Operador unitário

operador limitado sobrejetivo que preserva o produto interno do espaço de Hilbert em que está definido

Em matemática, sobretudo na análise funcional, um operador linear limitado em um espaço de Hilbert é dito operador unitário se sua inversa coincidir com seu adjunto.

ou de forma equivalente

, onde é o operador identidade.

Propriedades

editar

Se   é normal, então:

  •  
  •   e, portanto,   é um operador normal.

Bibliografia

editar
  • Conway, J. B. (1990). A Course in Functional Analysis. Col: Graduate Texts in Mathematics. 96. [S.l.]: Springer Verlag. ISBN 0-387-97245-5 
  • Doran, Robert S.; Belfi (1986). Characterizations of C*-Algebras: The Gelfand-Naimark Theorems. New York: Marcel Dekker. ISBN 0-8247-7569-4 
  • Halmos, Paul (1982). A Hilbert space problem book. Col: Graduate Texts in Mathematics. 19 2nd ed. [S.l.]: Springer Verlag. ISBN 978-0387906850 
  • Lang, Serge (1972). Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc. ISBN 978-0387961132 
  • Reed, Michael; REED; Simon, Barry; Carolina), Michael (Duke University Reed, North; Jersey), Barry (Princeton University Simon, New (1980). I: Functional Analysis (em inglês). [S.l.]: Gulf Professional Publishing 
  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.