Bactéria

tipo de célula biológica
(Redirecionado de Eubacteria)

Bactéria (pronúncia em português: [bɐkˈtɛ.ri.ɐ],[2] do grego: βακτηριον, bakterion, que significa "bastão") é um tipo de célula biológica. Elas constituem um grande domínio de micro-organismos procariontes. Possuindo tipicamente alguns micrômetros de comprimento, as bactérias podem ter diversos formatos, variando de esferas até bastões e espirais. As bactérias figuram entre as primeiras formas de vida a aparecer na Terra e estão presentes na maioria dos seus habitats, sendo encontradas no ar, solo, água, fontes termais ácidas, resíduos radioativos, fundo dos oceanos e na superfície e interior de plantas e animais. Sua sobrevivência nestes ambientes se da devido a sua grande diversidade metabólica e capacidade adaptativa. A maioria das bactérias ainda não foi caracterizada. O estudo das bactérias é conhecido como bacteriologia, um ramo da microbiologia.

Como ler uma infocaixa de taxonomiaBactéria
Ocorrência: Arqueano - Recente 3800–0 Ma.
Escherichia coli
Escherichia coli
Classificação científica
Domínio: Bacteria
Woese, Kandler & Wheelis 1990
Filos[1]
Sinónimos
Eubacteria Woese & Fox, 1977
Eubacteriobionta
Eubacteriophyta
Monera (in part.)
Neobacteria
Procaryotae (in part.)
Prokarya (in part.)
Prokaryota (in part.)
Schizobionta
Unibacteria (in part.)

As bactérias são vitais em diversos estágios do ciclo de nutrientes, realizando processos como a fixação do nitrogênio da atmosfera e a decomposição de corpos mortos. Além disso, apenas bactérias e algumas arqueias possuem as enzimas necessárias para sintetizar a vitamina B12, um cofator na síntese do ADN e no metabolismo do ácido graxo e dos aminoácidos, fornecendo-a a outros organismos através da cadeia alimentar. Bactérias também interagem de maneira direta com plantas e animais. A interação entre estes organismos pode ser benéfica, e até mesmo simbiótica, onde bactérias auxiliam no metabolismo e protegem contra doenças infecciosas por outros micro-organismos. No entanto, existem também várias espécies de bactérias patogênicas que causam doenças infecciosas, incluindo cólera, sífilis, antraz, hanseníase e peste bubônica. Comumente, estas infecções bacterianas são tratadas através da utilização de antibióticos. Na indústria, bactérias são importantes no tratamento de esgoto, na decomposição de derramamentos de petróleo, na produção de queijo e iogurte através da fermentação e na fabricação de compostos orgânicos.

Anteriormente classificadas como plantas da classe Schizomycetes, bactérias são classificadas como procariontes. Diferentemente das células de animais e outros eucariontes, células de bactérias não possuem núcleo celular e raramente possuem organelas separadas por membranas. No passado o termo bacteria inclui todos os organismos procariontes, mas na década de 1990 foi descoberto que os procariontes consistem em dois grupos de organismos diferentes que evoluiram a partir de um ancestral comum. Estes domínios são chamados Bacteria e Archaea.

Etimologia

A palavra bacteria é o plural do Latim Moderno bacterium, no qual é a latinização do Grego βακτήριον (bakterion),[3] o diminutivo de βακτηρία (bakteria), que significa "bastão, cana",[4] pois as primeiras bactérias descobertas tinham forma de bastão.[5]

Origem e evolução

 
Árvore filogenética da vida. As bactérias aparecem à esquerda

O termo "bactéria" era tradicionalmente aplicado a todos os microrganismos procarióticos. No entanto, a filogenia molecular foi capaz de demonstrar que os microrganismos procarióticos são divididos em dois domínios, originalmente denominados Eubacteria e Archaebacteria, e agora renomeados como Bacteria e Archaea,[6] que evoluíram independentemente a partir de um ancestral comum.[7]

Os ancestrais dos procariontes modernos foram os primeiros organismos que se desenvolveram sobre a terra, há cerca de 3800 a 4000 milhões de anos. Durante quase 3000 milhões de anos, todos os organismos permaneceram microscópicos, sendo que provavelmente as bactérias e arqueias eram as formas de vida dominantes.[8]

Atualmente, é discutido se os primeiros procariontes foram bactérias ou arqueias. Alguns pesquisadores pensam que as bactérias são o domínio mais antigo, com as arqueias e eucariontes derivando a partir delas, enquanto outros consideram que o domínio mais antigo é o das arqueias.[9] É possível que o ancestral comum mais recente das bactérias e arqueias possa ser um hipertermófilo que viveu há entre 2500 a 3200 milhões de anos.[10][11] Por outro lado, outros cientistas argumentam que tanto arqueias quanto eucariontes são relativamente recentes, surgindo há cerca de 900 milhões de anos,[12] e que as arqueias evoluíram a partir de uma bactéria Gram-positiva, que mediante a substituição da parede bacteriana de peptidoglicano por outra de glicoproteína daria lugar a um organismo chamado de Neomura.[13][14]

Embora existam fósseis bacterianos, como os estromatólitos, eles não podem ser usados para estudar a história da evolução bacteriana ou a origem de uma espécie bacteriana em particular por não manterem sua morfologia distintiva. No entanto, sequências genéticas podem ser usadas para reconstruir a filogenia dos seres vivos, e esses estudos sugerem que arqueias e eucariontes estão mais relacionados entre si do que com bactérias.[15]

As bactérias também estavam envolvidas na segunda grande divergência evolutiva, a que separou as arqueias dos eucariontes. Considera-se que as mitocôndrias eucarióticas provêm da endossimbiose de uma alfa-proteobactéria.[16] Neste caso, o ancestral dos eucariontes, que possivelmente estava relacionado às arqueias (o organismo Neomura), ingeriu uma proteobactéria que, ao escapar da digestão, se desenvolveu no citoplasma e deu origem as mitocôndrias. Essas podem ser encontradas em todos os eucariontes, mesmo que às vezes em forma altamente reduzida, por exemplo, em antigos protistas amitocondriados.[17] Então, independentemente, uma segunda endossimbiose por parte de algum eucariótico mitocondrial com uma cianobactéria levou à formação dos cloroplastos encontrados em algas e plantas.[18][19]

Taxonomia do domínio Bactéria

 
Árvore filogenética da vida: arqueias, bactérias e eucariontes

O sistema de classificação taxonômica mais utilizado divide os seres vivos em três domínios: Bacteria, Archaea e Eukarya.[20] Os domínios Archaea e Bacteria englobam os organismos procariontes, isto é, aqueles cujas células não possuem um núcleo celular diferenciado, enquanto no domínio Eukarya inclui as formas de vida eucariontes, como os protistas, animais, fungos e plantas.[21] Segundo a classificação de 2024 feita pelo Comitê Internacional de Sistemática de Procariontes, o domínio Bacteria é dividido em 4 reinos e 45 filos confirmados.[1]

Antes de serem considerados um grupo separado, as bactérias foram classificadas como animais por Christian Gottfried Ehrenberg em 1838, fungos por Karl Wilhelm von Nägeli em 1857, protistas por Ernst Haeckel em 1866 e algas por Ferdinand Cohn em 1875.[22] Por já terem sido classificados como plantas, um conjunto de bactérias encontradas dentro de um hospedeiro é chamado de "flora".[23]

A descoberta da estrutura celular procariótica, distinta dos organismos eucariontes, levou os procariontes a serem classificados como um grupo separado ao longo do desenvolvimento dos esquemas de classificação de seres vivos. Em 1938, as bactérias foram incluídas entre os procariontes no reino Mychota por Copeland e em 1969 no reino Monera por Whittaker.[24][25]

Em 1977, com o advento das técnicas moleculares, Carl Woese dividiu os procariontes em dois grupos, com base nas sequências do ARN ribossomal 16S, que chamou de Eubacteria e Archaebacteria,[25] renomeados por ele próprio para Bacteria e Archaea em 1990.[26] Woese argumentou que estes dois grupos, em conjunto com os eucariontes, formam domínios separados com origem e evolução separadas a partir de um organismo ancestral comum. Desta forma, as bactérias poderiam ser divididas em vários reinos, mas normalmente são tratadas como um único reino dividido em filos.[27]

Habitats

As bactérias são formas de vida extremamente adaptáveis, sobrevivendo nos mais diversos ambientes incluindo o ar, o solo, a água, as fontes termais ácidas, os resíduos radioativos, as profundezas dos oceanos e na superfície e interior de plantas e animais.[28][29] Estimasse que existem aproximadamente entre 2×1030 e 5×1030 bactérias na Terra,[30][31] formando uma biomassa excedida apenas pelas plantas.[32][33] Elas são encontradas com maior abundancia principalmente no solo e na água, onde realizam papeis essenciais na ecologia. Os oceanos abrigam cerca de 3 x 1026 bactérias, as quais produzem ate 50% do oxigênio atmosférico.[34]

Nas comunidades biológicas em torno de fontes hidrotermais e emanações frias, bactérias extremófilas fornecem os nutrientes necessários para sustentar a vida convertendo compostos como o sulfeto de hidrogênio e o metano em energia. Dados relatados por pesquisadores sugerem que as bactérias prosperam na Fossa das Marianas, a parte mais profunda conhecida dos oceanos.[35][36] Outros pesquisadores relataram que micróbios prosperam dentro de rochas até 580 metros abaixo do fundo do mar, sob mais de 2 quilômetros de oceano ao largo da costa do noroeste dos Estados Unidos.[35][37] De acordo com um dos pesquisadores: "Você pode encontrar micróbios em qualquer lugar - eles são extremamente adaptáveis às condições e sobrevivem onde quer que estejam".[35]

Morfologia

 
As bactérias exibem muitas morfologias e arranjos celulares

As bactérias possuem uma grande diversidade de formas e tamanhos, chamados de morfologias. As células bacterianas têm cerca de um décimo do tamanho das células eucarióticas e têm tipicamente de 0,5 a 5,0 micrômetros de comprimento. No entanto, algumas espécies são visíveis a olho nu - por exemplo, a Thiomargarita namibiensis tem até meio milímetro de comprimento[38] e a Epulopiscium fishelsoni atinge 0,7 mm.[39] A maior espécies conhecida, Thiomargarita magnifica, pode atingir ate 2 centímetros de comprimento, cerca de 50 vezes maior do que outras bactérias conhecidas.[40][41] Entre as menores bactérias estão os membros do gênero Mycoplasma, que medem apenas 0,3 micrômetros, tão pequenos quanto os maiores vírus.[42] Algumas bactérias podem ser ainda menores, mas essas ultramicrobactérias ainda não são bem estudadas.[43]

A maioria das espécies de bactérias são esféricas, chamadas de cocos (sing. coccus, do Grego kókkos, grão, semente), ou em forma de bastão, chamadas de bacilos (sing. bacillus, do Latim baculus, bastão).[44] Algumas bactérias, chamadas de vibriões, têm a forma de bastonetes ligeiramente curvos ou em forma de vírgula; outras podem ter forma de espiral, chamadas de espirilos, ou firmemente enroladas, como é o caso das espiroquetas. Um pequeno número de outras formas incomuns também foi descrito, como bactérias em forma de estrela.[45] Essa grande variedade de formas é determinada pela parede celular bacteriana e pelo citoesqueleto. Essa variedade é importante porque pode influenciar a capacidade das bactérias de adquirir nutrientes, fixar-se às superfícies, nadar através de líquidos e escapar de predadores.[46][47]

 
A variedade de tamanhos mostrada pelos procariontes em relação aos de outros organismos e biomoléculas

Muitas espécies bacterianas existem simplesmente como células únicas, outras se associam em padrões característicos: Neisseria formam diploides (pares), Streptococcus formam correntes e as Staphylococcus agrupam-se em aglomerados de "cachos de uvas". As bactérias também podem se agrupar para formar estruturas multicelulares maiores, como os alongados filamentos da Actinomycetota, os agregados da Myxobacteria e as complexas hifas da Streptomyces.[48] Essas estruturas multicelulares são frequentemente vistas apenas em determinadas condições. Por exemplo, quando há ausência de aminoácidos, as mixobactérias detectam células vizinhas em um processo conhecido como detecção de quórum, então, elas migram de uma para a outra e se agregam para formar corpos de frutificação de até 500 micrômetros de comprimento e contendo aproximadamente 100 000 células bacterianas.[49] Nesses corpos de frutificação, as bactérias realizam tarefas separadas; por exemplo, cerca de uma em cada dez células migra para o topo de um corpo de frutificação e se diferencia em um estado dormente especializado chamado de mixosporo, que é mais resistente ao ressecamento e outras condições ambientais adversas.[50]

