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Abstract— This paper discusses a broad framework
that enables the proportional distribution of rewards
to nodes within a network (global scope), which is
novelly defined as a union of trees (local scope).
In contrast to the usual flat giveaway to nodes, we
distribute wealth through trees of the network, by
starting at particular nodes and propagating the
rewards down to the other nodes. In this process,
which we call the wealth trickle, the amount of wealth
distributed to the nodes globally is proportional to
the importance of each node within the global net-
work. We establish evaluation metrics to formalise
this notion of the definition of proportionality — the
fairness metric. Through the observation of networks
that naturally possess the scale-free property, we
introduce a transformation meant to counter-balance
the unequal distribution of wealth, using a global
reward. We briefly consider two methods of combating
the adversarial gaming of parties within the network,
by involving the participants of the network in the
government process of distributing wealth. Finally,
we introduce an application of the framework in the
blockchain space by describing an off-chain consensus
protocol, Proof-of-Analytics. This paper is intended
to provide a plausible solution for a problem that is
part of ongoing research.

I[. INTRODUCTION

The utility of software packages is ubiquitous in our
modern world, as evidenced by applications for numerical
computing, server management and web development. It
is an undeniable fact that the software being built these
days is becoming more and more integrated. A particular
web application can have hundreds of core dependencies,
without which the application would not exist. This
culture of reusing software is especially widespread in
open-source communities, such as Github, where soft-
ware code is easily accessed and shared. Our objective in
building this framework is to ensure that, if a particular
software receives a reward, this reward is passed on to
its dependencies, the dependencies of its dependencies,
and so forth. The idea is to reward software that has
contributed to the success of revenue-generating software
and that would not be rewarded otherwise.

What we need to ask ourselves now is this: "How
can we propagate these rewards proportionally, allocat-
ing them to software dependencies based on their level
of contribution?” and ”Under which circumstances are
these distributions fair?”. These two open-ended ques-
tions have been considered by academic literature from

different perspectives.

Fair division approaches these questions through
game-theoretic methods. A familiar example of fair di-
vision is cake-cutting. Fair division stems from the idea
of the Subjective Theory of Value, according to which
the value of a particular resource or set of resources
is subjective, depending on the players [6]. Since each
player places a different value on the resource, an optimal
equilibrium can be attained — fulfilling various definitions
of fairness, e.g. being proportionally fair, envy-free, or
pareto-optimal.

A sub-body of literature that is more current is the
study of "importance” in large networks. Search engines
have attempted to organise a large graph of web pages
by ranking them, using content and link-based analysis.
Term Frequency Inverse Document Frequency(tf-idf) and
the vector space model are used to encode a vector space
based on the textual content of documents [5]. Because
real vector spaces have natural notions of distances,
documents can be ranked according to their distances
from each other or their distances from a search query.
Link-based analyses in networks are explicitly used to
determine how ”important” or “central” a node is within
a network. Google PageRank [8] is one of the most robust
centrality measures that signal the ”"importance” of the
web page, based on the number of web pages that link
to it and the ”"importance” of those web pages.

The fields of telecommunication and wireless networks
use fairness metrics for the scheduling algorithms for
packet flows within the network as a means of prevent-
ing congestion of data flow. For example, proportional
fairness in queueing algorithms means that the rate a
particular channel receives is proportional to the cost
of delivering a packet; therefore, cheaper packets are
transferred first. This is also known as Weighted Fuair
Queueing. In economics, many indexes or measures of the
inequality of wealth distribution have been developed,
such as the Gini Coefficient, the Theil Index, and the
Diversity Index. Each of these indexes is based on some
statistical justification that represents the assumption
of an equal distribution of wealth, without concern for
identifying players with a particular share.

Although much literature appears to be hoping that
a solution to the problem has already been devised, the
problem persists in its unique nature — the duality of a
network and many trees within the network, whereby



different trees receive different rewards. Furthermore,
wealth distribution in reputation-based systems, such as
PageRank, is very unequal by nature. Reward alloca-
tions based on some value judgment of ”importance”
systemically lead to particular reward collectors receiving
disproportionate amounts of rewards; this deviates from
our intuitive judgment of equality. Therefore, we propose
a two-step reward system that maintains the propor-
tionality of wealth based on ”importance” and adjusts
inequalities through a global reward. This resembles the
common nature of a mixed economy, where people are
rewarded in a competitive environment based on their
“importance” to a sub-economy, while government inter-
ventions are used to aid people who lack opportunities.

II. PROBLEM STATEMENT

In this section, we formalise the problem. Since the
reward is distributed in two different ways, we define
actions for particular rewards in two different scopes: a
local scope and a global scope. A scope is simply a space
where action occurs. The conventions we will use for the
rest of the paper distinguish between the actions of each
scope.

A. Graph Tree (Local Scope)

The local scope is a directed tree graph, G structure.
We use the word local to emphasize the context, meaning
that the tree is a small part of a larger network. The
graph has directed edges, which indicate that a node
”is dependent on” another node, similar to package
dependencies in software. The equation below expresses
the i-th tree in terms of its set of nodes and edges.

g' = (V(¢"). E(G") (1)

In a local scope, the root node becomes the source of
incoming wealth, where the reward arrives before it is
distributed to the dependencies. Each node carries a set
of attributes, which are:

1) The proportion that determines the reward to be
received by the node itself, 7. We can possibly make
7 a function of the node located in a tree. For
simplicity, this parameter is fixed for all nodes in
the local scope (and the global scope).

2) The proportion that determines the reward to be
passed on to and received by the first-level depen-
dencies: p, also known as a branch attribution. For
now, we assume that this is the final branch attri-
bution. In the context of filtering, these proportions
may be referred to differently — section V-B

It is possible for a node to be a member of more than
two different trees; therefore, it is essential to know which
local scope is being referred to, because a node may have
more than two different sets of node attributes.
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Fig. 1. Local scope(a tree) with random node ID’s. Node 2 is
the root node. The weights placed on the edges are the branch
attributions — see section II-D

B. Network (Global Scope)

A network, &, is a union of graph trees and refers to
the global scope of our space. Although the operation
of union is well defined for edges and vertices, it is
not for the node attributes. The node attributes are
excluded, because there is no purpose in preserving the
information at the global scope. The network becomes
a simple, directed, and unweighted graph. We make the
assumption that no two nodes can have edges pointing
to each other, thereby avoiding the formation of circular
dependencies

£€= UQZ (2)

§=(V(£),E(©)) (3)
C. Reward

Our model distributes rewards. Here, we define the
type of reward actions that take place. Note: The words
"wealth” and "reward” are used interchangeably. There
are two types of rewards, and their difference lies in the
scope.

