Skip to main content

Map Reduce for Notebooks

Project description

https://travis-ci.org/nteract/papermill.svg?branch=master https://codecov.io/github/nteract/papermill/coverage.svg?branch=master https://mybinder.org/badge.svg

Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

Papermill lets you:

  • parametrize notebooks

  • execute and collect metrics across the notebooks

  • summarize collections of notebooks

This opens up new opportunities for how notebooks can be used. For example:

  • Perhaps you have a financial report that you wish to run with different values on the first or last day of a month or at the beginning or end of the year, using parameters makes this task easier.

  • Do you want to run a notebook and depending on its results, choose a particular notebook to run next? You can now programmatically execute a workflow without having to copy and paste from notebook to notebook manually.

  • Do you have plots and visualizations spread across 10 or more notebooks? Now you can choose which plots to programmatically display a summary collection in a notebook to share with others.

Installation

From the commmand line:

pip install papermill

Installing In-Notebook bindings

  • Python (included in this repo)

  • R (available in the papermillr project)

Usage

Parametrizing a Notebook

To parametrize your notebook designate a cell with the tag parameters. Papermill looks for the parameters cell and treat those values as defaults for the parameters passed in at execution time. It acheive this by inserting a cell after the tagged cell. If no cell is tagged with parameters a cell will be inserted to the front of the notebook.

docs/img/parameters.png

Executing a Notebook

The two ways to execute the notebook with parameters are: (1) through the Python API and (2) through the command line interface.

Execute via the Python API

import papermill as pm

pm.execute_notebook(
   'path/to/input.ipynb',
   'path/to/output.ipynb',
   parameters = dict(alpha=0.6, ratio=0.1)
)

Execute via CLI

Here’s an example of a local notebook being executed and output to an Amazon S3 account:

$ papermill local/input.ipynb s3://bkt/output.ipynb -p alpha 0.6 -p l1_ratio 0.1

Python In-notebook Bindings

Recording Values to the Notebook

Users can save values to the notebook document to be consumed by other notebooks.

Recording values to be saved with the notebook.

"""notebook.ipynb"""
import papermill as pm

pm.record("hello", "world")
pm.record("number", 123)
pm.record("some_list", [1, 3, 5])
pm.record("some_dict", {"a": 1, "b": 2})

Users can recover those values as a Pandas dataframe via the read_notebook function.

"""summary.ipynb"""
import papermill as pm

nb = pm.read_notebook('notebook.ipynb')
nb.dataframe
docs/img/nb_dataframe.png

Displaying Plots and Images Saved by Other Notebooks

Display a matplotlib histogram with the key name matplotlib_hist.

"""notebook.ipynb"""
import papermill as pm
from ggplot import mpg
import matplotlib.pyplot as plt

# turn off interactive plotting to avoid double plotting
plt.ioff()

f = plt.figure()
plt.hist('cty', bins=12, data=mpg)
pm.display('matplotlib_hist', f)
docs/img/matplotlib_hist.png

Read in that above notebook and display the plot saved at matplotlib_hist.

"""summary.ipynb"""
import papermill as pm

nb = pm.read_notebook('notebook.ipynb')
nb.display_output('matplotlib_hist')
docs/img/matplotlib_hist.png

Analyzing a Collection of Notebooks

Papermill can read in a directory of notebooks and provides the NotebookCollection interface for operating on them.

"""summary.ipynb"""
import papermill as pm

nbs = pm.read_notebooks('/path/to/results/')

# Show named plot from 'notebook1.ipynb'
# Accepts a key or list of keys to plot in order.
nbs.display_output('train_1.ipynb', 'matplotlib_hist')
docs/img/matplotlib_hist.png
# Dataframe for all notebooks in collection
nbs.dataframe.head(10)
docs/img/nbs_dataframe.png

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

papermill-0.11.3.tar.gz (39.1 kB view details)

Uploaded Source

Built Distribution

papermill-0.11.3-py2-none-any.whl (22.8 kB view details)

Uploaded Python 2

File details

Details for the file papermill-0.11.3.tar.gz.

File metadata

  • Download URL: papermill-0.11.3.tar.gz
  • Upload date:
  • Size: 39.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for papermill-0.11.3.tar.gz
Algorithm Hash digest
SHA256 4fa7f912246e1f5d772204f1dc1f724b630f3c66a9d26cd3826cdc7ff397dea0
MD5 d92e9a309cb811acf1bf9b227639f489
BLAKE2b-256 27f95a9f9598ece8d62b277d60183e629f3076032f79183e5490e36e68fca200

See more details on using hashes here.

File details

Details for the file papermill-0.11.3-py2-none-any.whl.

File metadata

File hashes

Hashes for papermill-0.11.3-py2-none-any.whl
Algorithm Hash digest
SHA256 e67515aaca90e0d3eb0d7a71b474cb84628b49dbf5baff91a2a6daaaa5bacfb4
MD5 7d1d9905645961fcf164001228944b3f
BLAKE2b-256 f05b6ec1f93ca5b12aa82e8de6b34cfb0a910172d1dc5258ac5f829741d7b39f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page