Em matemática, a regra do quociente (ver derivada), rege a diferenciação de quocientes de funções diferenciáveis.
Pode ser apresentada como:
( f g ) ′ = g f ′ − f g ′ g 2 {\displaystyle \left({\frac {f}{g}}\right)'={\frac {gf'-fg'}{g^{2}}}}
ou, segundo a notação de Leibniz:
d d x ( u v ) = v d u d x − u d v d x v 2 . {\displaystyle {\frac {d}{dx}}\left({\frac {u}{v}}\right)={\frac {v{\frac {du}{dx}}-u{\frac {dv}{dx}}}{v^{2}}}.}
Demonstração:
f ( x ) = u ( x ) v ( x ) ( I ) {\displaystyle f(x)={\frac {u(x)}{v(x)}}\ (I)}
Então u ( x ) = f ( x ) ⋅ v ( x ) {\displaystyle u(x)=f(x)\cdot v(x)}
Pela regra do produto:
u ′ ( x ) = f ′ ( x ) ⋅ v ( x ) f ( x ) ⋅ v ′ ( x ) ( I I ) {\displaystyle u'(x)=f'(x)\cdot v(x) f(x)\cdot v'(x)\ (II)}
Utilizando (I) e (II), temos:
u ′ ( x ) = f ′ ( x ) ⋅ v ( x ) u ( x ) v ( x ) ⋅ v ′ ( x ) {\displaystyle u'(x)=f'(x)\cdot v(x) {\frac {u(x)}{v(x)}}\cdot v'(x)}
u ′ ( x ) = f ′ ( x ) ⋅ v ( x ) ⋅ v ( x ) u ( x ) ⋅ v ′ ( x ) v ( x ) {\displaystyle u'(x)={\frac {f'(x)\cdot v(x)\cdot v(x) u(x)\cdot v'(x)}{v(x)}}}
u ′ ( x ) ⋅ v ( x ) = f ′ ( x ) ⋅ v ( x ) ⋅ v ( x ) u ( x ) ⋅ v ′ ( x ) {\displaystyle u'(x)\cdot v(x)=f'(x)\cdot v(x)\cdot v(x) u(x)\cdot v'(x)}
u ′ ( x ) ⋅ v ( x ) − u ( x ) ⋅ v ′ ( x ) = f ′ ( x ) ⋅ v ( x ) ⋅ v ( x ) {\displaystyle u'(x)\cdot v(x)-u(x)\cdot v'(x)=f'(x)\cdot v(x)\cdot v(x)}
u ′ ( x ) ⋅ v ( x ) − u ( x ) ⋅ v ′ ( x ) v ( x ) 2 = f ′ ( x ) {\displaystyle {\frac {u'(x)\cdot v(x)-u(x)\cdot v'(x)}{v(x)^{2}}}=f'(x)}
f ′ ( x ) = u ′ v − v ′ u v 2 {\displaystyle f'(x)={\frac {u'v-v'u}{v^{2}}}}