1) Local Reward: The reward given to a node in
the local scope, as a result of incoming wealth to
the root node. Because rewards are passed down
each branch of a tree, more than one node in the
local scope receives one. And the reward received
by a particular node is determined by the node
attributes of its parent — see section II-E

2) Global Reward: The reward given to every node
in the network as a flat giveaway. The global reward
acts as a wealth-adjusting policy, which resolves
severe imbalances in the distribution of wealth.
This is also known as the "diversity reward”.

The rewards are given in sequence — beginning with all
the local rewards, followed by the global reward. Both



rewards will alter the total distribution of wealth within
the network.

D. Type of Attribution

An attribution is a proportion determining how much
a node deserves, given that some wealth is to be divided
amongst a set of nodes. For simplicity, we refer to an
attribution as a vector of proportions and not only a
single proportion, i.e. all components of an attribution,
summed up, equal 1. There are two types of attribution:
The global attribution and the branch attribution.

1) Global attribution: The attribution to the net-
work, which determines the global reward of each
node in the network, by multiplying the wealth
given to the network with each node’s attribution.

2) Branch attribution: The attribution that deter-
mines the reward to be passed down to and received
by the first-level dependencies: p. The word branch
refers to a single branch of a tree. Because one
attribution targets a single branch of nodes, there
are several branch attributions within a local scope.

E. Wealth Trickle

In this section, we consider the fundamental building
blocks of the network — the tree structure and the way
in which rewards are propagated from the root node to
its branches. We call this mechanism the wealth trickle;
this is how rewards are distributed in the local scope.
Essentially, wealth obtained by the root node "trickles”
down the tree, whereby each participating node obtains
a portion of the wealth coming from the root node, after
its ancestors have received their share. If the remaining
wealth passes a branch, it is divided according to the
branch attribution encoded by the branch’s parent.

The notation to locate a node in the i-th tree needs to
specify the j-th layer, the k-th branch in the j-th layer,
and the l-th node in the k-th branch of the j-th layer,
i.e. xR If 297k ig specified, one unique path exists to
connect it with the tree’s root; the length of the path is
its layer index, j. Each index begins at 0. In the global
scope, the labels for the trees are not unique; one node
may have more than one index label. Yet, there is only
one instance of the node acting as a root node. That
being said, the labels are important for all rewards in
the local scope.

In the wealth distribution system, the root node of
the tree, %0 receives a wealth of W90 Consider
an arbitrary node z%*. z7% takes 7Y% of the wealth,
W4kl being what it receives. After node 2% receives
Wikl it passes down (1 — 7UF)W¥k to its depen-
dents. In particular, node z*17 receives W#+lrs —
(1 — 7kypis+lrsyijkl  where r and s are valid indexes
corresponding to layer j. p” 175 is a component of the
branch attribution p¥¥ and part of the node attribute
of 27k More generally, the wealth retained by z** as
part of the local reward can be written as:

Wzgkl _ WzOOOTijkl H (1
qrs|i€ Path(ijkl)

_ Tiqrs)piqrs (4)

Path() denotes the path from 2?°% to z%/*. The formula
above should not be over-complicated by the notation, as
it is simple arithmetic whilst passing wealth down every
node of a tree. There exists a point at which the wealth
being passed down equals a very small number € and is
negligible; therefore, we should halt the transversal of
the tree when this condition is fulfilled. This is useful for
computation concerns as well.

S OWUT <€ (5)

rs|ij

It is observed that the wealth depletes, as it is passed
further and further down the tree. Depending on the
values of ps for a particular layer, more branches lead to a
higher rate of depletion of wealth. Almost instantly, there
exist many parallels to a probability tree with discrete
outcomes, since W% and 7kl qus|i€Path(ijkl)(1 —
797%) are simply constants. Therefore, the wealth 2%
obtains simply consists of these two constants, multiplied
by the “probability” of the event of node x”* occur-
ring. The computation of ”probabilities” can be easily
executed by multiplying a weighted adjacency matrix by
itself. Since we are multiplying the trickling wealth by a
proportion, the wealth trickle never truly depletes; there
exists a residual wealth, r?. We have two options: We can
either send 7 to the global reward pool or recycle r* and
use the wealth trickle again. This is a design decision,
depending on whether equality or fairness is preferred.
If the former is chosen, more wealth will be allocated
with the aim of reducing wealth inequality. If the latter
is chosen, more wealth will be allocated to nodes located
higher in the tree. We treat this section as a formalism
of the framework and it is used for further reference.

F. Evaluation Metrics

It is incumbent on the writer to establish a metric our
model is judged by, or at least clarify what the model
attempts to achieve in quantitative terms: There are
essentially two metrics that concern us — one pertaining
to a local reward, the other pertaining to the global
reward after all the local rewards have been issued.

Several "fairness” measures exist to measure “fair-
ness”. The double quotes around the word "fairness” are
intended to emphasize not only that the definition is
subjective, but that there are different formal definitions
in the body of literature. We use the definition of fairness
proposed by Jain, according to which a fair attribution
occurs, if each node obtains the amount of wealth that
corresponds to the cost it paid, relative to other nodes
[1]. We vary the interpretation to mean that a node’s
“importance” is inversely proportional to the cost, i.e.
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Fig. 2. Global Scope(Union of Trees) with random node ID’s,
inclusive of tree in figure 1. Size of each nodes correspond to the
cumulative wealth collected by it

if each node obtains its entitlement, the Fairness Index
will be 1. In our framework, we assume that a node’s
entitlement is its "importance” score, which reflects how
central a node is to a network — see section I1I-A. Below
is the Fairness Index, F, introduced by Jain [1].

o S WP
n i () W)?
Wt is the cumulative wealth received by node i; s’ is
the ”importance” score. The index formula is subject
to the interpretation that it reports the portion of the
population to which the attribution has been fair [1].
For instance, if $10 should be equally distributed among
a population of 10 people, but instead, only 2 people
receive $5 each, while the rest receives $0, the Fairness
Index is 0.2 (out of 1.0). This is how the Fairness Index
provides a way to measure fairness.

