Skip to main content

Read and write HDF5 files from Python

Project description

The h5py package provides both a high- and low-level interface to the HDF5 library from Python. The low-level interface is intended to be a complete wrapping of the HDF5 API, while the high-level component supports access to HDF5 files, datasets and groups using established Python and NumPy concepts.

A strong emphasis on automatic conversion between Python (Numpy) datatypes and data structures and their HDF5 equivalents vastly simplifies the process of reading and writing data from Python.

Wheels are provided for several popular platforms, with an included copy of the HDF5 library (usually the latest version when h5py is released).

You can also build h5py from source with any HDF5 stable release from version 1.8.4 onwards, although naturally new HDF5 versions released after this version of h5py may not work. Odd-numbered minor versions of HDF5 (e.g. 1.13) are experimental, and may not be supported.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

h5py-3.8.0.tar.gz (400.8 kB view details)

Uploaded Source

Built Distributions

h5py-3.8.0-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17 x86-64

h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17 ARM64

h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0 ARM64

h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 macOS 10.9 x86-64

h5py-3.8.0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17 x86-64

h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17 ARM64

h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0 ARM64

h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 10.9 x86-64

h5py-3.8.0-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17 x86-64

h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17 ARM64

h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0 ARM64

h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9 x86-64

h5py-3.8.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17 x86-64

h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17 ARM64

h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0 ARM64

h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9 x86-64

h5py-3.8.0-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17 x86-64

h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17 ARM64

h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9 x86-64

File details

Details for the file h5py-3.8.0.tar.gz.

File metadata

  • Download URL: h5py-3.8.0.tar.gz
  • Upload date:
  • Size: 400.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0.tar.gz
Algorithm Hash digest
SHA256 6fead82f0c4000cf38d53f9c030780d81bfa0220218aee13b90b7701c937d95f
MD5 51d5e91d32abb192e1b1363e306bdb02
BLAKE2b-256 69f43172bb63d3c57e24aec42bb93fcf1da4102752701ab5ad10b3ded00d0c5b

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: h5py-3.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f6f6ffadd6bfa9b2c5b334805eb4b19ca0a5620433659d8f7fb86692c40a359
MD5 0e5ea3163fc86259eeadfda1440db420
BLAKE2b-256 51c1c11b2dca0dd5a5cfff2624d3ef53cf56a7aacb77d13b85d7b64d15e05912

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33b15aae79e9147aebe1d0e54099cbcde8d65e3e227cd5b59e49b1272aa0e09d
MD5 f5889daaec7c79b36439d2c581b0f865
BLAKE2b-256 5a2d472b97660b2eeaee2fb248bb2575248a344223fa90e4e6fff7bf24e29923

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a506fc223def428f4329e7e1f9fe1c8c593eab226e7c0942c8d75308ad49950
MD5 6ebc72a7480a51062a2a536a1c580ee1
BLAKE2b-256 1f1110cf0db1b088d24f7d074803103f59665ddbdba31e0dfb4cfdd8fe865297

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36761693efbe53df179627a775476dcbc37727d6e920958277a7efbc18f1fb73
MD5 79fa0336c2fffee5fe69dff5a767f658
BLAKE2b-256 143011285b09cd822892c514f8dd3870d30a02e19b4aae4f817614926e13e406

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db03e3f2c716205fbdabb34d0848459840585225eb97b4f08998c743821ca323
MD5 f163906e97c5b40995938395d187fc9c
BLAKE2b-256 29ee2b2fb91ea41c10277b3cf1b171d816dd5bdddab0df637854c23eb5ffafbb

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: h5py-3.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7f3350fc0a8407d668b13247861c2acd23f7f5fe7d060a3ad9b0820f5fcbcae0
MD5 56fb9b70531fde683688846aebfde588
BLAKE2b-256 726b853345b1cbb06e6dfc1e0c4e012adec1bb755bb80703ada843de487fa437

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3389b63222b1c7a158bb7fe69d11ca00066740ec5574596d47a2fe5317f563a
MD5 fb82e4412608c18ceb45fdc418ebdd2d
BLAKE2b-256 608397cd80a14de14f68a0fbf2a6ba64b3bf62f1677f3724bdd7582122464dc0

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98a240cd4c1bfd568aaa52ec42d263131a2582dab82d74d3d42a0d954cac12be
MD5 3bf0193c0f6ad35d5f885bb88d458ef2
BLAKE2b-256 44e5b44c63af6b645f53a4ef7598f09557e731846d5dbfadb68ed2f9a084c95d

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c873ba9fd4fa875ad62ce0e4891725e257a8fe7f5abdbc17e51a5d54819be55c
MD5 dece1d04c0d5140137264947da1bc171
BLAKE2b-256 eac5433bd152962f3183f1565e4f5088f0b58f2f297fa06aeb91fb8810f94243