As bactérias frequentemente se prendem às superfícies para formar densas agregações, chamadas de biofilmes, ou formações ainda maiores, conhecidas como tapetes microbianos. Esses biofilmes e tapetes podem variar de alguns micrômetros de espessura a até meio metro de profundidade, além de poderem conter múltiplas espécies de bactérias, protistas e arqueias. Bactérias que vivem em biofilmes exibem um arranjo complexo de células e componentes extracelulares, formando estruturas secundárias como as microcolônias, através das quais existem redes de canais para permitir uma melhor difusão de nutrientes.[51][52] Em ambientes naturais, como no solo ou na superfície das plantas, a maioria das bactérias está ligada às superfícies dos biofilmes.[53] Biofilmes também são importantes na medicina, pois essas estruturas estão frequentemente presentes durante infecções bacterianas crônicas ou em infecções associadas a implantes. Além disso, bactérias protegidas dentro de biofilmes são muito mais difíceis de matar do que bactérias isoladas individuais.[54]

Dentro destes biofilmes, bactérias de uma mesma espécie podem realizar o intercâmbio de uma variedade de moléculas sinalizadoras como uma forma de comunicação intercelular para coordenar comportamentos multicelulares.[55][56] A cooperação entre células bacterianas pode trazer diversos benefícios como a proteção contra antagonistas, aproveitamento de recursos que nao podem ser utilizado efetivamente por células únicas e otimização da sobrevivência da população.[55] Para o funcionamento deste sistema, as bactérias realizam uma "divisão do trabalho", realizando funções diferentes dentro do biofilme, similar a diferenciação celular que ocorre em organismos multicelulares.[57]

Um dos tipos de comunicação intercelular realizada em biofilmes é chamada quorum sensing, que permite que as bactérias coordenem a expressão de genes através da produção, liberação e detecção de autoindutores que se acumulam com o crescimento da população celular.[58] Este mecanismos pode ser usado para determinar se a densidade populacional local é suficiente para sustentar comportamentos como a secreção de enzimas digestivas e emissão de luz.[59][60]

Estrutura celular

Estruturas intracelulares

 
Estrutura e conteúdo de uma célula bacteriana gram-positiva típica

A célula bacteriana é cercada por uma membrana celular composta principalmente de fosfolipídios. Essa membrana envolve o conteúdo da célula e atua como uma barreira para reter os nutrientes, proteínas e outros componentes essenciais do citoplasma no interior da célula.[61] Ao contrário das células eucarióticas, as bactérias geralmente não possuem grandes estruturas em seu citoplasma, como um núcleo, mitocôndrias, cloroplastos e outras organelas presentes nas células eucariontes. No entanto, algumas bactérias têm organelas ligadas a proteínas no citoplasma que compartimentam aspectos do metabolismo bacteriano;[62][63] por exemplo, os carboxissomos.[64] Além disso, as bactérias possuem um citoesqueleto composto por diferentes tipos de filamentos que gerenciam o processo de divisão celular e controlam a localização de proteínas e ácidos nucleicos na célula.[65][66][67]

Muitas reações bioquímicas importantes, como a geração de energia, ocorrem devido a gradientes de concentração através das membranas, criando uma diferença de potencial análoga a uma bateria. A falta de membranas internas nas bactérias significa que essas reações, como o transporte de elétrons, ocorrem através da membrana celular entre o citoplasma e o exterior da célula, ou periplasma.[68] Contudo, em muitas bactérias fotossintéticas, a membrana plasmática é altamente dobrada, gerando invaginações que preenchem a maior parte da célula com camadas de membranas coletoras de luz.[69] Em bactérias do filo Chlorobiota esses complexos de captação de luz podem até formar vesículas, chamadas clorossomos.[70]

 
Uma microfotografia eletrônica de células de Halothiobacillus neapolitanus com carboxissomos dentro. As flechas indicam os carboxissomos visíveis. A escala é de 100 nanômetros

As bactérias não possuem um núcleo ligado à membrana e seu material genético é tipicamente um único cromossomo circular de ADN localizado no citoplasma em um corpo de forma irregular, chamado de nucleoide.[71] O nucleoide contém o cromossomo com suas proteínas associadas e ARN. Além do nucleoide, bactérias podem apresentar também outras estruturas de ADN, denominadas plasmídeos.[72] Como todos os outros organismos, bactérias possuem ribossomos para a produção de proteínas, mas a estrutura do ribossomo bacteriano é diferente da estrutura dos eucariontes e arqueias.[73]

Algumas bactérias produzem grânulos intracelulares de armazenamento de nutrientes, como glicogênio,[74] polifosfato,[75] enxofre[76] ou polihidroxialcanoatos.[77] Certas espécies de bactérias, como as cianobactérias fotossintéticas, produzem vacúolos de gás que são usados para regular sua flutuabilidade e se movimentar entre diferentes profundidades de água, buscando a intensidade de luz e níveis de nutrientes ideais.[78]

Estruturas extracelulares

Ao redor do exterior da membrana da célula está a parede celular. Paredes celulares bacterianas são feitas de peptidoglicano. Esta substância é composta por cadeias polissacarídicas ligadas por peptídeos incomuns contendo D-aminoácidos.[79] As paredes celulares bacterianas são diferentes das paredes celulares de plantas e fungos, que são feitas de celulose e quitina, respectivamente.[80] A parede celular das bactérias também é diferente da das arqueias, que não possui peptidoglicano.[81] A parede celular é essencial para a sobrevivência de muitas bactérias. O antibiótico penicilina, produzido pelo gênero de fungos Penicillium, é capaz de matar bactérias inibindo a síntese do peptidoglicano.[80]

Em termos gerais, existem dois tipos diferentes de parede celular em bactérias, que as classificam como gram-positivas ou gram-negativas. Os nomes se originam da reação das células à Coloração de Gram, um teste de longa data para a classificação de espécies bacterianas.[82]

As bactérias gram-positivas possuem uma parede celular espessa contendo muitas camadas de peptidoglicano e ácidos teicóicos. Por outro lado, as bactérias gram-negativas possuem uma parede celular relativamente fina, que consiste em algumas camadas de peptidoglicano cercadas por uma segunda membrana lipídica contendo lipopolissacarídeos e lipoproteínas. A maioria das bactérias possui parede celular gram-negativa, e apenas as bactérias dos filos Bacillota e Actinomycetota possuem a parede celular gram-positiva.[83] Essas diferenças na estrutura podem produzir reações diferentes na suscetibilidade a antibióticos; por exemplo, a vancomicina pode matar apenas bactérias gram-positivas e é ineficaz contra patógenos gram-negativos, como a Haemophilus influenzae ou a Pseudomonas aeruginosa.[84] Algumas bactérias têm estruturas da parede celular que não são classicamente gram-positivas ou gram-negativas. Isso inclui bactérias de importância médica como as Mycobacterium, que possui uma parede celular espessa como uma bactéria gram-positiva, mas também uma segunda camada externa de lipídios.[85]

Em muitas bactérias, uma camada de moléculas de proteínas de matriz rígida cobre a parte externa da célula.[86] Esta camada fornece proteção química e física para a superfície da célula e pode atuar como uma barreira de difusão macromolecular. Essas camadas possuem diversas funções, como a atuaçcoomo fatorese virulência naem mpylobacter e por conterem enzimas de superfície nas Bacillus stearothermophilus.[87][88]

 
Fotografia de uma Helicobacter pylori, exibindo múltiplos flagelos na superfície celular

Flagelos são estruturas rígidas compostas por proteínas, que são usadas para motilidade. Estas estruturas possuem cerca de 20 nanômetros de diâmetro e até 20 micrômetros de comprimento. Os flagelos são movidos pela energia liberada pela transferência de íons através de um gradiente eletroquímico da membrana celular.[89]

As fímbrias são finos filamentos de proteína, geralmente de 2 a 10 nanômetros de diâmetro e até vários micrômetros de comprimento. Elas estão distribuídas ao longo da superfície da célula e se assemelham a pelos finos quando vistas em um microscópio eletrônico.[90] Acredita-se que as fímbrias estejam envolvidas na adesão bacteriana à superfícies sólidas ou à outras células, além de serem essenciais para a virulência de alguns patógenos.[91] Os pilus são apêndices celulares ligeiramente maiores que as fímbrias. Um tipo especial de pilus é o pilus sexual, que pode transferir material genético entre duas células bacterianas em um processo chamado de conjugação bacteriana.[92] Alguns também são capazes de gerar movimento, como o pilus de tipo IV.[93]

Muitas bactérias também produzem uma matriz extracelular denominada glicocálix.[94] Estas matrizes apresentam uma alta complexidade estrutural, podendo variar entre camadas desorganizadas de exopolissacarídeos ou estruturas rígidas e bem definidas, denominada cápsula. Estas estruturas podem conferir proteção a fagocitose por células eucarióticas, como macrófagos, auxiliando bactérias patogênicas a evadirem o sistema imune do hospedeiro.[95] As moléculas que compõe o glicocálix também podem ser reconhecidos como antígenos, auxiliar na adesão a superfícies e na formação de biofilme.[96]

A formação destas estruturas extracelulares são dependentes de sistemas de secreção bacterianos, que realizam o transporte de proteína produzidas no citoplasma para o periplasma ou para o ambiente extracelular. Existe um grande variedade destes sistemas de secreção, os quais são estudados devido a seu papel na virulência de bactérias patogênicas.[97]

Endósporos

 Ver artigo principal: Endósporo

Alguns gêneros de bactérias Gram-positivas, como Bacillus, Clostridium, Sporohalobacter, Anaerobacter e Heliobacterium, podem formar estruturas não-reprodutivas, dormentes e altamente resistentes a condições adversa, chamadas endósporos.[98] Os endósporos se desenvolvem no citoplasma, onde um destacamento da membrana plasmática envolve uma copia do ADN e ribossomos, formando um novo compartimento. Esta estrutura é então cercada por uma multicamada rígida composta por peptidoglicano e diferentes proteínas, denominada córtex.[99][100] O endósporo maduro é então liberado para o exterior celular.[101] Apesar de possuírem um nome parecido, endósporos são diferentes dos esporos produzidos por eucariontes, pois sua função não esta relacionada a reprodução e sim a resistência e sobrevivência.[102]

Ao encontrar-se em um ambiente com condições adversas, bactérias formam endósporos para entrar em um estado de dormência, o qual aumenta sua capacidade de resistência e sobrevivência. Nesse estado adormecido, esses organismos podem permanecer viáveis por milhões de anos.[103][104] Os endósporos não apresentam metabolismo detectável e podem sobreviver a estresses físicos e químicos extremos, como altos níveis de luz UV, radiação gama, detergentes, desinfetantes, calor, congelamento, pressão e dessecação.[105] Endósporos permitem que as bactérias sobrevivam até mesmo no vácuo e expostas a radiação espacial, o que implica na possiblidade de bactérias serem transportadas e distribuídas pelo Universo através de poeira espacial, meteoritos, asteroides, cometas e outros pequenos corpos.[106][107] Quando as condições de seu ambiente tornam-se favoráveis, os endósporos são reativados, perdendo sua capacidade de resistência mas permitindo seu desenvolvimento em uma célula competente.[99][108]

A formação de endósporos também esta associada a algumas doenças ocasionadas por infecções bacterianas, como o carbúnculo, ocasionado pela inalação ou contato com os endósporos de Bacillus anthracis, e o tétano, ocasionado pela contaminação de ferimentos na pele por endósporos de Clostridium tetani.[109] Infecções por Clostridioides difficile também são causadas por bactérias formadoras de endósporos.[110]

Metabolismo

Bactérias apresentam uma grande diversidade de capacidades metabólicas.[111] O metabolismo de bactérias pode ser classificado com base em três principais critérios: a fonte de energia, o doador de elétrons utilizado e a fonte de carbono utilizada para o crescimento. Organismos que realizam respiração podem ser classificados também pelo aceptor de elétrons utilizado.[112]

Quanto a fonte de energia, as bactérias podem ser classificadas em dois tipos: fototróficas, que utilizam a luz como fonte de energia, através da fotossíntese, e quimiotróficas, cujo metabolismo eh baseado em transferências de elétrons de compostos químicos para um aceptor de elétrons, através de reações de oxirredução. Quimiotrófos podem ainda ser subdivididos com base nos compostos utilizados como doador de elétrons. Bactérias que utilizam compostos inorgânicos, como hidrogênio, monóxido de carbono ou amônia, são denominados litotróficos, enquanto as que utilizam compostos orgânicos são chamadas organotróficos.[113] Além disso, o aceptor de elétrons também pode ser utilizado para classificação, onde bactérias que utilizam oxigênio são denominadas aeróbicas, enquanto as que utilizam compostos como nitrato, sulfato e dióxido de carbono são chamadas de anaeróbicas.[113]