(6)

Mathematically, F is simply the square of
the1 COQmponents of a vector, v, where v =
(W, W B/ W is an element in the
simplex — see section ITI-B. This means that there exists

. _ 1 .
a maximum value of F' = N~ T with respect to s,

since Y (v")? has a minimum.

It is possible that, although the cumulative wealth
achieved is proportional or nearly proportional to the
“importance” score, networks have a tendency to favour
nodes that are already ”important”. This may result in
a distribution of wealth that can be very skewed and
unequal [4]. This is an occurrence of the power law, which
suggests that the shape of wealth distribution resembles
the function below.

p(x) =Cx™%, > Tpmin (7)

a > 1, typically 2 < a < 3, is a single known parameter
and C'is the normalising constant. This distribution may
be identified as a Pareto distribution. The Power Law has
much heavier tails than an exponential distribution, such
that certain events, which are impossible in the exponen-
tial or truncated normal distribution, are possible for the
Power Law. It is well known that the power law tends
to manifest frequently for web-based networks, when the
in-degree distribution of a graph is considered [10].

The inequality of wealth can be observed graphi-
cally through a Lorenz Curve [4], [11], which considers
the relationship between the fraction of nodes and the
fraction of degree value. The closer a is to 2!, the
more wealth is controlled by the smaller fraction. The
implication of this is that ”the rich get richer”, hence
the need for a global reward to counter-balance the
effects of the power law. We establish that we want the
final distribution of wealth, after all rewards have been
allocated, to follow some predecided distribution. This
is different from measuring how much an entitlement
deviates from cumulative wealth when discussing the
Fairness Index. A more recent proposal of this is a
derivation based on entropy [2], [3]. Venkat proposed
the use of an information-theoretic definition of fairness,
concluding that the least biased distribution is the log-
normal one, since it is the distribution with the highest
entropy, given some knowledge of fixed parameters [2],
[3]. The fixed parameters are chosen arbitrarily: o = %
and u, where R is the range of wealth values and a is the
significance level. The o parameter defines the desired
standard deviation for the distribution of our wealth
and p defines the average wealth 2. The distribution has
a positive support, there exists an average wealth that
is closer to its median (as compared to a power law),
and there are no probable extreme values outside of the
specified range. We expect that, after all the rewards
have been offered to the network, the wealth distribution
in each reward period reflects the shape of the log-normal
function with parameters p and o.

G. Problem

We use the terms defined in the previous sections
to state the problem here. There exist n nodes in the
network &, which is the result of the union of m different
trees, {G'};. There exist two reward types, i.e. many local
rewards and a global reward. p corresponds to a branch
attribution concerning a local reward, whereas w® is the
weight that corresponds to the global reward. s’ is the
“importance” score. In a particular reward cycle t, we
provide the network with all the local rewards first. The

Lo > 2 to ensure that the integrals in the estimate of the fraction
of wealth converge

2u and o are the standard normal parameters after the log
operation is applied.



wealth received by a particular node may be cumulative,
because the node receives wealth for both being the root
node of a tree and being in the path of other trees. Once
we have observed this distribution of local rewards, the
global reward follows. We state the problems as below:

1) Consider a particular node z°, such that z' €
V(G7).Vj. The cumulative wealth it obtains
through local rewards is W¢ = 3" y W, How can
we assign all the branch attributions in the network
{pijk}ijk, such that all scores are proportional to its
cumulative wealth? In other words, s* o > j Wi =
W3-,

2) If the "importance” score follows a power-law dis-
tribution, how can we dampen the effects of the
power law, by intervening at each branch in the
network?

3) After all the local rewards have been delivered —
given that we know {p*},;; and the cumulative
wealth distribution after all the local rewards — how
can we choose {w'};, such that the final cumula-
tive wealth distribution after the local and global
rewards is log-normal, with chosen parameters p
and o7

The key problem: Although we have an impression

of each node’s "importance” in the global scope, a node
obtains different rewards from different trees and we
must transpose our global "importance” score into a list
of branch attributions.

III. MATHEMATICAL TOOLS
A. TrustRank

In this section, we introduce the PageRank algorithm,
a popularly cited algorithm in the literature of central-
ity measures. The purpose of centrality measures and
PageRank is to identify the ”important” or ”central”
nodes in the network, by giving each node a score [12],
[13]. Our proposed model uses these PageRank scores
to derive attributions for all local rewards. Although
our algorithm follows the same underlying principles as
PageRank, we use the term TrustRank to refer to this
algorithm, because we propagate trust in a node and
deal with nodes in a network instead of web pages. In
section V-A, we use a specific application of TrustRank
to remove spam nodes?.

TrustRank is an iterative eigenvector centrality mea-
sure, meaning that the solution of node scores corre-
sponds to the dominant eigenvector  of some encoding or
adjacency matrix — more specifically, the left eigenvector
[12]. Below is the transition or trust matrix:

T:a(A+H)+¥11’ (8)
A is the adjacency matrix; H is a matrix with columns
of %7 which correspond to the columns of A that consist

3The original paper that coined the term TrustRank focuses on
spam filtering only, but we use the term more generally [18]
4the eigenvector corresponding to the largest eigenvalue

of zeroes, while the other entries are zeroes; « is the
random surfing coefficient. T" has certain properties — it is
stochastic, aperiodic, and irreducible (this is equivalent
to the definition of primitive) — ensuring that the power
method, an iterative method for finding the dominant
eigenvector, s, converges [12]. The original interpretation
of the TrustRank solution is that, under the random
surfer model, s’ represents the fraction of time spent on
a page (the sum of TrustRank scores is 1) and that pages
are able to upvote other pages by adding backlinks, which
act as a good signal for "good” pages; it is even better, if
those upvotes originate from other "good” pages [8]. This
is a natural solution for any reputation-based system.
In our context, the nodes follow the same principle,
according to which a directed edge is seen as an upvote.
It is a general convention that a node with more edges
pointing to it is scored higher, whereas a node with more
edges pointing out of it tends to spread out it’s score
more widely.

