.0012 0.0790
HR@20 0.1399±0.0023 0.1400±0.0019 0.1110

NDCG@5 0.0458±0.0012 0.0458±0.0010 0.0400
NDCG@10 0.0556±0.0012 0.0559±0.0009 0.0475
NDCG@20 0.0663±0.0011 0.0665±0.0010 0.0556

Movielens-1M

HR@5 0.1940±0.0029 0.1957±0.0035 0.1797
HR@10 0.2829±0.0027 0.2843±0.0043 0.2626
HR@20 0.3947±0.0044 0.3958±0.0039 0.3679

NDCG@5 0.1319±0.0022 0.1319±0.0017 0.1212
NDCG@10 0.1607±0.0012 0.1605±0.0019 0.1479
NDCG@20 0.1888±0.0080 0.1886±0.0013 0.1744

Toys

HR@5 0.0692±0.0025 0.0684±0.0018 0.0557
HR@10 0.0986±0.0035 0.0971±0.0019 0.0746
HR@20 0.1371±0.0043 0.1350±0.0010 0.0984

NDCG@5 0.0458±0.0010 0.0455±0.0013 0.0417
NDCG@10 0.0553±0.0012 0.0548±0.0013 0.0477
NDCG@20 0.0650±0.0010 0.0643±0.0013 0.0537

Table 4
Paired t-test Results between Variants and Baseline

Dataset Compared Model t-statistic p-value Avg. Diff.

Beauty
Modified V2 3.9853 0.0105 1.3845%
Modified V1 4.0182 0.0101 1.4029%

Movielens-1M
Modified V2 6.8432 0.0010 1.6575%
Modified V1 6.5228 0.0013 1.7198%

Toys
Modified V2 3.1720 0.0248 1.6547%
Modified V1 3.1530 0.0253 1.5553%

The comparison between the two extended models re-
veals that while the introduction of the cross-attention mech-
anism consistently improved performance across various
scenarios, the impact of adding offset noise was more vari-
able. Although offset noise occasionally enhanced perfor-
mance compared to the cross-attention-only model, in some
cases, the difference was minimal. Notably, extended train-
ing with offset noise did not lead to overfitting and instead
promoted better generalization; however, this did not al-
ways translate into substantial performance gains.

6.4. Overall Comparison (RQ2)
Table 5 presents a comprehensive comparison of our
diffusion-based recommender system model, DiffuRecSys,
with various conventional methods [19, 33, 34, 35, 36, 2, 37]
across three public benchmark datasets. The results demon-
strate that the diffusion-based approach consistently out-
performs all conventional models on both sparse datasets
(e.g., Beauty, Toys) and dense dataset (e.g., ML-1M). This
performance improvement is attributed to several key fac-
tors, including the use of Probabilistic Item Representations,
which involves sampling from random Gaussian noise to
effectively model the uncertainty of user behaviors in real-
world scenarios. Additionally, by applying noise to the
target item rather than the entire sequence, crucial infor-
mation related to user preferences is preserved. Finally, the
Diverse Inference Strategy introduces variability into the
recommendation results, further enhancing overall perfor-
mance.

Figure 3 shows the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) visualization of the last target item for each
user across different datasets, including Beauty, Toys, and

Figure 3: The Reconstructed Target Item Distributions after
applying clustering for different users across various datasets.

Figure 4: Amazon Beauty dataset

Figure 5: Amazon Toys dataset

Figure 6: Movielens1M dataset

ML-1M. This visualization provides insights into the dis-
tributions of the reconstructed target items across various
user groups and datasets.

6.5. Case Study (RQ3)
In line with previous studies [38, 39, 40, 35], we classified the
top 20% most frequent items as head items and designated
the remainder as long-tail items for performance evaluation.
The model exhibits reduced performance on long-tail items
compared to head items, highlighting a persistent challenge
in recommending less frequent items.

Additionally, we categorized the Amazon Beauty and

Table 5
Overall performance of different methods for the sequential recommendation. The best score and the second-best score in
each row are bolded and underlined, respectively. The last column indicates improvements over the best baseline method.

Dataset Metric GRU4Rec SASRec BERT4Rec STOSA ACVAE VSAN MFGAN CL4SRec DuoRec DiffuRecSys Improv.