A grande maioria das bactérias utiliza compostos orgânicos como fonte de carbono, sendo denominadas heterotróficas. Já as bactérias do filo Cyanobacteriota e algumas bactérias fotossintéticas roxas são consideradas autotróficas, pois são capazes de obter carbono através da fixação de dióxido de carbono.[114] Algumas bactérias também são capazes de utilizar gás metano como doador de elétrons e fonte de carbono.[115]

Classificação de bactérias segundo seu metabolismo e tipo de nutrientes utilizados
Classificacao Fonte de energia Fonte de carbono Exemplos
Fototróficas Luz Compostos orgânicos (fotoheterótrofos) ou fixação de carbono (fotoautótrofos) Cyanobacteriota, Chlorobiota, Chloroflexota, e bactérias fotossintéticas roxas
Litotróficas Compostos inorgânicos Compostos orgânicos (litoheterótrofos) ou fixação de carbono (flittoautótrofos) Thermodesulfobacteriota, Hydrogenophilaceae eNitrospirota
Organotrófica Compostos orgânicos Compostos orgânicos (quimioheterótrofos) ou fixação de carbono (quimioautótrofos) Bacillus, Clostridium, or Enterobacteriaceae

A capacidade metabólica de diversas bactérias e suas interações como o ambiente são importantes também para a estabilidade ecológica e sociedade humana. Diazotróficos, por exemplo, são capazes de fixar nitrogênio utilizando a enzima nitrogenase.[116] Esta característica é essencial para processos ecológicos como a desnitrificação e acetogénese.[117] Bactérias anaeróbicas não-respiratórias utilizam a fermentação como fonte de energia e secretam produtos metabólicos para o ambiente extracelular, como o etanol utilizado na produção de bebidas alcoólicas. Anaeróbios facultativos podem alternar entre a fermentação e outros aceptores de elétrons dependendo das condições do ambiente onde se encontram.[118]

Movimento

 Ver artigos principais: Flagelo e pilus

Diversas bactérias são capazes de se locomover por conta própria utilizando diferentes mecanismos, com uma célula podendo apresentar mais de um tipo de movimentação. O tipo de movimentação realizada depende do ambiente onde a bactéria se encontra.[119] Em ambientes aquosos, a locomoção mais estudada ocorre através da utilização de flagelos.[120] Estes flagelos realizam movimentos de rotação produzidos por uma proteína em sua base, que age como um "motor" giratório reversível.[121] Esta rotação age como uma hélice que impulsiona a célula bacteriana e gera seu movimentação. O sentido de rotação do flagelo determina a direção de deslocamento da célula, onde a rotação no sentido horário a impulsiona para frente e a rotação anti-horária a impulsiona para trás.[122]

 
Os diferentes arranjos dos flagelos bacterianos (A- monótrico, B- lofótrico, C- anfítrico, D- perítrico)

Os flagelos bacterianos encontram-se organizados de diferentes formas: algumas bactérias possuem um único flagelo polar (numa extremidade da célula), enquanto outras possuem grupos de flagelos, quer numa extremidade, quer em toda a superfície da parede celular.[123][124] Diante do número e da distribuição dos flagelos, as bactérias podem ser classificadas como: atríquias (sem flagelos), monotríquias (um único flagelo), anfitríquias (um flagelo em cada extremidade), lofotríquias (um grupo de flagelos numa, ou ambas as extremidades) e peritríquias (apresentando flagelos ao longo de todo o corpo bacteriano).[125] As espiroquetas possuem uma forma de movimentação única, onde os filamentos que impulsionam seu movimento encontram-se no interior celular, ocasionando a rotação de todo o corpo celular.[123][126]

A locomoção em ambientes aquosos utilizando flagelos é denominada natação.[127] Em bactérias lofotríquias, a natação é realizada quando todos seus flagelos realizam a rotação em um mesmo sentido. Contudo, em algumas bactérias, como Escherichia coli, podem ser observados grupos de flagelos realizam rotação em sentidos contrários. Esta alteração no sentido de rotação interrompe a movimentação direcionada e inicia uma movimentação aleatória, denominada rolamento. O movimento de rolamento ocasiona na reorientação da bactéria, permitindo que ela se mova em outra direção.[128][129] Alguns gêneros bacterianos como Synechococcus e Spiroplasma são capazes de se locomover em ambientes aquosos sem a necessidade de flagelos, porém seus mecanismos ainda não foram elucidados.[130]

Quando estão em superfícies solidas as bactérias podem realizar dois tipos principais de movimentação, espasmódica (twitching) e deslizamento (gliding). A movimentação espasmódica baseia-se na utilização do pilus do tipo IV, um apêndice celular que se estende, adere a superfície e retrai, puxando a bactéria até o ponto aderido.[131] O deslizamento ocorre através da utilização de adesinas presentes na superfície celular. Estas proteínas aderem ao ambiente extracelular e se deslocam ao longo da superfície da célula. Este tipo de deslocamento pode ser observado em uma grande diversidade de bactérias como cianobactérias, mixobactérias e flavobactérias, com cada uma apresentando um mecanismo diferente.[132]

Diversas espécies dos gêneros Listeria e Shingella que parasitam células de eucariontes são capazes de utilizar o citoesqueleto da célula hospedeira para se movimentarem no interior celular através da promoção da polimerização de actina.[133]

Taxia

 Ver artigo principal: Fototaxia, Quimiotaxia

As bactérias podem mover-se por reação a certos estímulos, um comportamento chamado "taxia" (também presentes nas plantas), como por exemplo, quimiotaxia, fototaxia, mecanotaxia e magnetotaxia - bactérias que fabricam cristais de magnetita (Fe3O4) ou greigita (Fe3S4), materiais com propriedades magnéticas, e orientam seus movimentos pelo campo magnético terrestre, como a bactéria Magnetospirillum magnetotacticum (ver bactérias magnetotáticas).[134]

Num grupo particular, as mixobactérias, as células individuais atraem-se quimicamente e formam pseudo-organismos amebóides que, para além de "rastejarem", podem formar frutificações.[135]

Crescimento e reprodução

 
Reprodução bacteriana

Em organismos unicelulares o crescimento celular e a reprodução por divisão celular são altamente correlacionados. Bactérias crescem ate atingirem um determinado tamanho e então se reproduzem através de fissão, uma forma de reprodução assexuada. Neste processo, cada bactéria divide-se em duas células clones.[136] Algumas bactérias formam estruturas reprodutivas mais complexas que auxiliam na dispersão das células descendentes. Exemplos destas estruturas incluem os corpos de frutificação formados por mixobactérias,[137] hifas aéreas formadas por espécies do gênero Streptomyces[138] e a formação de brotamentos, protrusões celulares que se destacam da célula original e dão origem a uma nova célula filha.[139] Sob condições ideais, bactérias podem se reproduzir com grande rapidez, dando origem a um número muito grande de descendentes em apenas algumas horas.[140]

Em laboratórios, bactérias são cultivadas utilizando meios de cultivo sólidos ou líquidos. Meios de cultivo sólidos, como a agarose, são utilizadas para isolar culturas puras de uma cepa bacteriana. Já os meios líquidos são utilizados para medir o crescimento bacteriano ou para obter um grande volume de células rapidamente.[141]

Na natureza, as bactérias possuem uma quantidade limitada de nutrientes que as impede de se reproduzir indefinidamente. Esta limitação levou estes organismos a evoluírem diferentes estratégias para seu crescimento. Alguns organismos, como algas e cianobactérias, podem crescer rapidamente quando se encontram em ambientes com grande disponibilidade de nutrientes.[142] Algumas espécies de Streptomyces são capazes de produzir antimicrobianos que inibem o crescimento de outros microrganismos, diminuindo a competição por fontes limitadas de nutrientes.[143] Além disso, muitos organismos formam comunidades, como biofilmes, que pode aumentar a disponibilidade de nutrientes e protege de estresses ambientais.[144] Estas comunidades são essências para o crescimento de alguns organismos.[145]

 
Representação do crescimento bacteriano (L) ao longo do tempo (T). As letras indicam as diferentes fases do crescimento.

O crescimento bacteriano possui quatro fases. Quando uma população de bactérias se encontra em um ambiente com grande disponibilidade nutrientes que permitem seu crescimento, estas células precisam se adaptar e se preparar para o crescimento. Na primeira fase, também chamada de fase de adaptação ou fase lag, o crescimento ocorre de maneira lenta pois as células estão se preparando para iniciar o crescimento rápido. Neste momento ocorre um aumento na taxa de biossíntese de proteínas essenciais como ribossomos e proteínas de membrana.[146][147] A segunda fase, chamada de fase exponencial, fase logarítmica ou fase log, é caracterizada pelo aumento exponencial do crescimento. Neste processo, nutrientes são metabolizados o mais rápido o possível.[148] A depleção dos nutrientes limita o crescimento e marca o inicio da terceira fase, chamada de fase estacionaria ou de desaceleração.[149][150] Em resposta a escassez de nutrientes as células bacterianas diminuem suas atividades metabólicas e podem utilizar suas proteínas não essências como fonte de nutrientes. A interrupção do crescimento rápido gera um estresse que aumenta a expressão de genes envolvidos no reparo de ADN, metabolismo antioxidativo e transporte de nutrientes.[151][152] A quarta fase é marcada pela morte de diversas células devido a falta de nutrientes.[153]

Genética

 Ver artigo principal: Plasmídeo, Genoma
 
Representação do ADN cromossomal e plasmídeos bacterianos

A maioria das bactérias possui um único cromossomo circular, porém algumas possuem cromossomos lineares, como algumas espécies de Streptomyces e Borrelia,[154][155] enquanto algumas espécies de Vibrio possuem mais de um cromossomo.[156] O tamanho destes cromossomos podem variar, por exemplo o endossimbionte Carsonella ruddii possui um dos menores cromossomos bacterianos conhecidos, com apenas 160.000 pares de bases,[157] enquanto a espécie Sorangium cellulosum possui um dos maiores, com cerca de 12.200.000 pares de bases.[158] Além dos cromossomos, algumas bactérias também possuem pequenas moléculas de ADN, denominadas plasmídeos. Estes podem conter genes relacionados a diferentes funções como resistência a antimicrobianos, capacidades metabólicas ou moléculas relacionadas a virulência.[159]

As bactérias, por serem organismos assexuados, herdam cópias idênticas do genes de suas progenitora, ou seja, são clones. O conteúdo de seu material genético pode mudar através da seleção de alterações causadas por mutações ou recombinação genética. As mutações podem se originar a partir de erros que ocorrem durante o processo de replicação da molécula de ADN ou exposição a compostos mutagênicos. A frequência da ocorrência de mutações pode variar bastante entre diferentes espécies e até mesmo entre clones de uma mesma espécie.[160] Genes envolvidos em processos importantes para o crescimento celular podem apresentar uma frequência de mutação aumentada em relação aos demais genes.[161]

Apesar de não realizarem reprodução sexuada, algumas bactérias possuem a capacidade de transferir material genético entre células diferentes, característica conhecida como transferência horizontal de genes.[162] Comumente, estes mecanismos realizam a transferência de material genético entre indivíduos da mesma espécie, mas podem ocorrer também entre organismos de espécies diferentes. A transferência entre espécies pode ter importantes consequências, como a disseminação de genes de resistência a antimicrobianos.[163][164] Existem três formas principais de como ocorrem estas transferências: transformação, transdução e conjugação.