There are several reasons why TrustRank became the
chosen centrality measure. Firstly, certain measures, such
as in-degree centrality, only record first-degree influence;
TrustRank accounts for global influence. Secondly, cer-
tain parameters are adjustable, to account for the scoring
of a particular node. For example, 11’ in equation 8
can be replaced by fudge factor 1z’; the teleportation
probabilities are no longer uniform. Thirdly, TrustRank
offers an interpretation of the probability of activating
a particular node. This enables us to interpret the ”im-
portance” of every node as a composition. Compositions
are essential, because they make it possible for us to
manipulate sub-compositions, a subset of the nodes, and
preserve certain notions of geometry and interpretation
— see section III-B.

B. Vector Space on Simplex

A vector of n real numbers is conventionally studied
and evaluated in the Euclidean space, IR. Compositions
exist in a different space, called the "simplex”, which is
a subset of the real space [22], [23].

St={p : Zpi:17pi>0 Vi} (9)

The simplex is a vector space under its own binary
operations: @ perturbation (summation) and ® external
operation (scalar multiplication). These operations allow
us to construct notions of distance and the inner-product
that have interpretations similar to the Euclidean Space,
i.e. form a weighted average of two compositions, while
accounting for natural collinearity [22]. The advantage of
this is the preservation of sub-compositional coherence,
an inherent property of the simplex, which ensures the
interpretability of the sub-compositions [22]. To illustrate
this, we define closure as the division of a vector by its
sum; a typical transformation onto S™ from IR. We also
define a sub-composition as a sub-vector of a composition



that is closed. An example of sub-compositional incoher-
ence can be illustrated by using usual sum operations. We
sum two compositions with the same dimensions, p» and
pB. The incoherence occurs, because a sub-composition
of the sum is different from the result we would receive, if
we summed respective sub-compositions of pA and pB.
This leads to severe consequences, if we use Euclidean
distance, according to which a sub-composition may have
a longer distance than the original composition.

Although this may not apply completely to all parts of
our solution, we believe that, if we want to use the global
TrustRank, it may be useful — especially, if we consider
branch attributions as a sub-composition of the vector
of TrustRank scores, a composition. For example, if we
intend to form a weighted average of two compositions,
we need to perturb, rather than sum, the two components
— see section V-B. Otherwise, branch attributions will
not be consistent; if a node is removed from a branch,
for instance, the other nodes of that branch will be
unsatisfied, because the removal of one node affects their
proportional share of the wealth.

IV. MoODEL

There are many components that govern this model,
each with a specific aptitude for either satisfying evalua-
tion metrics or conforming to some interpretation. A key
assumption in our model is that the "importance” score
represents the benchmark for estimating branch attri-
butions. Below are proposed solutions to the problems
introduced in section II-G, in the corresponding order.

1) This is the most difficult problem and may be
unsolvable mathematically. In the local scope, we
need to assign branch attributions. One way to do
this is to pool all local, incoming wealth and simply
base the rewards on the TrustRank score. This
variant satisfies the requirement of proportional
attribution, but has the disadvantage of not using
a “wealth trickle” mechanism. Alternatively, we
may want the branch attribution to be a sub-
composition of the TrustRank scores. Assuming
that all nodes have incoming wealth, important
nodes — which have more paths to receive wealth
from different nodes — would obtain more, cumu-
latively. This would worsen the skew of wealth,
because those nodes would not only receive higher
proportions in the branch attribution, but more
wealth would flow through them as well. Thirdly,
we can assume that each branch attribution is
divided equally, which appears sensible too, since
“important” nodes would naturally receive more
wealth. Furthermore, the idea that each branch
attribution is divided equally is an easily inter-
pretable concept. This is the equivalent of taking
a sub-composition of a branch, when TrustRank
is run on a tree. A fourth option would be to
turn the problem into a constraint optimisation
problem, whereby the branch attributions would be

estimated with the constraints that they sum to 1
and the fairness function as the objective function
is maximised as below.

(10)

I_I)I?X Findex
{P*}ijk

Y P =1 Vi gk
l

Each W in the fairness index is a function of p’s.
This stands in contrast to the first three solutions,
which may require data to verify that they work,
since the amount of wealth a root node obtains
— if it obtains any wealth at all — is random.
Therefore, it is impossible to predict whether those
variables, along with our suggested rules of branch
attributions, fulfil the criteria of proportionality. In
comparison, this solution only requires the optimi-
sation to be accurate. But obviously, difficulty is
incurred in the optimisation problem as well — in
terms of whether the global maximum is obtained
or not or whether it will be settled with a solution
that excludes particular nodes from receiving any
wealth at all.

The TrustRank scores and, correspondingly, the
cumulative wealth of nodes in a web-type network
will follow a power law distribution. Although we
cannot confirm this empirically, we know approx-
imately that — assuming that the optimisation
solution is achieved — this will be the case, since
the tails of TrustRank have some equivalence with
in-degree distributions, which, as we know, will
follow a power law distribution [13]. A case may
arise where maintaining proportionality between
the TrustRank scores and the cumulative wealth of
nodes is of less interest; for example, if we do not
want to avoid the adverse effects of wealth inequal-
ity, which are the consequence of the power law dis-
tribution. In that case, we could weigh each branch
attribution artificially, by using information about
the number of in-degree scores or TrustRank scores.
Similar to the global reward, intervention would
occur in the local scope to reduce the inequality of
wealth, except that the wealthy nodes, in this case,
would be penalized. We would utilise a weighting
function that is either sigmoid or exponentially
shaped, such that nodes with smaller scores are
weighted higher and nodes with higher scores are
weighted lower. After multiplying a branch attribu-
tion with its weights, we would transform it back
into a composition. An example of an exponentially
shaped function for weighting is shown below.

(11)

f(s') =™
A is the shape parameter that can be adjusted

or determined by some property of the branch
attribution or the "importance” of the parent node.

(12)



3) Assuming that we obtain a power law form for the
distribution of wealth, we can transform it into a
log-normal distribution, using the transformation
below.

