Pavare triunghiulară de ordin infinit
Deși acest articol conține o listă de referințe bibliografice, sursele sale rămân neclare deoarece îi lipsesc notele de subsol. Puteți ajuta introducând citări mai precise ale surselor. Întrucât este un articol tradus, a se vedea pagina de discuție, iar articolul de origine nu are nici el note de subsol, puteți ajuta și supraveghind acel articol, iar când acolo apar note de subsol, copiați-le și aici. |
Pavare triunghiulară de ordin infinit | |
Pe modelul discului Poincaré al planului hiperbolic | |
Descriere | |
---|---|
Tip | pavare uniformă hiperbolică |
Configurația vârfului | 3∞ |
Simbol Wythoff | ∞ | 3 2 |
Simbol Schläfli | {3,∞} |
Diagramă Coxeter | |
Grup de simetrie | [∞,3], (*∞32) |
Grup de rotație | [∞,3] , (∞32) |
Poliedru dual | pavare apeirogonală de ordinul 3 |
Proprietăți | tranzitivă pe vârfuri, laturi și fețe |
În geometrie pavarea triunghiulară de ordin infinit este o pavare regulată a planului hiperbolic. Este reprezentată de simbolul Schläfli {3,∞}. Toate vârfurile sunt ideale, situate la „infinit” și văzute la limita proiecției pe discul hiperbolic Poincaré.
Simetrie
modificareO formă cu simetrie inferioară are culori alternate și este reprezentată prin simbolul ciclic {(3,∞,3)}, . Pavarea reprezintă, de asemenea, domeniile fundamentale ale simetriei *∞∞∞, care poate fi văzută cu 3 culori de linii reprezentând 3 plane de oglindire ale construcției.
Pavare colorată alternat |
Simetrie *∞∞∞ |
Circumscriere apoloniană cu simetrie *∞∞∞ |
Poliedre și pavări înrudite
modificareAceastă pavare este înrudită topologic cu șirul poliedrelor regulate cu simbolul Schläfli {3,p}.
Variante de pavări regulate cu simetrie: *n32 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sferice | Euclid. | Hiperb. compacte | Paraco. | Hiperbolice necompacte | |||||||
3.3 | 33 | 34 | 35 | 36 | 37 | 38 | 3∞ | 312i | 39i | 36i | 33i |
Pavări uniforme paracompacte din familia [∞,3] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Simetrie: [∞,3], (*∞32) | [∞,3] (∞32) |
[1 ,∞,3] (*∞33) |
[∞,3 ] (3*∞) | |||||||
= |
= |
= |
= or |
= or |
= | |||||
{∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} |
Duale uniforme | ||||||||||
V∞3 | V3.∞.∞ | V(3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞)3 | V3.3.3.3.3.∞ |
Pavări uniforme hiperbolice paracompacte din familia [(∞,3,3)]. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Simetrie: [(∞,3,3)], (*∞33) | [(∞,3,3)] , (∞33) | ||||||||||
(∞,∞,3) | t0,1(∞,3,3) | t1(∞,3,3) | t1,2(∞,3,3) | t2(∞,3,3) | t0,2(∞,3,3) | t0,1,2(∞,3,3) | s(∞,3,3) | ||||
Pavări duale | |||||||||||
V(3.∞)3 | V3.∞.3.∞ | V(3.∞)3 | V3.6.∞.6 | V(3.3)∞ | V3.6.∞.6 | V6.6.∞ | V3.3.3.3.3.∞ |
Alte pavări triunghiulare de ordin infinit
modificareO pavare triunghiulară neregulată de ordin infinit poate fi generată printr-un proces recursiv dintr-un triunghi central, așa cum se arată în figura alăturată.
Bibliografie
modificare- en John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN: 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- en H.S.M. Coxeter (). „Chapter 10: Regular honeycombs in hyperbolic space”. The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8. LCCN 99035678.
Vezi și
modificareLegături externe
modificare- Materiale media legate de pavare triunghiulară de ordin infinit la Wikimedia Commons
- en Eric W. Weisstein, Hyperbolic tiling la MathWorld.
- en Eric W. Weisstein, Poincaré hyperbolic disk la MathWorld.
- en Hyperbolic and Spherical Tiling Gallery Arhivat în , la Wayback Machine.