 
Diagrama exemplificando o processo de transdução em bactérias

Na transformação, moléculas ou fragmentos de moléculas de ADN dispostos no ambiente são absorvidas e incorporados ao cromossomo. Este ADN exógeno só será introduzido no cromossomo bacteriano se for semelhante ao ADN da bactéria receptora.[165] Algumas bactérias possuem uma capacidade natural de absorção de ADN, denominada competência, enquanto outras podem ser alteradas quimicamente para induzir esta absorção.[166] A competência pode também ser desenvolvida naturalmente, estando normalmente associadas a estresses provenientes de condições ambientes e facilitando o reparo do ADN.[167]

 
Diagrama exemplificando o processo de conjugação

A transdução consiste na incorporação de fragmentos de ADN de bacteriófagos no cromossomo bacteriano. Bactérias podem incorporar fragmentos dos genomas de fagos através do sistema CRISPR e utilizá-las para gerar ARNs de interferência que impedem a replicação do vírus.[168][169] Esta incorporação pode também ser involuntária, visto que alguns fagos inserem seu genoma no cromossomo bacteriano para se replicarem. Se a replicação do vírus não gerar a lise da bactéria, seu genes podem conferir novas características a célula infectada.[170][171] Além dos genes que compõe o vírus, ao realizar a lise da bactéria infectada alguns bacteriófagos podem incorporar parte do seu material genético, os quais podem então ser transferidos para outras células através da transdução.[172]

Por fim, a conjugação é caracterizada pela transferência direta de plasmídeos entre bactérias mediada pelo contato entre as células.[173] Neste processo a célula doadora adere a celular receptora através do pilus conjugativo, que conecta o citoplasma das duas bactérias. Este pilus está presente apenas em bactérias portadoras de um plasmídeo de fertilidade, também chamado de plasmídeo F. As bactérias que não possuem este plasmídeo atuam apenas como receptoras.[174] O ADN transferido neste processo é quase sempre o plasmídeo de fertilidade. Em algumas ocasiões, um pequeno pedaço de ADN cromossômico une-se ao plasmídeo e é transferido junto com ele. Assim, a conjugação possibilita o aumento da variabilidade genética na população bacteriana.[175]

Interações com outros organismos

Apesar de sua aparente simplicidade, as bactérias podem formar associações complexas com outros organismos. Essas associações podem ser divididas em parasitismo, mutualismo e comensalismo.[176]

Comensais

Devido ao seu tamanho pequeno, as bactérias são encontradas também em animais e plantas, exatamente como em qualquer outra superfície. Em humanos e outros animais elas podem ser encontradas na pele, vias respiratórias, trato digestivo e outros tecidos.[177][178] Esta bactérias são conhecidas como microbiota comensal.[179][180] O maior número de bactérias está na flora intestinal, além de também existir um grande número na pele.[181] A microbiota comensal é geralmente inofensiva, devido aos efeitos protetivos do sistema imunológico.[182][183]

Contudo, algumas bactérias comensais podem causar efeitos deletérios e infecções se as condições forem propicias.[184] Isto pode ocorrer devido a imunodeficiência ou se forem transportadas para outros tecidos.[185][186] Bactérias da espécie Escherichia coli são comensais no trato digestivo de humanos mas podem causar infecções no trato urinário.[187] Algumas espécies de Streptoccocus que atuam como comensais na boca humana podem causar doenças cardiovasculares.[188]

A famosa noção de que as células bacterianas do corpo humano superam as células humanas por um fator de 10:1 foi desmistificada. Existem aproximadamente 39 trilhões de células bacterianas na microbiota humana, personificadas por uma "referência" de um homem de 70 kg com 170 cm de altura, enquanto existem 30 trilhões de células humanas no corpo. Isso significa que, embora as células bacterianas tenham a vantagem em números reais, a diferença é de apenas 30%, e não 900%.[189]

Segundo a Teoria da Endossimbiose, as mitocôndrias e os cloroplastos de eucariontes teriam derivado de uma bactéria endossimbionte, provavelmente autotrófica, antepassada das atuais cianobactérias.[190][191]

Predadores

Algumas espécies de bactérias matam e consomem outros microrganismos, essas espécies são chamadas bactérias predadoras. Isso inclui organismos como o Myxococcus xanthus, que forma enxames de células que matam e digerem qualquer bactéria que encontrarem.[192] Outros predadores bacterianos se prendem às presas para digeri-las e absorver nutrientes, como Vampirovibrio chlorellavorus, ou invadir outra célula e se multiplicar dentro do citoplasma, como Daptobacter.[193] Pensa-se que essas bactérias predadoras tenham evoluído a partir de saprófagos que consumiam microrganismos mortos, através de adaptações que lhes permitiam aprisionar e matar outros organismos.[194]

Mutualistas

Certas bactérias formam associações espaciais estreitas que são essenciais para sua sobrevivência. Uma dessas associações mutualísticas, denominada transferência interespécie de hidrogênio, ocorre entre grupos de arqueias metanogênicas e bactérias anaeróbicas que consomem ácidos orgânicos, como ácido butírico ou ácido propiônico.[195] Estas bactérias seriam incapazes de consumir os ácidos orgânicos, pois essa reação produz hidrogênio que se acumula no ambiente e produz um efeito citotóxico. As arqueias metanogênicas são capazes de metabolizar hidrogênio, mantendo sua concentração baixa o suficiente para permitir que as bactérias cresçam.[196]

 
Relação mutualística entre plantas e bactérias fixadoras de nitrogênio encontradas na rizosfera

No solo, microrganismos que residem na rizosfera realizam a fixação de nitrogênio, convertendo o nitrogênio gasoso em compostos de nitrogênio, como amônia.[197] Estes compostos servem como fontes de nitrogênio para diversas plantas, que não são capazes de utilizar o nitrogênio gasoso.[198][199] Por outro lado, estas bactérias utilizam compostos secretados pelas raízes das plantas como fonte de carbono, processo denominado rizodeposição.[200][201]

Bactérias também podem ter efeitos benéficos para hospedeiro animais, por exemplo, impedindo infecções por organismos patogênicos[202][203] ou auxiliando no metabolismo de nutrientes.[204] Em humanos, a presença de algumas espécies bacterianas no trato gastrointestinal pode contribuir para a imunidade, síntese de vitaminas, conversão de açúcares em ácido láctico e a fermentação de carboidratos que não são digeridos.[205][206][207] A suplementação desta bactérias pode até ser utilizada como forma de tratamento, como no tratamento de sintomas de intolerância a lactose.[208][209]

Além disso, quase toda a vida animal depende de bactérias, já que apenas bactérias e algumas arqueias possuem a capacidade de sintetizar a vitamina B12.[210] Esta vitamina esta envolvida em processo essências como a síntese de ADN, metabolismo de aminoácidos e metabolismo de ácidos graxos.[211] Possui um papel importante também no funcionamento do sistema nervoso pois esta envolvida na síntese de mielina.[212]

Patógenos

 
Microscopia eletrônica de varredura com aprimoramento de cor mostrando Salmonella typhimurium (vermelho) invadindo células humanas (amarelo)

Se as bactérias formam uma associação parasitária com outros organismos, elas são classificadas como patógenos.[213] A grande maioria destas bactérias são consideradas patógenos generalistas, causando infecções em uma grande variedade de organismos.[214] Em alguns casos, já foram observados infecções em humanos por patógenos de plantas.[215] Por outro lado, ao longo do processo evolutivo, algumas bactérias podem também se adaptar para causar infecções em hospedeiros específicos, como as diferentes variantes sorológicas de Salmonella enterica adaptadas para diferentes hospedeiros mamíferos.[216] Este tropismo também pode ser observado na adaptação para infectar sítios específicos, como a adaptação de Helicabcter pylori em infectar o estômago,[217] enquanto outros patógenos podem causar infecções em diversos tecidos, como Staphylococcus e Streptococcus, que causam infecções na pele, pneumonia, meningite e sepse.[218][219]

As bactérias patogênicas são uma das principais causas de morte e doença humana e causam infecções como tétano, febre tifóide, difteria, sífilis, cólera, intoxicação alimentar, lepra (causada por Mycobacterium leprae) e tuberculose (Causada por Mycobacterium tubeculosis).[220] As doenças bacterianas também são importantes na agropecuária, com bactérias que causam manchas nas folhas, fogo bacteriano e murchidão nas plantas, assim como a paratuberculose, mastite, salmonela e antraz em animais de criação.[221]

Algumas bactérias, como Pseudomonas aeruginosa, Burkholderia cenocepacia e Mycobacterium avium, podem ser consideradas patógenos oportunistas pois causam infecções principalmente em indivíduos imunossuprimidos ou acometidos por outras doenças.[222][223] Por outro lado, outras bactérias, como algumas espécies do gênero Rickettsia, são capazes de se reproduzir apenas quando estão no interior de células de outros organismos e por isso são considerados patógenos obrigatórios.[224] Em alguns casos, a infecção direta pela célula bacteriana não é necessária para causar doença, como o patógeno Clostridium botulinium, que produz uma endotoxina que pode causar botulismo se ingerida.[225] Estas toxinas podem ser utilizadas para produzir vacinas que protegem contra a infecção bacteriana.[226]

Infecções bacterianas podem ser tratadas com antibióticos. Estes medicamentos podem ser classificados em bactericidas, se matarem as células bacterianas, ou bacteriostáticos, se apenas prevenirem o crescimento bacteriano.[227] Sua atuação é seletiva para os organismos bacterianos, visando evitar efeitos adversos no paciente sendo tratado.[228] Por exemplo, o cloranfenicol e a puromicina são antibióticos que inibem o funcionamento de ribossomos bacterianos, os quais são estruturalmente diferentes dos ribossomos de eucariontes.[229] Além do tratamento de doenças, antibióticos são utilizados também para promover o crescimento de animais de criação.[230] A ampla utilização destes medicamentos pode estar contribuindo para o rápido desenvolvimento de resistência em populações bacterianas, as quais tornam o tratamento com antibióticos inefetivos. Em 2019, infecções por bactérias resistentes a antibióticos foram responsáveis por cerca de 1,27 milhões de mortes no mundo.[231] Estas infecções podem ser evitadas através de medidas antissépticas preventivas, como a esterilização de instrumentos cirúrgicos, agulhas e seringas antes de procedimentos que perfuram a pele. Desinfetantes podem ser usados para esterilizar superfícies, prevenindo contaminação e disseminação de infecções bacterianas.[232]

Classificação e identificação de bactérias

 
Anel filogenético da vida: principais filos de bactérias e sua relação com arqueias e eucariontes

Historicamente, a classificação taxonômica bactérias já foi feita com base em diferentes características como sua estrutura celular, metabolismo ou diferenças entre componentes celulares, como ADN, ácidos graxos, pigmentos, antígenos e quinonas.[233] Apesar de permitirem a identificação e classificação de cepas bacterianas, estas diferenças não necessariamente representam variações entre espécies distintas. Isso se da devido a alta similaridade estrutural entre a maioria das bactérias e a capacidade de transferência horizontal de genes.[234] Com a transferência de genes, bactérias evolutivamente relacionadas podem apresentar morfologias e metabolismos diferentes. Para superar este problema, a classificação taxonômica moderna se baseia principalmente em estudos moleculares, utilizando analises genéticas como a determinação do conteúdo de de guanina e citosina, hibridização de genomas e sequenciamento de genes que comumente não são transferidos entre bactérias, como os genes do ARN ribossomal.[235] Para realizar a classificação das bactérias, estas precisam ser primeiramente identificadas, isoladas e caracterizadas. A identificação laboratorial de bactérias também é altamente relevante na medicina, onde a utilização do tratamento correto é dependente da identificação da espécie bacteriana causadora da infecção. Consequentemente, a necessidade de identificar patógenos humanos foi um dos principais motivadores para o desenvolvimento de técnicas de identificação de bactérias.[236]

 
Uma cultura de Salmonella em meio sólido

Diferentes técnicas de cultivo foram criadas para promover o crescimento de bactérias especificas, restringindo a possibilidade de crescimento de outras espécies.[237] Por exemplo, em uma amostra de fezes o cultivo pode ser realizado em um meio seletivo para organismos que causam diarreia e previne o crescimento de bactérias comensais.[238] Estes meios de cultivo seletivo podem ser criados, por exemplo, através da adição de antibióticos.[239][240] Por outro lado, amostras provenientes de conteúdos comumente estéreis, como o sangue, são cultivadas em meios que incentivam o crescimento de qualquer microrganismo.[241][242] Se um organismo patogênico for cultivado, este pode ser isolado e caracterizado mais especificamente através da analise morfológica, de padrões de crescimento e coloração.[243]

 
Micrografia de um coccus gram-positivo (esquerda) e um bacilo gram-negative (direita).