Winin \

W' = f(W) = exp (/L+U(I)_1 (1— ( Ij;“) >>

(19)
® is the standard cumulative normal distribution;
W is a data point from the power law distribu-
tion; W’ is the transformed data point that is
log-normal. p and o are the parameters of the
log-normal distribution (on the log scale); Tmin
and « are the parameters of the power law (or
Pareto distribution). Through this transformation,
we can derive the wealth that needs to be added
to or subtracted from every node, to obtain a log-
normal distribution. Additionally, we impose the
rules below on the global reward.

a) The ranking of the wealth of nodes does not
change. The global reward does not improve
a node’s ranking.

b) Wealth can only be added to and never sub-
tracted from a node.

V. ADVERSARIAL MEASURES

We must note a particular concern when developing
this model. Since the model involves allocating a reward
to nodes, there are potential issues regarding adversarial
gaming within the network.

This is a recurrent topic in the field of search engines,
where pages compete to reserve a higher ranking and can
be referred to as spam. For example, we see this in the
occurrence of ”link farms”. A link farm is a set of nodes,
linked together, that intends to boost its “importance”
within the hierarchy of nodes. We investigate this on the
premise that the attacker seeks a high TrustRank score,
although this is not necessarily the only motivation. In
our model, we assume that particular nodes can receive
wealth without incurring the cost of creation for a node
and that the branch attributions are estimated using our
optimisation.

We highlight the most obvious ways in which our
reward model may be exploited.

1) Artificial linking to a node close to a root node,
such that it obtains the highest score.

2) Parents creating nodes as their children, to siphon
the wealth that is passed down from them. This
occurs because there is no cost of creation for a
node.

In our model, nodes closer to wealth nodes tend to
obtain a larger portion of the rewards, since our wealth
trickle works in a hierarchical structure. Therefore, most
of the monitoring should occur near those wealth nodes.
An advantage of TrustRank is that the votes given to a
node by another node depend on not only the node’s act

of giving the vote, but also on the quality of the node
itself, i.e. on the number of votes the node itself receives.
Therefore, a very large number of artificial nodes has to
be created, in order to influence a node’s TrustRank score
— which makes unusual behaviour observable [14].

A. Spam Filtering

TrustRank can be turned into a method to combat
spam nodes. The method is based on the assumption
that it is unlikely for a non-spam node to point towards
a spam node. A small seed set of nodes in the network
is identified as trustworthy and judged by an external
scorer, based on observation of the nodes’ properties,
e.g. their GitHub profile. Then, Personalised PageR-
ank/TrustRank is run, using the trusted nodes as its
teleportation set, with uniform weights within the set
[18]. This teleportation set can be modified to have non-
uniform weights, in order to bias nodes with higher trust
scores too. The amount of trust is reduced based on a
node’s distance from a trustworthy node; therefore, nodes
that are not upvoted by trustworthy nodes will have a
lower score. Furthermore, trust is dispersed: A node that
is pointed to by a non-spam node with few outward-
pointing links will be more trusted than a node pointed
to by a non-spam node with many outward-pointing
links. Any node with a score lower than a particular
threshold will be removed from the reward distribution.
Additionally, there is an innovation of TrustRank called
Anti-TrustRank, which has been researched as well: It
simply chooses seeds of spam nodes and propagates anti-
trust as opposed to trust. This other method is based on
the assumption that nodes pointing to spam nodes are
likely to be spam nodes as well [15]. Therefore, nodes
with high anti-trust scores will be categorised as spam.

Although we do not examine it in detail, this method
can be considered, because we would merely need to
check for spam in nodes that are close to root nodes, as
they are the nodes that accumulate the biggest amount
of wealth; root nodes themselves are unlikely to be spam
nodes. Therefore, our seed set should stem from nodes
close to root nodes. An obvious concern is that, if spam
penalises a node that is artificially upvoted, it is possible
for nodes to carry out attacks on other nodes. This can
easily and very possibly occur in our model — similar to
a denial-of-service-attack, which uses unwanted traffic to
the detriment of the legitimate user. Literature makes it
clear that spam detection is no easy task; and although
many methods have been suggested, all are relatively
approximate. The methods suggested by literature tend
to favour a large amount of nodes, to cater to the nature
of the web — the majority of which is spam content.
At least, we do not expect our network to be as spam-
infested.

Once exploited nodes have been removed, we can
robustify the wealth signals through a technique called
"Branch Filtering”. Parents can voice their opinions on
the size of a branch attribution, which are compared to



the estimated branch attribution, to yield a weighted
estimate — see section V-B.

B. Branch Filtering

Estimates of branch attributions from the network
may be noisy. Therefore, recommendations from the
parents can provide a better signal regarding the chil-
dren’s entitlements. Filtering is a method to weigh out
branch attribution scores (by estimation) and the branch
attribution recommended by the parent node, which is

known as the user attribution.

We introduce the notation of the user attribution u**

and the filtered branch attribution p*/*. 5 represents the
filtering function. The branch attribution p** appears
as before, being determined by the estimation of p, with
respect to the objective function. We add indexes that
represent the states at different times, denoted by t. All
these vectors are compositions.

R
n(ud, pe) = p¢ (14)

The filtered branch attribution can be described as the
best estimate of the correct branch attribution, according
to historical data. The rules that govern the filtering
formula derived and described below are as follows:

1) Missing User’s Opinion: If the user attribution
is non-existent at time ¢, the filtered attribution at
time ¢t — 1 (or the branch attribution at time ¢, if
the former is unavailable) is the best estimate.

2) Agreement: If the user attribution and the branch
attribution agree at time ¢, the filtered branch attri-
bution should be confirmed with low variance and
have strong inertia. When the user attribution at
time t agrees with the previous filtered attribution
at time t — 1, it is automatically the best estimate
of the branch attribution.

3) Disagreement: If the user attribution and the
branch attribution disagree at time ¢, the best
estimate of the branch attribution is a weighted
average between the filtered branch attribution at
time ¢ — 1 and the user attribution.