Beauty

HR@5 0.0206 0.0371 0.0370 0.0460 0.0438 0.0475 0.0382 0.0396 0.0541 0.0667 23.29%
HR@10 0.0332 0.0592 0.0598 0.0659 0.0690 0.0759 0.0605 0.0630 0.0825 0.0980 18.79%
HR@20 0.0526 0.0893 0.0935 0.0932 0.1059 0.1086 0.0916 0.0965 0.1102 0.1400 27.04%
NDCG@5 0.0139 0.0233 0.0233 0.0318 0.0272 0.0298 0.0254 0.0232 0.0362 0.0458 26.52%
NDCG@10 0.0175 0.0284 0.0306 0.0382 0.0354 0.0389 0.0310 0.0307 0.0447 0.0559 25.06%
NDCG@20 0.0221 0.0361 0.0391 0.0451 0.0453 0.0471 0.0405 0.0392 0.0531 0.0665 25.24%

Toys

HR@5 0.0121 0.0429 0.0371 0.0563 0.0457 0.0481 0.0395 0.0503 0.0539 0.0684 21.49%
HR@10 0.0184 0.0652 0.0524 0.0769 0.0663 0.0719 0.0641 0.0736 0.0744 0.0971 26.27%
HR@20 0.0290 0.0957 0.0760 0.1006 0.0984 0.1029 0.0892 0.0990 0.1056 0.1350 27.84%
NDCG@5 0.0077 0.0248 0.0259 0.0393 0.0291 0.0286 0.0257 0.0264 0.0340 0.0455 15.78%
NDCG@10 0.0097 0.0320 0.0329 0.0460 0.0364 0.0363 0.0328 0.0339 0.0406 0.0548 19.13%
NDCG@20 0.0123 0.0397 0.0368 0.0519 0.0432 0.0441 0.0381 0.0404 0.0472 0.0643 23.89%

Movielens-1M

HR@5 0.0806 0.1078 0.1308 0.1230 0.1356 0.1220 0.1275 0.1142 0.1679 0.1957 16.56%
HR@10 0.1344 0.1810 0.2219 0.1889 0.2033 0.2016 0.2086 0.1815 0.2540 0.2843 11.93%
HR@20 0.2081 0.2745 0.3354 0.2724 0.3085 0.3015 0.3166 0.2818 0.3478 0.3958 13.80%
NDCG@5 0.0475 0.0681 0.0804 0.0810 0.0837 0.0751 0.0778 0.0705 0.1091 0.1319 20.90%
NDCG@10 0.0649 0.0918 0.1097 0.1040 0.1145 0.1007 0.1040 0.0920 0.1370 0.1605 17.15%
NDCG@20 0.0834 0.1156 0.1384 0.1231 0.1392 0.1257 0.1309 0.1170 0.1607 0.1886 17.36%

MovieLens-1M datasets into five groups based on sequence
length percentiles to assess model performance across dif-
ferent sequence lengths. In the Amazon Beauty dataset,
the model generally performs better on longer sequences,
as most sequences are relatively short. Conversely, in the
MovieLens-1M dataset, performance gradually decreases
as sequence length increases. This pattern suggests that
shorter sequences may lack sufficient information to ac-
curately predict user preferences, while excessively long
sequences introduce challenges for model performance.

To further enhance recommendation performance, we
propose averaging the predictions generated from different
random seeds, akin to ensemble methods. This approach
likely improves performance by accounting for various as-
pects of behavioral uncertainty through the aggregation
of diverse recommendation outcomes. By leveraging this
strategy, we can enhance the model’s performance on very
long, short, or low-frequency items. Based on these find-
ings, we propose an efficient inference procedure, detailed
in Algorithm 3.

Algorithm 3: Efficient inference of 𝑖𝑢𝑛+1 for user sequence 𝑠𝑢

Input: Inference sequence s𝑢 = [i𝑢1 , . . . , i
𝑢
𝑛], sequence

length 𝑁 , diffusion steps 𝑇 , random seeds list
seeds

Output: Average probability distribution
1 for 𝑖 = 1 to |seeds| do
2 Fix random seed as seeds[𝑖];
3 Sample Gaussian noise 𝜖 ∼ 𝒩 (0, 𝐼);
4 Calculate x0

𝑛 via 𝑞𝜑(x
0
𝑛 | i𝑛);

5 Calculate x𝑇
𝑛 via 𝑞(x𝑇

𝑛 | x0
𝑛);

6 Predict x0
𝑁 via 𝑓𝜃(x

𝑇
𝑁 , 𝑇);

7 Obtain distribution p𝑖 ← �̂�(i𝑁+1 | x0
𝑁);

8 return 1
|seeds|

∑︀|seeds|
𝑖=1 p𝑖

7. Conclusion
This work addresses the challenge of sequential recommen-
dation systems, where existing single vector-based repre-
sentations often fail to effectively capture the temporal dy-
namics and evolving user preferences. The introduction of
diffusion models in sequential recommendation provides a
more suitable framework for modeling the latent aspects of
items and users’ multi-level interests.