A coloração de Gram, desenvolvida em 1884 pelo bacteriologista Hans Christian Gram, permite a caracterização bacteriana com base nas características estruturais de sua parede celular. Como esta técnica, as diversas camadas de peptidoglicano na parede celular de bactérias gram-positivas são coradas em roxo, enquanto a parede celular mais fina encontrada em gram-negativas apresentam uma coloração rosa.[244] Alguns organismos podem ser identificados através do uso de outras colorações, como micobactérias e nocardias através da técnica de Ziehl-Neelsen.[245]

Assim como a classificação taxonômica, o processo de identificação moderno utiliza também diversos métodos moleculares.[246] A utilização de abordagens baseadas no ADN bacteriano, como a reação em cadeia da polimerase, tem sido comumente utilizadas por serem mais especificas e rápidas quando comparadas a metodologias baseadas em cultivo.[247] Além disso estas abordagens permitem também a identificação de bactérias que não podem ser cultivadas em laboratório.[248] Mesmo com estas técnicas aprimoradas, a maioria das espécies bacterianas ainda não foi identificada e o numero total de espécies ainda não é conhecido.[249] Em 2013, 10 599 espécies conhecidas de bactérias haviam sido validadas.[250] Tentativas de estimar o numero total de espécies bacterianas variam entre 107 e 109, mas não apresentam alta confiabilidade.[251][252]

Importância biotecnológica e industrial

A grande diversidade e características das bactérias permite sua utilização em abordagens biotecnológicas para solucionar diferentes problemas. Antes mesmo da descoberta de microrganismos, as bactérias já eram utilizadas na produção e conservação de alimentos.[253][254] As principais bactérias utilizadas para isto são as ácido-láticas, utilizadas junto com fungos na preparação de comidas e bebidas fermentadas, como queijos, iogurte, vinho, salsicha, picles, chucrute (sauerkraut em alemão), azeitona, molho de soja, leite fermentado.[255][256] Outros tipos bactérias também são utilizadas, como as bactérias acéticas utilizadas para produzir vinagres.[257] Atualmente diferentes bactérias são utilizadas pela indústria alimentícia não só para a conservação de alimentos mas também para produzir diferentes sabores e aromas.[258]

Além da produção de alimentos manufaturados, bactérias também são utilizadas na indústria agrícola. Bactérias fixadoras de nitrogênio, como Azospirillum Brasilense são utilizadas como biofertilizantes para promover o crescimento de plantas, aumentando a capacidade de produção de cada colheita.[259] Outras bactérias também podem ser utilizadas para o controle de pragas, substituindo o uso de pesticidas químicos. Por exemplo, subespécies de Bacillus thuringiensis são utilizadas como inseticida especifico para insetos da ordem Lepidoptera.[260] A atuação em insetos específicos torna esta abordagem menos danosa ao ecossistema, com poucos ou nenhum efeito negativo para humanos, vida selvagem, polinizadores e outros insetos benéficos.[261][262]

A interação entre bactérias e outros organismos também é utilizada para o controle de insetos vetores de doenças. No Brasil, bactérias do gênero Wolbachia são usadas para combater a disseminação de doenças transmitidas pelo mosquito Aedes aegypti, como a dengue, febre zika, chicungunha e febre amarela. Esta bactéria torna o inseto vetor imune aos vírus causadores destas doenças, interferindo no seu desenvolvimento e replicação.[263]

A diversidade metabólica e capacidade de degradar diferentes compostos também são utilizadas para a biorremediação e tratamento de resíduos. Bactérias capazes de metabolizar hidrocarbonetos de petróleo são comumente usadas para limpar derramamentos.[264] Por exemplo, fertilizantes foram utilizados para promover o crescimento destas bactérias nas praias da enseada do Príncipe Guilherme após o derramamento de petróleo do Exxon Valdez, ocorrido em 1989.[265] Bactérias também são utilizadas na biorremediação de resíduos tóxicos.[266][267]

Devido a sua capacidade de reprodução rápida e facilidade de manipulação, as bactérias são comumente utilizadas como objetos de estudos nas áreas de biologia molecular, genética e bioquímica. Ao realizar mutações no ADN bacteriano e observar o fenótipo resultante, cientistas podem determinar a função de genes, enzimas e vias metabólicas em bactérias. Estes conhecimentos podem então ser utilizados para compreender organismos mais complexos.[268] Escherichia coli é a espécie bacteriana mais estuda e por isso é comumente utilizada como um organismo modelo.[269][270] Com entendimento avançado da genética e metabolismo bacteriano é possível utiliza-las para produzir diferentes compostos orgânicos, como a insulina, anticorpos, antimicrobianos e fatores de crescimento.[271][272]

Em 1977, uma proteína humana foi sintetizada por uma bactéria pela primeira vez. Um segmento de ADN com 60 pares de nucleotídeos, contendo o código para síntese de somatostatina foi ligado a um plasmídeo e introduzido em uma bactéria, a partir da qual foram obtidos clones capazes de produzir somatostatina.[273] Em 1982, a insulina se tornou a primeira proteína humana produzida por engenharia genética em células de bactérias e aprovada para uso em tratamento de pacientes.[274] Até então, a fonte do hormônio utilizado para tratamento de pacientes diabéticos eram os pâncreas de bois e porcos abatidos em matadouros.[275] Apesar da insulina desses animais ser muito semelhante à humana, ela pode causar reações alérgicas em algumas pessoas. A insulina produzida em bactérias transformadas, por outro lado, é idêntica à do pâncreas humano e não causa alergia, devendo substituir definitivamente a insulina animal.[276] O hormônio do crescimento humano também é produzido em bactérias para ser utilizado em tratamento terapêuticos. Este hormônio é necessário para o desenvolvimento adequado durante a infância.[277] Antes da produção em bactérias, a única opção para crianças com deficiência na sua produção era o tratamento com hormônio extraído de cadáveres.[278]

História da bacteriologia

 Ver artigo principal: Bacteriologia
 
Antonie van Leeuwenhoek, o primeiro microbiologista

Antonie van Leeuwenhoek em 1673, usando um microscópio de lente simples projetado por ele mesmo, foi o primeiro cientista a observar a existência de micro-organismos. Durante os anos seguintes, van Leeuwenhoek publicou suas descobertas em uma série de cartas e manuscritos que enviou a Royal Society de Londres.[279] Entre as correspondências mais importantes estão as do ano de 1676, que dedicam-se a descobertas de micro-organismos, chamados por ele de "animalículos".[280] A primeira referência específica à bactérias é de uma carta datada de 9 de outubro de 1676.[281]

O termo Bacterium foi introduzido somente em 1828, pelo microbiologista alemão Christian Gottfried Ehrenberg.[282] O gênero Bacterium compreendia bactérias com formato de bastão não formadoras de esporos,[283] oposto ao gênero Bacillus, que compreendia bactérias com formato de bastão formadoras de esporos, definido por Ehrenberg em 1835.[284]

Esses seres microscópicos somente passaram a despertar o interesse dos cientistas no final do século XIX. Louis Pasteur demonstrou em 1859 que o processo de fermentação era causado pelo crescimento de micro-organismos, e não pela geração espontânea. Pasteur e Robert Koch foram os primeiros cientistas a defender a teoria microbiana das enfermidades, ou seja, o papel das bactérias como vectores de várias doenças.[285] Robert Koch foi ainda um pioneiro na microbiologia médica, trabalhando com diferentes enfermidades infecciosas, como a cólera, o carbúnculo e a tuberculose. Koch conseguiu provar a teoria microbiana das enfermidades infecciosas através de suas investigações da tuberculose, sendo o ganhador do prêmio Nobel de medicina e fisiologia no ano de 1905.[286] Estabeleceu o que é hoje denominado de postulado de Koch, mediante aos quais se padronizou uma série de critérios experimentais para demonstrar se um organismo é ou não o causador de uma determinada enfermidade. Estes postulados são utilizados até hoje.[287]

Ferdinand Cohn é considerado o fundador da bacteriologia, estudando bactérias em 1870. Cohn foi o primeiro a classificar bactérias com base em sua morfologia.[288][289]

Apesar de no final do século XIX já se saber que as bactérias eram a causa de diversas doenças, não existia ainda um tratamento antibacteriano para combatê-las.[290] Em 1910, Paul Ehrlich desenvolveu o primeiro antibiótico, por meio de tinturas que seletivamente coravam e matavam a bactéria Treponema pallidum, agente causador da sífilis.[291] Ehrlich recebeu o Nobel em 1908 por seus trabalhos em imunologia e por seus pioneirismo no uso de corantes para detectar e identificar as bactérias, base fundamental para o desenvolvimento da coloração de Gram e Ziehl-Neelsen.[292]

Um grande avanço no estudo das bactérias foi o reconhecimento realizado por Carl Woese em 1977, de que as arqueias e bactérias representam linhagens evolutivas diferentes.[293] Esta nova taxonomia filogenética se baseava no sequenciamento do ARN ribossômico 16S e dividia os procariontes, até então classificados como Prokayota, em dois grupos evolutivos distintos, em um sistema de três domínios: Bacteria, Archaea e Eukaryota.[294]