4) Volatility: Any past and frequent disagreements
between branch attributions and user attributions,
as well as between branch attributions (or user
attributions) and previous filtered branch attribu-
tions, will make the best estimate uncertain. Based
on past data, the weights encode the preference,
determining whether to prefer the filtered branch
attributions at time ¢ — 1 or the user attributions
at time ¢.

These rules ensure that neither the user nor the net-
work structure has full autonomy in determining the
estimated composition. We can easily form a piecewise

~ijk Lo ijk Lijk
formula of Py, as weighting elements u; ,and pg_;.

p* (OR pi*), if condition 1
uijk, B: = Bi—1 — 0.05 if condition 2a
pijk) By = Bi—1 + 0.05 if condition 2b
f)itjk — u?k if condition 2c
Pk B, = B,_1 —0.025 if condition 3a
f’ijk» B¢ = Bi—1 +0.025 if condition 3b
_ijk

ok Otherwise

where ﬁijk =50 f)ijfl S(1-p)06 uijk. The conditions
are listed below.
1) Condition 1: ul® is missing
2) Condition 2: T(d(pH* & ul*)) < ks
a) AND T(d(uf*opys,)) < ko AND T(d(pg o

)

b) AND T(d(uf*epi¥,)) > ko AND T(d(pP*e
Pes1)) < M1

¢) AND T(d(uf*cpi¥,)) < ke AND T(d(pi*c
Pee1)) < M1

3) Condition 3: T(d(pitjk o uitjk)) > K3
a) AND T(d(uf*cpP,)) < ko AND T(d(pJ*c

pla) > ,
b) AND T(d(uf*opl*,)) > ko AND T(d(pi* o
IS:;JEI)) < K1

d is the distance operator defined on the simplex; [;
is a weighted number; T is a sigmoid-shaped mapping
from the IR to (0,1). k1, K2, and k3 are constants in
(0,1). There is good reason to use the simplex vector
space. In a practical setting, there may arise a problem,
whereby a particular node is deemed unworthy of a
reward and has to be removed. To account for the change
in dimension from time ¢ — 1 to ¢, we need only consider
a sub-composition of the ﬁ;fl to match the dimensions
of ﬁij " and ﬁij % There will be no inconsistency in the
proportions that would otherwise be held by a particular
node because sub-compositional coherence is preserved
[22]. In the case where the dimensions of the attributions
increase, we resolve this by turning pijfl into pitjk. This
situation is not ideal because the same coherence for a
reduce in dimension is not preserved. However, it can be
argued that this change is induced by the parent and not
the spam filter.

As we construct our filtering function, placing trust in
the hands of the parent nodes can also invite opportu-
nities for gaming the system. A worrying example is a
parent’s option to recommend that all the wealth in the
branch be given to a particular child node. Therefore,
we also weigh in the past history of agreement between
the user attribution and the branch attribution, to reach
the most informed composition, as shown by the third
condition.

Further work in filtering can lie in applying the
Kalman filter [24]. A Kalman filter is a state-of-the-art
filter on time series that has some normality assumption



5. However, a Kalman filter operates in the real dimen-
sion; but this can be resolved by using isometric log-ratio
coordinates, which preserve all the elegant properties of
the simplex vector space we have defined. When using
the Kalman filter, an online parameter estimation of
variances will aid in the incorporation of inertia and
weighting in the time series, i.e. if the user attribution
and the branch attribution agree, the variance of the
branch attribution will be reduced and the filtered at-
tribution will have a higher resilience in following the
branch attribution.

VI. FURTHER WORK

This document’s objective is to specify the problem
and orientate the framework; although many unanswered
details remain. Much additional work must be commis-
sioned for further investigation of the problem.

A. Research Notes

This section explicitly records the uncertainty of the
author and the risks with regards to the philosophy and
implementability of the methods. We highlight possible
research directions.

e Optimisation Optimisation with many equality
constraints can be a considerable problem. The fair-
ness metric is not a convex function; therefore, it is
uncertain if a global optimum can be achieved [27].
In fact, there is a good chance that estimation of
branch attributions is not best performed through
optimisation. We stated in section IV that — as
an alternative to optimisation — we can employ
simple rules in determining the branch attribution.
However, the question of whether, through these
simple rules, wealth is distributed proportionally,
based on ”importance”, cannot be answered with-
out empirical verification. The investigation may be
continued as data becomes available — see seventh
bullet point.

¢ Global Importance TrustRank discovers the ”im-
portance” of a node globally, but not locally. This in-
troduces the debate on whether or not nodes should
be allocated local rewards based on their global
“importance”. Our adjustments, such as weighting of
the branch attribution and filtering, make it difficult
to anticipate if the proportionality with TrustRank
scores will be achieved — which begs the question:
Are the TrustRank scores even relevant, when the
signal of "importance” derived from them becomes
overshadowed, as nodes interact with one another?

e Adversarial Measures The filtering and
TrustRank solutions are relatively adversarial
[18], [21]. Since we do not impose stringent rules on
the participation in the network and the creation

5A normality assumption is not typically important. Otherwise,
options like the unscented or extended Kalman filter are available.
The particle filter is another option, but the use of random number
generation will make the application a computational challenge

of links within the nodes, this may give rise to the
emergence of spam nodes. Therefore, in a typical
application, the adversarial issues have to be given
attention, including careful consideration of the
way in which nodes participate in the network.
Additionally, the solutions by Anti-TrustRank
would not only require TrustRank scores to
be re-computed (which is expensive), but also
involve monitoring by particular authorities who
are accustomed to identifying spam, leading to
overhead costs [15]. Apart from the simple rules
with available data, we have not explored any
game-theoretic methods that may be useful, such
as approaches to resource allocation networks,
which would enable us to understand the incentives
and equilibria involved in inter-node relationships
[29], [30]. Within the sub-field, the evolutionary
game-theoretic perspective may be utilised, when
it comes to nodes that are acting in not only a
profit-maximising fashion, but a charitable fashion
[40].

Global Reward Although the global reward iden-
tifies the discrepancy between the wealth of nodes
under the power law and the log-normal distribu-
tion, it does not promise that we transform the
data sufficiently to reach a log-normal distribution,
especially if the global rewards are limited. In fact,
we are skeptical that it is possible to accurately
map two distributions of different shape. Therefore,
an approximate solution that is not mathematically
verifiable has to be devised to distribute wealth.
In this case, partitioning wealth nodes into classes
and rewarding corresponding classes a portion of
the global reward pool may be a possible solution
although not all the rules mentioned in section IV
may be fulfilled, i.e. the ranking of nodes is not
preserved.