In particular, our work enhanced the Diffusion Recom-
mender model, DiffuRec, by incorporating cross-attention
mechanisms between historical user interactions and target
items within the Approximator component of the model
architecture. This addition allows the model to dynamically
weigh historical user interactions to target items, leading to
more nuanced and context-aware representations. Addition-
ally, we introduced offset noise into the diffusion process
to improve model robustness, resulting in the new model,
DiffuRecSys. Another area of interest is the exploration of
guided diffusion models to further improve the accuracy
and relevance of user preference modeling.

Our experiments demonstrate the effectiveness of Dif-
fuRecSys. However, validating its performance across a
diverse range of datasets and domains is essential for estab-
lishing its generalizability. As the field of recommendation
systems continues to evolve, we believe our work will in-
spire further innovations and applications in user-centric
recommendation technologies. In conclusion, DiffuRecSys
represents a novel and effective advancement in sequential
recommendation, setting a new standard for intelligent and
personalized recommendation systems.

References
[1] Z. Li, A. Sun, C. Li, Diffurec: A diffusion model for

sequential recommendation, ACM Transactions on
Information Systems 42 (2023) 1–28.

[2] W.-C. Kang, J. McAuley, Self-attentive sequential rec-
ommendation, in: 2018 IEEE international conference
on data mining (ICDM), IEEE, 2018, pp. 197–206.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Gen-
erative adversarial networks, Communications of the
ACM 63 (2020) 139–144.

[4] D. P. Kingma, M. Welling, Auto-encoding variational
bayes, arXiv preprint arXiv:1312.6114 (2013).

[5] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilis-
tic models, Advances in neural information processing
systems 33 (2020) 6840–6851.

[6] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan,
S. Ganguli, Deep unsupervised learning using nonequi-
librium thermodynamics, in: International conference
on machine learning, PMLR, 2015, pp. 2256–2265.

[7] R. Cai, G. Yang, H. Averbuch-Elor, Z. Hao, S. Belongie,
N. Snavely, B. Hariharan, Learning gradient fields for
shape generation, in: Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part III 16, Springer, 2020, pp.
364–381.

[8] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi,
T. Salimans, Cascaded diffusion models for high fi-
delity image generation, Journal of Machine Learning
Research 23 (2022) 1–33.

[9] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi,
D. J. Fleet, Video diffusion models, Advances in Neural
Information Processing Systems 35 (2022) 8633–8646.

[10] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen,
Hierarchical text-conditional image generation with
clip latents, arXiv preprint arXiv:2204.06125 1 (2022)
3.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Om-
mer, High-resolution image synthesis with latent dif-
fusion models, in: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
2022, pp. 10684–10695.

[12] M. Sato, S. Takemori, J. Singh, T. Ohkuma, Unbiased
learning for the causal effect of recommendation, in:
Proceedings of the 14th ACM conference on recom-
mender systems, 2020, pp. 378–387.

[13] W. Wang, F. Feng, X. He, L. Nie, T.-S. Chua, Denoising
implicit feedback for recommendation, in: Proceed-
ings of the 14th ACM international conference on web
search and data mining, 2021, pp. 373–381.

[14] P. Lops, M. De Gemmis, G. Semeraro, Content-based
recommender systems: State of the art and trends,
Recommender systems handbook (2011) 73–105.

[15] G. Linden, B. Smith, J. York, Amazon. com recom-
mendations: Item-to-item collaborative filtering, IEEE
Internet computing 7 (2003) 76–80.

[16] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based
collaborative filtering recommendation algorithms, in:
Proceedings of the 10th international conference on
World Wide Web, 2001, pp. 285–295.

[17] R. Burke, Hybrid recommender systems: Survey and
experiments, User modeling and user-adapted inter-
action 12 (2002) 331–370.

[18] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Fac-
torizing personalized markov chains for next-basket
recommendation, in: Proceedings of the 19th interna-
tional conference on World wide web, 2010, pp. 811–
820.

[19] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk,
Session-based recommendations with recurrent neural
networks, arXiv preprint arXiv:1511.06939 (2015).

[20] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang,
P. Zhang, D. Zhang, Irgan: A minimax game for uni-
fying generative and discriminative information re-
trieval models, in: Proceedings of the 40th Interna-
tional ACM SIGIR conference on Research and Devel-
opment in Information Retrieval, 2017, pp. 515–524.

[21] B. Jin, D. Lian, Z. Liu, Q. Liu, J. Ma, X. Xie, E. Chen,
Sampling-decomposable generative adversarial recom-
mender, Advances in Neural Information Processing
Systems 33 (2020) 22629–22639.

[22] J. Ma, C. Zhou, P. Cui, H. Yang, W. Zhu, Learning dis-
entangled representations for recommendation, Ad-
vances in neural information processing systems 32
(2019).