Ver também

Referências

  1. a b Göker, Markus; Oren, Aharon (22 de janeiro de 2024). «Valid publication of names of two domains and seven kingdoms of prokaryotes». International Journal of Systematic and Evolutionary Microbiology (em inglês) (1). ISSN 1466-5026. doi:10.1099/ijsem.0.006242. Consultado em 20 de novembro de 2024 
  2. «bactéria». Dicionários Porto Editora. Infopédia. Consultado em 7 de junho de 2020 
  3. J., J.; Robert-Scott; Liddell, Henry George; Jones, Henry Stuart (1940). «A Greek-English Lexicon». The Classical Weekly. 34 (8). 86 páginas. ISSN 1940-641X. doi:10.2307/4341055 
  4. «βακτηρία, ας, ἡ». Lexicon Gregorianum Online. Consultado em 21 de novembro de 2019 
  5. «Online etymology dictionary». Choice Reviews Online. 41 (02): 41–0659-41-0659. 1 de outubro de 2003. ISSN 0009-4978. doi:10.5860/choice.41-0659 
  6. Woese, C. R.; Kandler, O.; Wheelis, M. L. (junho de 1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya». Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–4579. ISSN 0027-8424. PMC 54159 . PMID 2112744. doi:10.1073/pnas.87.12.4576 
  7. Gupta, R. S. (2000). «The natural evolutionary relationships among prokaryotes». Critical Reviews in Microbiology. 26 (2): 111–131. ISSN 1040-841X. PMID 10890353. doi:10.1080/10408410091154219 
  8. Schopf, J. W. (19 de julho de 1994). «Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic». Proceedings of the National Academy of Sciences of the United States of America. 91 (15): 6735–6742. ISSN 0027-8424. PMC 44277 . PMID 8041691. doi:10.1073/pnas.91.15.6735 
  9. Wang, Minglei; Yafremava, Liudmila S.; Caetano-Anollés, Derek; Mittenthal, Jay E.; Caetano-Anollés, Gustavo (novembro de 2007). «Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world». Genome Research. 17 (11): 1572–1585. ISSN 1088-9051. PMC 2045140 . PMID 17908824. doi:10.1101/gr.6454307 
  10. Di Giulio, Massimo (dezembro de 2003). «The universal ancestor and the ancestor of bacteria were hyperthermophiles». Journal of Molecular Evolution. 57 (6): 721–730. ISSN 0022-2844. PMID 14745541. doi:10.1007/s00239-003-2522-6 
  11. Battistuzzi, Fabia U.; Feijao, Andreia; Hedges, S. Blair (9 de novembro de 2004). «A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land». BMC evolutionary biology. 4. 44 páginas. ISSN 1471-2148. PMC 533871 . PMID 15535883. doi:10.1186/1471-2148-4-44 
  12. Cavalier-Smith, Thomas (29 de junho de 2006). «Cell evolution and Earth history: stasis and revolution». Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1470): 969–1006. ISSN 0962-8436. PMC 1578732 . PMID 16754610. doi:10.1098/rstb.2006.1842 
  13. Cavalier-Smith, T (1 de março de 2002). «The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.». International Journal of Systematic and Evolutionary Microbiology. 52 (2): 297–354. ISSN 1466-5026. doi:10.1099/00207713-52-2-297 
  14. Cavalier-Smith, T. (janeiro de 2002). «The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification». International Journal of Systematic and Evolutionary Microbiology. 52 (Pt 1): 7–76. ISSN 1466-5026. PMID 11837318. doi:10.1099/00207713-52-1-7 
  15. Brown, J. R.; Doolittle, W. F. (dezembro de 1997). «Archaea and the prokaryote-to-eukaryote transition». Microbiology and molecular biology reviews: MMBR. 61 (4): 456–502. ISSN 1092-2172. PMC 232621 . PMID 9409149 
  16. Poole, Anthony M.; Penny, David (janeiro de 2007). «Evaluating hypotheses for the origin of eukaryotes». BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 29 (1): 74–84. ISSN 0265-9247. PMID 17187354. doi:10.1002/bies.20516 
  17. Dyall, Sabrina D.; Brown, Mark T.; Johnson, Patricia J. (9 de abril de 2004). «Ancient invasions: from endosymbionts to organelles». Science (New York, N.Y.). 304 (5668): 253–257. ISSN 1095-9203. PMID 15073369. doi:10.1126/science.1094884 
  18. Lang, B. F.; Gray, M. W.; Burger, G. (1999). «Mitochondrial genome evolution and the origin of eukaryotes». Annual Review of Genetics. 33: 351–397. ISSN 0066-4197. PMID 10690412. doi:10.1146/annurev.genet.33.1.351 
  19. McFadden, G. I. (dezembro de 1999). «Endosymbiosis and evolution of the plant cell». Current Opinion in Plant Biology. 2 (6): 513–519. ISSN 1369-5266. PMID 10607659. doi:10.1016/s1369-5266(99)00025-4 
  20. Gupta, Radhey S. (1 de janeiro de 2000). «The natural evolutionary relationships among prokaryotes». Critical Reviews in Microbiology. ISSN 1040-841X. doi:10.1080/10408410091154219. Consultado em 9 de dezembro de 2024 
  21. Hameed, Hira; Nasir, Arshan (2022). Vonk, Jennifer; Shackelford, Todd K., eds. «Woese's Three Domains of Cellular Life». Cham: Springer International Publishing (em inglês): 7304–7306. ISBN 978-3-319-55065-7. doi:10.1007/978-3-319-55065-7_1452. Consultado em 9 de dezembro de 2024 
  22. Benchimol, Jaime; Sá, Magali Romero (2004). Adolpho Lutz and dermatology in historical perspective (PDF). Rio de Janeiro, RJ: Editora Fiocruz. pp. 27–29. ISBN 85-7541-043-1 
  23. Brown, Morgan M.; Horswill, Alexander R. (12 de nov. de 2020). «Staphylococcus epidermidis—Skin friend or foe?». PLOS Pathogens (em inglês) (11): e1009026. ISSN 1553-7374. PMC 7660545 . PMID 33180890. doi:10.1371/journal.ppat.1009026. Consultado em 9 de dezembro de 2024 
  24. Copeland, H. F. 1938. The kingdoms of organisms. Q. Rev. Biol. 13:383-420; 386.
  25. a b Pelczar Jr, MJ, Chan, ECS e Krieg, NR. Microbiologia, vol. I, 2a edição - São Paulo: Makron Books, 1996.
  26. Woese, C R; Kandler, O; Wheelis, M L (junho de 1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.». Proceedings of the National Academy of Sciences (12): 4576–4579. PMC 54159 . PMID 2112744. doi:10.1073/pnas.87.12.4576. Consultado em 9 de dezembro de 2024 
  27. Magalhães Soares, Alisson (9 de maio de 2016). «Teoria da Evolução e Autorreferencialidade na teoria dos Sistemas de Niklas Luhmann» (PDF). Consultado em 28 de maio de 2020 
  28. Baker-Austin C, Dopson M (abril de 2007). «Life in acid: pH homeostasis in acidophiles». Trends in Microbiology. 15 (4): 165–171. PMID 17331729. doi:10.1016/j.tim.2007.02.005 
  29. Jeong SW, Choi YJ (outubro de 2020). «Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment». Molecules. 25 (21): 4916. PMC 7660605 . PMID 33114255. doi:10.3390/molecules25214916  
  30. Flemming HC, Wuertz S (abril de 2019). «Bacteria and archaea on Earth and their abundance in biofilms». Nature Reviews. Microbiology. 17 (4): 247–260. PMID 30760902. doi:10.1038/s41579-019-0158-9 
  31. Whitman, W. B.; Coleman, D. C.; Wiebe, W. J. (9 de junho de 1998). «Prokaryotes: The unseen majority». Proceedings of the National Academy of Sciences. 95 (12): 6578–6583. ISSN 0027-8424. doi:10.1073/pnas.95.12.6578 
  32. Draggan, Sidney; Giddings, Jeffrey M. (janeiro de 1978). «Testing toxic substances for protection of the environment». Science of The Total Environment. 9 (1): 63–74. ISSN 0048-9697. doi:10.1016/0048-9697(78)95003-7 
  33. Bar-On YM, Phillips R, Milo R (junho de 2018). «The biomass distribution on Earth». Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6506–6511. Bibcode:2018PNAS..115.6506B. PMC 6016768 . PMID 29784790. doi:10.1073/pnas.1711842115  
  34. Dusenbery, David B (2009). Living at Micro Scale (em inglês). Cambridge, Massachusetts: Harvard University Press. pp. 20–25. ISBN 978-0-674-03116-6 
  35. a b c «Earth microbes can thrive on Enceladus». New Scientist. 237 (3168). 18 páginas. Março de 2018. ISSN 0262-4079. doi:10.1016/s0262-4079(18)30432-9 
  36. Glud, Ronnie N.; Wenzhöfer, Frank; Middelboe, Mathias; Oguri, Kazumasa; Turnewitsch, Robert; Canfield, Donald E.; Kitazato, Hiroshi (17 de março de 2013). «High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth». Nature Geoscience. 6 (4): 284–288. ISSN 1752-0894. doi:10.1038/ngeo1773 
  37. Cressey, Daniel (27 de abril de 2010). «Life thrives in ocean canyon». Nature. ISSN 0028-0836. doi:10.1038/news.2010.205 
  38. Schulz, Heide N.; Jørgensen, Bo Barker (outubro de 2001). «Big Bacteria». Annual Review of Microbiology (em inglês). 55 (1): 105–137. ISSN 0066-4227. doi:10.1146/annurev.micro.55.1.105 
  39. Williams, Caroline (julho de 2011). «Who are you calling simple?». New Scientist (em inglês). 211 (2821): 38–41. doi:10.1016/S0262-4079(11)61709-0 
  40. Volland JM, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR (18 de fevereiro de 2022). «A centimeter-long bacterium with DNA compartmentalized in membrane-bound organelles». bioRxiv (preprint). doi:10.1101/2022.02.16.480423 
  41. Sanderson K (junho de 2022). «Largest bacterium ever found is surprisingly complex». Nature. PMID 35750919. doi:10.1038/d41586-022-01757-1 
  42. Robertson, J; Gomersall, M; Gill, P. Mycoplasma hominis: growth, reproduction, and isolation of small viable cells. [S.l.: s.n.] OCLC 678542611 
  43. Velimirov, Branko (2001). «Nanobacteria, Ultramicrobacteria and Starvation Forms: A Search for the Smallest Metabolizing Bacterium». Microbes and environments (em inglês). 16 (2): 67–77. ISSN 1342-6311. doi:10.1264/jsme2.2001.67 
  44. Dusenbery, David B. (2009). Living at micro scale : the unexpected physics of being small. Cambridge, Mass.: Harvard University Press. ISBN 978-0-674-03116-6. OCLC 225874255 
  45. Yang, Desirée C.; Blair, Kris M.; Salama, Nina R. (março de 2016). «Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments». Microbiology and Molecular Biology Reviews (em inglês). 80 (1): 187–203. ISSN 1092-2172. PMC 4771367 . PMID 26864431. doi:10.1128/MMBR.00031-15 
  46. Cabeen, Matthew T.; Jacobs-Wagner, Christine (agosto de 2005). «Bacterial cell shape». Nature Reviews Microbiology (em inglês). 3 (8): 601–610. ISSN 1740-1526. doi:10.1038/nrmicro1205 
  47. Young, K. D. (1 de setembro de 2006). «The Selective Value of Bacterial Shape». Microbiology and Molecular Biology Reviews (em inglês). 70 (3): 660–703. ISSN 1092-2172. PMC 1863593 . PMID 16959965. doi:10.1128/MMBR.00001-06 
  48. Claessen, Dennis; Rozen, Daniel E.; Kuipers, Oscar P.; Søgaard-Andersen, Lotte; van Wezel, Gilles P. (fevereiro de 2014). «Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies». Nature Reviews Microbiology (em inglês). 12 (2): 115–124. ISSN 1740-1526. doi:10.1038/nrmicro3178 
  49. Shimkets, Lawrence J. (outubro de 1999). «Intercellular Signaling During Fruiting-Body Development of Myxococcus xanthus». Annual Review of Microbiology (em inglês). 53 (1): 525–549. ISSN 0066-4227. doi:10.1146/annurev.micro.53.1.525 
  50. Kaiser, Dale (outubro de 2004). «Signaling in myxobacteria». Annual Review of Microbiology (em inglês). 58 (1): 75–98. ISSN 0066-4227. doi:10.1146/annurev.micro.58.030603.123620 
  51. Donlan, Rodney M. (setembro de 2002). «Biofilms: Microbial Life on Surfaces». Emerging Infectious Diseases. 8 (9): 881–890. ISSN 1080-6040. PMC 2732559 . PMID 12194761. doi:10.3201/eid0809.020063 
  52. Branda, Steven S.; Vik, Åshild; Friedman, Lisa; Kolter, Roberto (janeiro de 2005). «Biofilms: the matrix revisited». Trends in Microbiology (em inglês). 13 (1): 20–26. doi:10.1016/j.tim.2004.11.006 
  53. Davey, M. E.; O'toole, G. A. (1 de dezembro de 2000). «Microbial Biofilms: from Ecology to Molecular Genetics». Microbiology and Molecular Biology Reviews (em inglês). 64 (4): 847–867. ISSN 1092-2172. PMC 99016 . PMID 11104821. doi:10.1128/MMBR.64.4.847-867.2000 
  54. Donlan, R. M.; Costerton, J. W. (1 de abril de 2002). «Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms». Clinical Microbiology Reviews (em inglês). 15 (2): 167–193. ISSN 0893-8512. PMC 118068 . PMID 11932229. doi:10.1128/CMR.15.2.167-193.2002 
  55. a b Shapiro, James A. (1 de outubro de 1998). «THINKING ABOUT BACTERIAL POPULATIONS AS MULTICELLULAR ORGANISMS». Annual Review of Microbiology (em inglês) (Volume 52, 1998): 81–104. ISSN 0066-4227. doi:10.1146/annurev.micro.52.1.81. Consultado em 10 de dezembro de 2024 