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 533d7dad466ddb7e3b30af274b630eb7c1a6e4ddf01d1c373a0334dc2152110a
MD5 241af863c421b69cb022db5f3f43873a
BLAKE2b-256 cb4b36aa8d175fb7a93aa0689b2faefa6c5cf991ddd28f43d0014649fc5bbdc7

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: h5py-3.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5fd2252d1fc364ba0e93dd0b7089f4906b66805cb4e6aca7fa8874ac08649647
MD5 b071d793d1a5df8462c72fc6d7e25727
BLAKE2b-256 79309541e350ef5567f6bb789d8829ebff1a385c5653e7a66457b8dbd9ed5636

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49bc857635f935fa30e92e61ac1e87496df8f260a6945a3235e43a9890426866
MD5 9f34a47635f29095e20b4dbf100654cd
BLAKE2b-256 5952a3156072c07108730cbe763b357cf1369af4c5110f83a448c009b0d83e85

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7865de06779b14d98068da387333ad9bf2756b5b579cc887fac169bc08f87c3
MD5 a80381e7dcb58709132a5ea4bf863425
BLAKE2b-256 b1514fedc76ea5df19dfc7a83746350770d8a824d50f8bec5f28875fd3fd9f2e

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03890b1c123d024fb0239a3279737d5432498c1901c354f8b10d8221d1d16235
MD5 fddb694f69d9f1b185b7045159dd3056
BLAKE2b-256 4af76e31c81020c23e341e78e1b93608b3bc334bf28edd3bb8fbeb5e59e38bc3

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 290e00fa2de74a10688d1bac98d5a9cdd43f14f58e562c580b5b3dfbd358ecae
MD5 7c4b479d8760d0ad06dd7d25c025af75
BLAKE2b-256 0a02c794b1e21ba76ceeb99e5c748240c2ade5bd39d57b2ff050784e6a660f2f

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: h5py-3.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f891b17e3a3e974e93f9e34e7cca9f530806543571ce078998676a555837d91d
MD5 cc615044ceef59126931098a0c0be9d0
BLAKE2b-256 991f2149e67f0cbe1c5de39725c9607acd725536ec84a470b617f230b947a9f8

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f47f757d1b76f0ecb8aa0508ec8d1b390df67a8b67ee2515dc1b046f3a1596ea
MD5 0d95648883a4fefcc8600f05ed6c2316
BLAKE2b-256 d89578c026daade80a289c31d871fea6a8b7efe6c3230347c06110cfbb4e73ef

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bae730580ae928de409d63cbe4fdca4c82c3ad2bed30511d19d34e995d63c77e
MD5 7acbf2eb698710c20ee694389d02b804
BLAKE2b-256 67eb36acf41c35dbd5c09dd664e95eb053bd5cb91fa8e9d0cb9410366807eee0

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bacaa1c16810dd2b3e4417f8e730971b7c4d53d234de61fe4a918db78e80e1e4
MD5 107fd07b17402f2a0dfbfce5a2db3107
BLAKE2b-256 167cc4fb4deaf50ee67229bfbaabb5ebc87c6fd78f87b8ba01fbdf8baa04dd3b

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26ffc344ec9984d2cd3ca0265007299a8bac8d85c1ad48f4639d8d3aed2af171
MD5 9f5b9879bc95925164b04aeb72686579
BLAKE2b-256 8dd772f3cd0204764c559e64f4e4e83921d7772b2bb9830a3d2d89750c2ca3b9

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: h5py-3.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for h5py-3.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0fef76e10b9216657fa37e7edff6d8be0709b25bd5066474c229b56cf0098df9
MD5 a0d3bbb7f338ec994f9711eb5cbbfa6d
BLAKE2b-256 44c6ebb183fcd341681fe41d86b10790335c27372dd279189ab514c75acdbfb2

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 377865821fe80ad984d003723d6f8890bd54ceeb5981b43c0313b9df95411b30
MD5 7a71e449083c3edc7f4fb1ba460c66f5
BLAKE2b-256 95bede1e591bec008ed92d3829b985757b8bc2d34179feef5e181530876a4f9d

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b685453e538b2b5934c58a644ac3f3b3d0cec1a01b6fb26d57388e9f9b674ad0
MD5 54597d17c17eebaf2d30ff06ba5afece
BLAKE2b-256 5c4961b9654b1cd221b80062f66871133ad01ec3dc6aec2e72c0103cf08fa427

See more details on using hashes here.

File details

Details for the file h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for h5py-3.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f55d9c6c84d7d09c79fb85979e97b81ec6071cc776a97eb6b96f8f6ec767323
MD5 a363c2055232da979216155b3c550ebf
BLAKE2b-256 de518f8061ee35cfbafd5ecae845a546392da7c29f77bf33622dc10274bc22e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page