[23] D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara,
Variational autoencoders for collaborative filtering, in:
Proceedings of the 2018 world wide web conference,
2018, pp. 689–698.

[24] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen,
I. Sutskever, M. Welling, Improved variational infer-
ence with inverse autoregressive flow, Advances in
neural information processing systems 29 (2016).

[25] A. Q. Nichol, P. Dhariwal, Improved denois-
ing diffusion probabilistic models, arXiv preprint
arXiv:2102.09672 (2021).

[26] P. Dhariwal, A. Q. Nichol, Diffusion models beat gans
on image synthesis, in: Advances in Neural Informa-
tion Processing Systems, volume 34, 2021, pp. 8780–
8794.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Atten-
tion is all you need, Advances in neural information
processing systems 30 (2017).

[28] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolu-
tional networks for biomedical image segmentation,
in: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, Springer, 2015, pp. 234–241.

[29] R. Strudel, C. Tallec, F. Altché, Y. Du, Y. Ganin, A. Men-
sch, W. Grathwohl, N. Savinov, S. Dieleman, L. Sifre,
et al., Self-conditioned embedding diffusion for text
generation, arXiv preprint arXiv:2211.04236 (2022).

[30] R. K. Mahabadi, H. Ivison, J. Tae, J. Henderson, I. Belt-
agy, M. E. Peters, A. Cohan, Tess: Text-to-text
self-conditioned simplex diffusion, arXiv preprint
arXiv:2305.08379 (2023).

[31] X. Han, S. Kumar, Y. Tsvetkov, Ssd-lm: Semi-
autoregressive simplex-based diffusion language
model for text generation and modular control, arXiv
preprint arXiv:2210.17432 (2022).

[32] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan,
K. Li, Y. Lu, H. Wang, C. Tian, et al., Recbole: Towards
a unified, comprehensive and efficient framework for
recommendation algorithms, in: proceedings of the
30th acm international conference on information &
knowledge management, 2021, pp. 4653–4664.

[33] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding,
B. Cui, Contrastive learning for sequential recommen-
dation, in: 2022 IEEE 38th international conference on
data engineering (ICDE), IEEE, 2022, pp. 1259–1273.

[34] R. Ren, Z. Liu, Y. Li, W. X. Zhao, H. Wang, B. Ding, J.-R.
Wen, Sequential recommendation with self-attentive
multi-adversarial network, in: Proceedings of the 43rd
international ACM SIGIR conference on research and
development in information retrieval, 2020, pp. 89–98.

[35] Z. Fan, Z. Liu, Y. Wang, A. Wang, Z. Nazari, L. Zheng,
H. Peng, P. S. Yu, Sequential recommendation via
stochastic self-attention, in: Proceedings of the ACM
Web Conference 2022, 2022, pp. 2036–2047.

[36] Z. Xie, C. Liu, Y. Zhang, H. Lu, D. Wang, Y. Ding,
Adversarial and contrastive variational autoencoder
for sequential recommendation, in: Proceedings of
the Web Conference 2021, 2021, pp. 449–459.

[37] R. Qiu, Z. Huang, H. Yin, Z. Wang, Contrastive learn-
ing for representation degeneration problem in se-
quential recommendation, in: Proceedings of the fif-
teenth ACM international conference on web search
and data mining, 2022, pp. 813–823.

[38] Y. Zhang, D. Z. Cheng, T. Yao, X. Yi, L. Hong, E. H. Chi,
A model of two tales: Dual transfer learning frame-
work for improved long-tail item recommendation,
in: Proceedings of the web conference 2021, 2021, pp.
2220–2231.

[39] J. Zhao, P. Zhao, L. Zhao, Y. Liu, V. S. Sheng, X. Zhou,
Variational self-attention network for sequential rec-
ommendation, in: 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), IEEE, 2021, pp.
1559–1570.

[40] N. Sachdeva, G. Manco, E. Ritacco, V. Pudi, Sequen-
tial variational autoencoders for collaborative filter-
ing, in: Proceedings of the twelfth ACM international
conference on web search and data mining, 2019, pp.
600–608.

	1 Introduction
	2 Related Works
	2.1 Recommender Systems
	2.2 Generative Models

	3 Problem Statement
	4 Preliminaries
	4.1 Diffusion Model
	4.2 Sequential Recommendation

	5 Model Architecture
	5.1 Approximator
	5.2 Diffusion Phase
	5.3 Reverse Phase
	5.4 Loss Function and Rounding

	6 Experiment
	6.1 Dataset
	6.2 Experiment Setup
	6.3 Main Results (RQ1)
	6.4 Overall Comparison (RQ2)
	6.5 Case Study (RQ3)

	7 Conclusion