  56. Costerton, J. William; Lewandowski, Zbigniew; Caldwell, Douglas E.; Korber, Darren R.; Lappin-Scott, Hilary M. (1 de outubro de 1995). «MICROBIAL BIOFILMS». Annual Review of Microbiology (em inglês) (Volume 49,): 711–745. ISSN 0066-4227. doi:10.1146/annurev.mi.49.100195.003431. Consultado em 10 de dezembro de 2024 
  57. van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto (3 de abril de 2015). «Division of Labor in Biofilms: the Ecology of Cell Differentiation». Microbiology Spectrum (2): 10.1128/microbiolspec.mb–0002–2014. doi:10.1128/microbiolspec.mb-0002-2014. Consultado em 10 de dezembro de 2024 
  58. Miller, Melissa B.; Bassler, Bonnie L. (1 de outubro de 2001). «Quorum Sensing in Bacteria». Annual Review of Microbiology (em inglês) (Volume 55, 2001): 165–199. ISSN 0066-4227. doi:10.1146/annurev.micro.55.1.165. Consultado em 10 de dezembro de 2024 
  59. Miller, Daniel P.; Lamont, Richard J. (2019). Belibasakis, Georgios N.; Hajishengallis, George; Bostanci, Nagihan; Curtis, Michael A., eds. «Signaling Systems in Oral Bacteria». Cham: Springer International Publishing (em inglês): 27–43. ISBN 978-3-030-28524-1. doi:10.1007/978-3-030-28524-1_3. Consultado em 10 de dezembro de 2024 
  60. Abisado, Rhea G.; Benomar, Saida; Klaus, Jennifer R.; Dandekar, Ajai A.; Chandler, Josephine R. (22 de maio de 2018). «Bacterial Quorum Sensing and Microbial Community Interactions». mBio (3): 10.1128/mbio.02331–17. PMC 5964356 . PMID 29789364. doi:10.1128/mbio.02331-17. Consultado em 10 de dezembro de 2024 
  61. Slonczewski, Joan. Microbiology : an evolving science Third ed. New York: [s.n.] ISBN 978-0-393-91929-5. OCLC 881060733 
  62. Bobik, Thomas A. (maio de 2006). «Polyhedral organelles compartmenting bacterial metabolic processes». Applied Microbiology and Biotechnology (em inglês). 70 (5): 517–525. ISSN 0175-7598. doi:10.1007/s00253-005-0295-0 
  63. Yeates, Todd O.; Kerfeld, Cheryl A.; Heinhorst, Sabine; Cannon, Gordon C.; Shively, Jessup M. (setembro de 2008). «Protein-based organelles in bacteria: carboxysomes and related microcompartments». Nature Reviews Microbiology (em inglês). 6 (9): 681–691. ISSN 1740-1526. doi:10.1038/nrmicro1913 
  64. Kerfeld, C. A. (5 de agosto de 2005). «Protein Structures Forming the Shell of Primitive Bacterial Organelles». Science (em inglês). 309 (5736): 936–938. ISSN 0036-8075. doi:10.1126/science.1113397 
  65. Gitai, Zemer (março de 2005). «The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture». Cell (em inglês). 120 (5): 577–586. doi:10.1016/j.cell.2005.02.026 
  66. Shih, Y.-L.; Rothfield, L. (1 de setembro de 2006). «The Bacterial Cytoskeleton». Microbiology and Molecular Biology Reviews (em inglês). 70 (3): 729–754. ISSN 1092-2172. PMC 1863863 . PMID 16959967. doi:10.1128/MMBR.00017-06 
  67. Norris, V.; den Blaauwen, T.; Cabin-Flaman, A.; Doi, R. H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D. J.; Levin, P. A. (1 de março de 2007). «Functional Taxonomy of Bacterial Hyperstructures». Microbiology and Molecular Biology Reviews (em inglês). 71 (1): 230–253. ISSN 1092-2172. PMC 1847379 . PMID 17347523. doi:10.1128/MMBR.00035-06 
  68. Baker, Richard W. (1986). «Membranes in Energy Conservation Processes». Dordrecht: Springer Netherlands: 437–455. ISBN 978-94-010-8596-0 
  69. Bryant, Donald A.; Frigaard, Niels-Ulrik (novembro de 2006). «Prokaryotic photosynthesis and phototrophy illuminated». Trends in Microbiology (em inglês). 14 (11): 488–496. doi:10.1016/j.tim.2006.09.001 
  70. Pšenčík, J.; Ikonen, T.P.; Laurinmäki, P.; Merckel, M.C.; Butcher, S.J.; Serimaa, R.E.; Tuma, R. (agosto de 2004). «Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria». Biophysical Journal (em inglês). 87 (2): 1165–1172. PMC 1304455 . PMID 15298919. doi:10.1529/biophysj.104.040956 
  71. Thanbichler, Martin; Wang, Sherry C.; Shapiro, Lucy (15 de outubro de 2005). «The bacterial nucleoid: A highly organized and dynamic structure». Journal of Cellular Biochemistry (em inglês). 96 (3): 506–521. ISSN 0730-2312. doi:10.1002/jcb.20519 
  72. Lipps G., ed. (2008). Plasmids: Current Research and Future Trends. Wymondham: Caister Academic Press. ISBN 978-1-904455-35-6 
  73. Poehlsgaard, Jacob; Douthwaite, Stephen (novembro de 2005). «The bacterial ribosome as a target for antibiotics». Nature Reviews Microbiology (em inglês). 3 (11): 870–881. ISSN 1740-1526. doi:10.1038/nrmicro1265 
  74. Yeo, Marcus; Chater, Keith (2005). «The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor». Microbiology,. 151 (3): 855–861. ISSN 1350-0872. doi:10.1099/mic.0.27428-0 
  75. Shiba, T.; Tsutsumi, K.; Ishige, K.; Noguchi, T. (março de 2000). «Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications». Biochemistry. Biokhimiia. 65 (3): 315–323. ISSN 0006-2979. PMID 10739474 
  76. Brune, Daniel C. (junho de 1995). «Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina». Archives of Microbiology (em inglês). 163 (6): 391–399. ISSN 0302-8933. doi:10.1007/BF00272127 
  77. Kadouri, Daniel; Jurkevitch, Edouard; Okon, Yaacov; Castro-Sowinski, Susana (janeiro de 2005). «Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates». Critical Reviews in Microbiology (em inglês). 31 (2): 55–67. ISSN 1040-841X. doi:10.1080/10408410590899228 
  78. Walsby, A. E. (março de 1994). «Gas vesicles». Microbiological Reviews. 58 (1): 94–144. ISSN 0146-0749. PMC 372955 . PMID 8177173 
  79. Heijenoort, J. v. (1 de março de 2001). «Formation of the glycan chains in the synthesis of bacterial peptidoglycan». Glycobiology (em inglês). 11 (3): 25R–36R. ISSN 0959-6658. doi:10.1093/glycob/11.3.25R 
  80. a b Koch, A. L. (1 de outubro de 2003). «Bacterial Wall as Target for Attack: Past, Present, and Future Research». Clinical Microbiology Reviews (em inglês). 16 (4): 673–687. ISSN 0893-8512. PMC 207114 . PMID 14557293. doi:10.1128/CMR.16.4.673-687.2003 
  81. Wirth, Reinhard; Bellack, Annett; Bertl, Markus; Bilek, Yvonne; Heimerl, Thomas; Herzog, Bastian; Leisner, Madeleine; Probst, Alexander; Rachel, Reinhard (março de 2011). «The Mode of Cell Wall Growth in Selected Archaea Is Similar to the General Mode of Cell Wall Growth in Bacteria as Revealed by Fluorescent Dye Analysis». Applied and Environmental Microbiology (5): 1556–1562. PMC 3067282 . PMID 21169435. doi:10.1128/AEM.02423-10. Consultado em 9 de dezembro de 2024 
  82. «Ueber die isolirte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten von Dr. Gram, Kopenhagen. — Fortschritte der Medicin 1884 No. 6. Ref. Dr. Becker». DMW - Deutsche Medizinische Wochenschrift. 10 (15): 234–235. Abril de 1884. ISSN 0012-0472. doi:10.1055/s-0029-1209285 
  83. Hugenholtz, Philip (29 de janeiro de 2002). Exploring prokaryotic diversity in the genomic era. [S.l.]: BioMed Central Ltd. OCLC 732700450 
  84. Walsh, Fiona M; Amyes, Sebastian GB (outubro de 2004). «Microbiology and drug resistance mechanisms of fully resistant pathogens». Current Opinion in Microbiology (em inglês). 7 (5): 439–444. doi:10.1016/j.mib.2004.08.007 
  85. Alderwick, Luke J.; Harrison, James; Lloyd, Georgina S.; Birch, Helen L. (agosto de 2015). «The Mycobacterial Cell Wall—Peptidoglycan and Arabinogalactan». Cold Spring Harbor Perspectives in Medicine (em inglês). 5 (8): a021113. ISSN 2157-1422. PMC 4526729 . PMID 25818664. doi:10.1101/cshperspect.a021113 
  86. Engelhardt, Harald; Peters, Jürgen (dezembro de 1998). «Structural Research on Surface Layers: A Focus on Stability, Surface Layer Homology Domains, and Surface Layer–Cell Wall Interactions». Journal of Structural Biology (em inglês). 124 (2-3): 276–302. doi:10.1006/jsbi.1998.4070 
  87. Beveridge, T (junho de 1997). «V. Functions of S-layers». FEMS Microbiology Reviews. 20 (1-2): 99–149. doi:10.1016/S0168-6445(97)00043-0 
  88. Thompson, Stuart A. (dezembro de 2002). «Campylobacter Surface‐Layers (S‐Layers) and Immune Evasion». Annals of Periodontology (em inglês) (1): 43–53. ISSN 1553-0841. PMC 2763180 . PMID 16013216. doi:10.1902/annals.2002.7.1.43. Consultado em 21 de novembro de 2024 
  89. Kojima, Seiji; Blair, David F (2004). «The Bacterial Flagellar Motor: Structure and Function of a Complex Molecular Machine». Elsevier (em inglês). 233: 93–134. ISBN 978-0-12-364637-8. doi:10.1016/s0074-7696(04)33003-2 
  90. Wheelis, Mark L. (2008). Principles of modern microbiology. Sudbury, Mass.: Jones and Bartlett. p. 76 
  91. Beachey, E. H. (1 de março de 1981). «Bacterial Adherence: Adhesin-Receptor Interactions Mediating the Attachment of Bacteria to Mucosal Surfaces». Journal of Infectious Diseases (em inglês). 143 (3): 325–345. ISSN 0022-1899. doi:10.1093/infdis/143.3.325 
  92. Silverman, Philip M. (janeiro de 1997). «Towards a structural biology of bacterial conjugation». Molecular Microbiology (em inglês). 23 (3): 423–429. doi:10.1046/j.1365-2958.1997.2411604.x 
  93. Costa, Tiago R. D.; Felisberto-Rodrigues, Catarina; Meir, Amit; Prevost, Marie S.; Redzej, Adam; Trokter, Martina; Waksman, Gabriel (junho de 2015). «Secretion systems in Gram-negative bacteria: structural and mechanistic insights». Nature Reviews Microbiology (em inglês). 13 (6): 343–359. ISSN 1740-1526. doi:10.1038/nrmicro3456 
  94. Luong P, Dube DH (julho de 2021). «Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans». Bioorganic & Medicinal Chemistry. 42. 116268 páginas. ISSN 0968-0896. PMC 8276522 . PMID 34130219. doi:10.1016/j.bmc.2021.116268 
  95. Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM (outubro de 2004). «The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages». Infection and Immunity. 72 (10): 5676–86. PMC 517526 . PMID 15385466. doi:10.1128/IAI.72.10.5676-5686.2004 
  96. Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR, Guerin ME, Prados-Rosales R (julho de 2019). «The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis». The Biochemical Journal. 476 (14): 1995–2016. PMC 6698057 . PMID 31320388. doi:10.1042/BCJ20190324 
  97. Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR, Guerin ME, Prados-Rosales R (junho de 2019). «The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis». The Biochemical Journal. 476 (14): 1995–2016. PMC 6698057 . PMID 31320388. doi:10.1042/BCJ20190324 
  98. Nicholson, Wayne L.; Munakata, Nobuo; Horneck, Gerda; Melosh, Henry J.; Setlow, Peter (setembro de 2000). «Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments». Microbiology and Molecular Biology Reviews (em inglês) (3): 548–572. ISSN 1092-2172. PMC 99004 . PMID 10974126. doi:10.1128/MMBR.64.3.548-572.2000. Consultado em 21 de novembro de 2024 
  99. a b Setlow, P. (1 de dezembro de 2013). «Summer meeting 2013 – when the sleepers wake: the germination of spores of Bacillus species». Journal of Applied Microbiology (6): 1251–1268. ISSN 1364-5072. doi:10.1111/jam.12343. Consultado em 23 de novembro de 2024 
  100. Pt, McKenney; A, Driks; P, Eichenberger (janeiro de 2013). «The Bacillus Subtilis Endospore: Assembly and Functions of the Multilayered Coat». Nature reviews. Microbiology (em inglês). PMID 23202530. Consultado em 7 de junho de 2020 
  101. «Bacterial Endospores». Cornell University College of Agriculture and Life Sciences, Department of Microbiology. Consultado em 21 de outubro de 2018. Cópia arquivada em 15 de junho de 2018 
  102. Nicholson, Wayne L.; Munakata, Nobuo; Horneck, Gerda; Melosh, Henry J.; Setlow, Peter (setembro de 2000). «Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments». Microbiology and Molecular Biology Reviews. 64 (3): 548–572. ISSN 1092-2172. PMID 10974126 
  103. Rh, Vreeland; Wd, Rosenzweig; Dw, Powers (19 de outubro de 2000). «Isolation of a 250 Million-Year-Old Halotolerant Bacterium From a Primary Salt Crystal». Nature (em inglês). PMID 11057666. Consultado em 7 de junho de 2020 
  104. Cano, R. J.; Borucki, M. K. (19 de maio de 1995). «Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber». Science (em inglês). 268 (5213): 1060–1064. ISSN 0036-8075. PMID 7538699. doi:10.1126/science.7538699 