Complexity Computational complexity is also a
concern. Although it is possible for all methods to
run at computationally feasible times, the simulta-
neous computation of TrustRank, Anti-TrustRank,
wealth trickle, optimisation, and filtering — in order
to produce all the branch attributions — may take
too long, depending on the application at hand. A
possible solution is to partition the computational
load, such that this work can be performed in a
distributed manner. For example, many efforts have
been made to speed up the computation of a Monte
Carlo approximation of TrustRank by distributing
work using Hadoop MapReduce [28]. The filtering
process is easily parallelisable, because the opera-
tions resemble linear algebraic operations, which is
typical in parallelisation through particle filters or
Kalman filters [34], [35]. Regarding the partition-
ing of the workload, there is well-studied literature
that suggests ways of getting different servers to
communicate with each other through consensus



algorithms, such that, even when particular servers
fail, the majority of them reach a consensual decision
[34].

o Sequential Nature of Networks Assuming that
the application considers growing networks through
time, in order to save computation, we want to
avoid any re-computation and preserve existing in-
terpretations. The compositional analysis of filter-
ing, in section V-B, for example, correctly addresses
a reduction in dimension of a particular branch
attribution; but for an increase in dimension, the
information filter has to be restarted, meaning that
all past information is lost. It is well-known that
TrustRank is difficult to compute sequentially too;
and although several methods — such as aggregation
— exist, they only provide approximate solutions [33].

o Availability of Data Perhaps the biggest game
changer in our research will lie in the availability of
user data — whether it is simulated or real data. It
is possible to perform data simulation, resulting in a
global TrustRank score, with or without power laws,
via random graph generation models. Amongst these
models are preferential attachment models [31] and
the Watts-Strogatz Model [32]. We can then perform
a breadth-first search to form a tree based on a ran-
domly selected node, in order to accumulate our list
of local tree structures, although not all of the trees
need to be discovered. We can then fabricate wealth
on each tree’s root-node by simulating a distribu-
tion that is conditional on In-Degree or TrustRank
scores. For real data, we plan to make use of the
tree dependency structure in the "Node Package
Manager” (NPM) registry as a way to evaluate our
model. The NPM API readily provides a method to
extract tree dependency, with each software project
containing an identification index [37]. The only
work required is in taking the union of trees, which
is a well-known operation in any graph software.
For example, igraph in R provides the function of
union, as long as we maintain a unique identifier
from each software project as a string [38]. The NPM
dependency network is a large structure; therefore, it
may be suitable for us to exclude particular software
projects that are redundant via a sort of URL-type
processing, which is common in the web-indexing
literature. The availability of data enables us to
confirm our model empirically. All the simple rules
on branch attribution and filtering can be used and
cross-checked with the TrustRank scores and the
fairness metric.

B. Proof-of-Analytics

Decentralisation has been a recurring topic in terms
of advancements in blockchain technology. We introduce
a plausible application; our framework is applied to fa-
cilitate and complement applications on the blockchain,
particularly on the Ethereum platform. The blockchain

is a decentralised ledger that is maintained and secured
by a distributed network of computers. In the Proof-of-
Work protocol ¢, the ledger is secured through a crypto-
graphical hash, which ensures that data encoded into a
block cannot be changed. Miners — who are participants
in the network — compete with other miners to secure a
particular block of transaction, by solving this difficult-
to-compute cryptographical hash and obtain a reward
from it, which is an incentive to keep the network secure.
Any tampering with created blocks will be rejected by
the network of nodes — both socially and economically
— because only valid blocks are accepted, assuming that
the majority of the hashing power originates from hon-
est actors. Proof-of-Work has thus far been the gold
standard in blockchain protocol algorithms, although
this is not the only protocol that has been developed;
others are Proof-of-Stake, Proof-of-Importance, Proof-of-
Useful-Work, Proof-of-Burn, and many more. Extensive
research has been trying to find the best protocol to reach
a consensus within the network of nodes, such that ad-
versarial intervention can be depleted and centralisation
is impossible.

One of the popular platforms that execute their own
blockchain is known as Ethereum. Ethereum is a code-
base that runs a blockchain under the Proof-of-Work
protocol, although there are plans to switch to Proof-
of-Stake in the near future. Ethereum has successfully
applied smart contracts to form contractual agreements
between peers in the blockchain, but there are several
issues concerning the practical implementation of smart
contracts: The expensive gas prices make it infeasible
to perform recursive computation in any smart-contract
code, data is not readily available within the blockchain
network, verification is done by ALL nodes in the net-
work (which requires a lot of computation), and the API
for external data has to be verified to ensure that the
data comes from a trusted source. A popularly proposed
solution for these problems is to enable the use of oracles.
Oracles are simply middleware that can interact with the
blockchain; they can be used for computationally inten-
sive work or to fetch data from external data sources,
hence enriching the application space that would other-
wise be restrictive [39]. Until the development of further
blockchain protocols to deal with heavy computational
systems, applications are only tractable when we use a
kind of oracle. We propose a type of Proof-of-Concept,
existing off-chain, that enables us to utilise both the
underlying smart contract framework on Ethereum and
oracles in our distributed network, such that we can
compute proportional attributions and allocations in an
honest and verifiable fashion. We attempt to add the
feature of distributed consensus to our model, which
could otherwise be exploited through the central server’s
creation of a single point of failure. This protocol is

6This protocol originates from the ideology of Satoshi Nakamoto
and is named Proof-of-Work.



called Proof-of-Analytics; the idea is to perform net-
work analytics, using our specified implementation on
the graph network and users’ opinions. We can then
validate the proportional attribution, based on an honest
majority vote of the trusted oracles, using a statistically
significant assessment. Note: This sections serves as an
example of an application of the proportional attribution
model(PAAM), but is not a rigorous treatment to Proof-
of-Analytics. Proof-of-Analytics will be formally intro-
duces with Proof-of-Usage and Proof-of-Exercise in The
Cardstack Consensus paper (to be publised).

We describe a plausible block cycle as follows: A set of
nodes” is selected at random, based on the previous block
hash in the reward smart contract interfacing with these
distributed nodes; this is called cryptographic sortition,
familiarly coined in Algorand [25]. All selected nodes per-
form the full computation described in our paper (with
similar software) and can be referred to as wvalidators
of each block cycle. A great advantage is the fact that
none of the validators is excluded from the computational
cost or setup, because the barriers to the network are
low, i.e. users can participate by simply downloading the
software on their computers. A smart contract then reads
the results reported by each wvalidator and assesses them,
using a statistically significant assessment, i.e. a measure
of the discrepancy between the results. If the variance
is low, the walidators receive minting rewards. If the
variance is high (above some specified threshold), certain
nodes with different results — outliers — will be removed
without being rewarded, to find out whether this leads
to a drop in variance. If the variance of the results is still
high afterwards, the smart contract compels more nodes
to participate in the validation process and re-engages
the computation from the start. Unlike Proof-of-Work,
there is no race for obtaining the next block, which elim-
inates the influence of hardware-advantaged walidators
that would centralise the network — importance is placed
on giving the correct answer. Yet, there will be a time
limit; the walidators have to report their results by a
certain deadline to qualify for obtaining the reward.

This function can be compared to a teacher in a
class room, who only gives homework to a randomly
selected set of students, since he is too lazy to mark
all the students’ books. Each student is given the same
reference book to solve the problems at hand. In fact, the
teacher is not only lazy, but does not know the answers
himself. Since he cannot answer the question he has
asked, he compares the students’ answers, analysing the
difference between them. If a majority of students gives a
particular answer, that answer is recorded as the correct
one, assuming that the minority gives the wrong answer.
If no majority is found, the teacher asks more students
to do the homework. This protocol, similar to many oth-
ers, relies on democratic correctness, i.e. the democratic

7We use the word “node” to replace the word ”oracle”, because
there exists no distinction in our example.

choice of the juror must be correct, but removed from
the usual subjectivity of a court of law. Additionally,
the problem may be partitioned, such that TrustRank,
Anti-TrustRank, optimisation, and filtering are different
functionalities that cannot be carried out by the same
node, so long as the selected nodes communicate reliably
with one another.

On top of the computation performed by the walida-
tors, we engage a stake system, which requires another
randomly selected set of nodes to vote for the wvalidators
that look like spam — these nodes are called choosers.
This way, the responsibility of our spam oracle (as
described in section V) — which uses Anti-TrustRank
— can be divided among several actors of the network,
instead of being controlled by a single authority who
is governed by the developer. The correct votes will
result in the choosers being rewarded, but without their
stakes being lost if the results are wrong (so as not
to take away their incentive to act as choosers). The
choosers are given the facility to assess a node’s profile
subjectively or run Anti-TrustRank on its client, to make
use of historical votes (each node will be assigned a trust
score that is updated through these votes); this allows
them to make an informed decision about which nodes
are spam — therefore, it is at the choosers’ discretion.
Obviously, if there are no spam nodes as walidators,
a chooser can refrain from voting. In this system, the
network can act as a community to pinpoint spam nodes,
thereby removing the possibility of those spam nodes
being randomly selected as validators and thus keeping
them from collecting rewards. Any node can participate
in this system, since we assume that a node’s entry
checkpoint requires it to have a stake in the system
already. Besides: Would a dishonest actor be able to race
to complete these computations and collect the rewards?
Assuming that the network begins with a majority of
honest actors, random selection reduces the probability
of choosing a dishonest actor. The root nodes of the tree
are also participants in the network; they have invested
a large sum of money and, therefore, have no incentive
to vote for spam nodes that have not contributed to the
network’s success.

Above, we have described a plausible application of
the reward model, although details of the implementa-
tion have been left aside. This section exemplifies that
proportional attribution and allocation should be used
in some area of industry and practical application. We
believe that we are proposing a method of democratising
the web, which is similar to the way in which Google
or Facebook use users’ opinions in a partial P2P fashion
to upvote others based on reputation, but with active
participation of the network. Our implementation typi-
cally resides off-chain, but the proportional attribution
uses the same paradigms as stated. The potential of the
proportional attribution gives hope to a future imple-
mentation of reputation on the blockchain, where the
central use of oracles is removed and the platforms stray



away from computationally intensive protocols.

VII. CONCLUSIONS

The framework we have proposed is very extensive
and requires an accumulation of different mathematical
tools to solve the problem. We have seen that “impor-
tance” can be attributed proportionally through local
changes and an estimation of branch attributions. The
distribution of rewards can be transformed from being
unequal to following a log-normal distribution, which
restricts the nature of wealth inequality. Filtering and
other adversarial measures can be used as means to
prevent players from gaming the system and selfishly ob-
taining more rewards than they deserve. This framework
is the first step in the direction of rewarding open-source
projects in networks. We believe that, if we can develop
a stronger foundation regarding adversarial concerns,
networks can build trust in the distribution of wealth
that is realised in this particular manner. The expansion
of the utility of assessing how much a node deserves
is not only based on some global "importance” scores,
but also on recommendations from the parent nodes,
and can be fruitful in applied areas, such as blockchain
technology. Previous research has shown that, although
the blockchain is well suited for secure ledger account-
ing, it is reasonably inefficient in performing any other
action. Therefore, actions with hard complexity, like the
attribution of wealth, are unreliable. Most blockchain
applications have been carrying out the functions of
applications outside of the blockchain through oracle
functions, which renders the applications more insecure.
However, our framework may be associated with the
use of the idea called Proof-of-Analytics, which allows
a collection of oracle functions to be operated by any
party, in order to confirm how much each node deserves
through proportional attribution. Finally, since networks
are already correlated and demonstrate some algebraic
properties, we believe that our use of the simplex vector
space may be a step towards generalising the division
of wealth too, which has been approached in a flat
geometry.

APPENDIX

Suppose x and y are compositions and « is a scalar.

x @y = Clz1y1, T2Y2, - - -, TpYp) (15)
2Oy = Claf, o8, . 23] (16)
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