  105. Wl, Nicholson; P, Fajardo-Cavazos; R, Rebeil; Ta, Slieman; Pj, Riesenman; Jf, Law; Y, Xue (agosto de 2002). «Bacterial Endospores and Their Significance in Stress Resistance». Antonie van Leeuwenhoek (em inglês). PMID 12448702. Consultado em 7 de junho de 2020 
  106. Nicholson WL, Schuerger AC, Setlow P (abril de 2005). «The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight». Mutation Research. 571 (1–2): 249–64. Bibcode:2005MRFMM.571..249N. PMID 15748651. doi:10.1016/j.mrfmmm.2004.10.012 
  107. «Colonising the galaxy is hard. Why not send bacteria instead?». The Economist. 12 de abril de 2018. ISSN 0013-0613. Consultado em 26 de abril de 2020 
  108. Setlow, Peter (abril de 2014). «Germination of Spores of Bacillus Species: What We Know and Do Not Know». Journal of Bacteriology (em inglês) (7): 1297–1305. ISSN 0021-9193. PMC 3993344 . PMID 24488313. doi:10.1128/JB.01455-13. Consultado em 23 de novembro de 2024 
  109. Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V (maio de 2019). «Virulence Plasmids of the Pathogenic Clostridia». Microbiology Spectrum. 7 (3). PMID 31111816. doi:10.1128/microbiolspec.GPP3-0034-2018 
  110. Reigadas E, van Prehn J, Falcone M, Fitzpatrick F, Vehreschild MJ, Kuijper EJ, Bouza E (julho de 2021). «How to: prophylactic interventions for prevention of Clostridioides difficile infection». Clinical Microbiology and Infection. 27 (12): 1777–1783. PMID 34245901. doi:10.1016/j.cmi.2021.06.037 . hdl:1887/3249077  
  111. Nealson KH (janeiro de 1999). «Post-Viking microbiology: new approaches, new data, new insights». Origins of Life and Evolution of the Biosphere. 29 (1): 73–93. Bibcode:1999OLEB...29...73N. PMID 11536899. doi:10.1023/A:1006515817767 
  112. Zillig W (dezembro de 1991). «Comparative biochemistry of Archaea and Bacteria». Current Opinion in Genetics & Development. 1 (4): 544–51. PMID 1822288. doi:10.1016/S0959-437X(05)80206-0 
  113. a b Slonczewski JL, Foster JW. Microbiology: An Evolving Science 3 ed. [S.l.]: WW Norton & Company. pp. 491–44 
  114. Hellingwerf KJ, Crielaard W, Hoff WD, Matthijs HC, Mur LR, van Rotterdam BJ (1994). «Photobiology of bacteria». Antonie van Leeuwenhoek (Submitted manuscript). 65 (4): 331–47. PMID 7832590. doi:10.1007/BF00872217 
  115. Dalton H (junho de 2005). «The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria». Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 360 (1458): 1207–22. PMC 1569495 . PMID 16147517. doi:10.1098/rstb.2005.1657 
  116. Imran A, Hakim S, Tariq M, Nawaz MS, Laraib I, Gulzar U, Hanif MK, Siddique MJ, Hayat M, Fraz A, Ahmad M (2021). «Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep Into the Roots». Frontiers in Microbiology. 12. 637815 páginas. PMC 8180554 . PMID 34108945. doi:10.3389/fmicb.2021.637815  
  117. Kosugi Y, Matsuura N, Liang Q, Yamamoto-Ikemoto R (outubro de 2020). «Wastewater Treatment using the "Sulfate Reduction, DenitrificationAnammox and Partial Nitrification (SRDAPN)" Process». Chemosphere. 256. 127092 páginas. Bibcode:2020Chmsp.25627092K. PMID 32559887. doi:10.1016/j.chemosphere.2020.127092 
  118. Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K (agosto de 2019). «How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth». Free Radical Biology & Medicine. 140: 61–73. PMID 30862543. doi:10.1016/j.freeradbiomed.2019.03.004  
  119. Wadhwa, Navish; Berg, Howard C. (março de 2022). «Bacterial motility: machinery and mechanisms». Nature Reviews Microbiology (em inglês) (3): 161–173. ISSN 1740-1534. doi:10.1038/s41579-021-00626-4. Consultado em 23 de novembro de 2024 
  120. Kim KW (dezembro de 2017). «Electron microscopic observations of prokaryotic surface appendages». Journal of Microbiology (Seoul, Korea). 55 (12): 919–26. PMID 29214488. doi:10.1007/s12275-017-7369-4 
  121. Macnab RM (dezembro de 1999). «The bacterial flagellum: reversible rotary propellor and type III export apparatus». Journal of Bacteriology. 181 (23): 7149–53. PMC 103673 . PMID 10572114. doi:10.1128/JB.181.23.7149-7153.1999 
  122. Thormann, Kai M.; Beta, Carsten; Kühn, Marco J. (8 de setembro de 2022). «Wrapped Up: The Motility of Polarly Flagellated Bacteria». Annual Review of Microbiology: 349–367. ISSN 1545-3251. PMID 35650667. doi:10.1146/annurev-micro-041122-101032. Consultado em 23 de novembro de 2024 
  123. a b Bardy SL, Ng SY, Jarrell KF (fevereiro de 2003). «Prokaryotic motility structures». Microbiology. 149 (Pt 2): 295–304. PMID 12624192. doi:10.1099/mic.0.28638-0 
  124. Brooks, Geo F.; Carroll, Karen C.; Butel, Janet S.; Morse, Stephen A.; Mietzner, Timothy A. (1 de março de 2014). Microbiologia Médica de Jawetz, Melnick & Adelberg - 26.ed. [S.l.]: AMGH Editora. ISBN 9780815344322 
  125. KYAW, C.M. Morfologia e ultraestrutura bacterianas - Microbiologia UnB. 2009.
  126. Wang, Qingfeng; Suzuki, Asaka; Mariconda, Susana; Porwollik, Steffen; Harshey, Rasika M (2005). «Sensing wetness: A new role for the bacterial flagellum». The EMBO Journal. 24 (11): 2034–42. PMC 1142604 . PMID 15889148. doi:10.1038/sj.emboj.7600668 
  127. Nakamura, Shuichi; Minamino, Tohru (julho de 2019). «Flagella-Driven Motility of Bacteria». Biomolecules (em inglês) (7). 279 páginas. ISSN 2218-273X. PMC 6680979 . PMID 31337100. doi:10.3390/biom9070279. Consultado em 23 de novembro de 2024 
  128. Thormann, Kai M.; Beta, Carsten; Kühn, Marco J. (8 de setembro de 2022). «Wrapped Up: The Motility of Polarly Flagellated Bacteria». Annual Review of Microbiology: 349–367. ISSN 1545-3251. PMID 35650667. doi:10.1146/annurev-micro-041122-101032. Consultado em 23 de novembro de 2024 
  129. Turner, L.; Ryu, W. S.; Berg, H. C. (maio de 2000). «Real-time imaging of fluorescent flagellar filaments». Journal of Bacteriology (10): 2793–2801. ISSN 0021-9193. PMID 10781548. doi:10.1128/JB.182.10.2793-2801.2000. Consultado em 23 de novembro de 2024 
  130. Jarrell, Ken F.; McBride, Mark J. (junho de 2008). «The surprisingly diverse ways that prokaryotes move». Nature Reviews Microbiology (em inglês) (6): 466–476. ISSN 1740-1534. doi:10.1038/nrmicro1900. Consultado em 23 de novembro de 2024 
  131. Merz AJ, So M, Sheetz MP (setembro de 2000). «Pilus retraction powers bacterial twitching motility». Nature. 407 (6800): 98–102. Bibcode:2000Natur.407...98M. PMID 10993081. doi:10.1038/35024105 
  132. McBride, M. J. (2001). «Bacterial gliding motility: multiple mechanisms for cell movement over surfaces». Annual Review of Microbiology: 49–75. ISSN 0066-4227. PMID 11544349. doi:10.1146/annurev.micro.55.1.49. Consultado em 23 de novembro de 2024 
  133. Goldberg MB (dezembro de 2001). «Actin-based motility of intracellular microbial pathogens». Microbiology and Molecular Biology Reviews. 65 (4): 595–626, table of contents. PMC 99042 . PMID 11729265. doi:10.1128/MMBR.65.4.595-626.2001 
  134. Lorenz, Konrad (1995). Os fundamentos da etologia. [S.l.]: UNESP. p. 209. ISBN 9788571390966 
  135. Tortora, Gerard J.; Case, Christine L.; Funke;, Berdell R. (1 de outubro de 2016). Microbiologia: An Introduction. [S.l.]: Artmed Editora. p. 54. ISBN 9780321929150 
  136. Koch, Arthur L. (janeiro de 2002). «Control of the Bacterial Cell Cycle by Cytoplasmic Growth». Critical Reviews in Microbiology (em inglês) (1): 61–77. ISSN 1040-841X. doi:10.1080/1040-840291046696. Consultado em 24 de novembro de 2024 
  137. Dawid, Wolfgang (outubro de 2000). «Biology and global distribution of myxobacteria in soils». FEMS Microbiology Reviews (em inglês) (4): 403–427. ISSN 1574-6976. doi:10.1111/j.1574-6976.2000.tb00548.x. Consultado em 24 de novembro de 2024 
  138. Claessen, Dennis; Rink, Rick; Jong, Wouter de; Siebring, Jeroen; Vreugd, Peter de; Boersma, F. G. Hidde; Dijkhuizen, Lubbert; Wösten, Han A. B. (15 de julho de 2003). «A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils». Genes & Development (em inglês) (14): 1714–1726. ISSN 0890-9369. PMC 196180 . PMID 12832396. doi:10.1101/gad.264303. Consultado em 24 de novembro de 2024 
  139. Staley, James T.; Hirsch, Peter; Schmidt, Jean M. (1981). Starr, Mortimer P.; Stolp, Heinz; Trüper, Hans G.; Balows, Albert; Schlegel, Hans G., eds. «Introduction to the Budding and/or Appendaged Bacteria». Berlin, Heidelberg: Springer (em inglês): 451–455. ISBN 978-3-662-13187-9. doi:10.1007/978-3-662-13187-9_29. Consultado em 24 de novembro de 2024 
  140. Moraes, Paula Louredo. «Reprodução das bactérias. Como as bactérias se reproduzem». Brasil Escola. Consultado em 29 de maio de 2020 
  141. «2.1: Introduction Growth Media». Biology LibreTexts (em inglês). 29 de abril de 2021. Consultado em 10 de dezembro de 2024 
  142. Paerl HW, Fulton RS, Moisander PH, Dyble J (abril de 2001). «Harmful freshwater algal blooms, with an emphasis on cyanobacteria». TheScientificWorldJournal. 1: 76–113. PMC 6083932 . PMID 12805693. doi:10.1100/tsw.2001.16  
  143. Challis GL, Hopwood DA (novembro de 2003). «Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species». Proceedings of the National Academy of Sciences of the United States of America. 100 (Suppl 2): 14555–61. Bibcode:2003PNAS..10014555C. PMC 304118 . PMID 12970466. doi:10.1073/pnas.1934677100  
  144. Davey ME, O'toole GA (dezembro de 2000). «Microbial biofilms: from ecology to molecular genetics». Microbiology and Molecular Biology Reviews. 64 (4): 847–67. PMC 99016 . PMID 11104821. doi:10.1128/MMBR.64.4.847-867.2000 
  145. Kooijman SA, Auger P, Poggiale JC, Kooi BW (agosto de 2003). «Quantitative steps in symbiogenesis and the evolution of homeostasis». Biological Reviews of the Cambridge Philosophical Society. 78 (3): 435–63. PMID 14558592. doi:10.1017/S1464793102006127 
  146. Bertrand, Robert L. (13 de março de 2019). «Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division». Journal of Bacteriology. 201 (7). ISSN 0021-9193. PMC 6416914 . PMID 30642990. doi:10.1128/JB.00697-18 
  147. C, Prats; D, López; A, Giró; J, Ferrer; J, Valls (21 de agosto de 2006). «Individual-based Modelling of Bacterial Cultures to Study the Microscopic Causes of the Lag Phase». Journal of theoretical biology (em inglês). PMID 16524598. Consultado em 7 de junho de 2020 
  148. Ughy, Bettina; Nagyapati, Sarolta; Lajko, Dezi B.; Letoha, Tamas; Prohaszka, Adam; Deeb, Dima; Der, Andras; Pettko-Szandtner, Aladar; Szilak, Laszlo (janeiro de 2023). «Reconsidering Dogmas about the Growth of Bacterial Populations». Cells (em inglês) (10). 1430 páginas. ISSN 2073-4409. doi:10.3390/cells12101430. Consultado em 24 de novembro de 2024 
  149. Nyström, Thomas (1 de outubro de 2004). «Stationary-Phase Physiology». Annual Review of Microbiology (em inglês) (1): 161–181. ISSN 0066-4227. doi:10.1146/annurev.micro.58.030603.123818. Consultado em 24 de novembro de 2024 
  150. Kolter, Roberto; Siegele, Deborah A.; Tormo, Antonio (outubro de 1993). «THE STATIONARY PHASE OF THE BACTERIAL LIFE CYCLE». Annual Review of Microbiology (em inglês) (1): 855–874. ISSN 0066-4227. doi:10.1146/annurev.mi.47.100193.004231. Consultado em 24 de novembro de 2024 
  151. Hecker M, Völker U (2001). General stress response of Bacillus subtilis and other bacteria. Col: Advances in Microbial Physiology. 44. [S.l.: s.n.] pp. 35–91. ISBN 978-0-12-027744-5. PMID 11407115. doi:10.1016/S0065-2911(01)44011-2 
  152. M, Hecker; U, Völker (2001). «General Stress Response of Bacillus Subtilis and Other Bacteria». Advances in microbial physiology (em inglês). PMID 11407115. Consultado em 7 de junho de 2020 
  153. Slonczewski JL, Foster JW. Microbiology: An Evolving Science 3 ed. [S.l.]: WW Norton & Company. p. 143 
  154. Hinnebusch, Joe; Tilly, Kit (1993). «Linear plasmids and chromosomes in bacteria». Molecular Microbiology (em inglês) (5): 917–922. ISSN 1365-2958. doi:10.1111/j.1365-2958.1993.tb00963.x. Consultado em 28 de novembro de 2024 
  155. Lin, Yi-Shing; Kieser, Helen M.; Hopwood, David A.; Chen, Carton W. (1993). «The chromosomal DNA of Streptomyces lividans 66 is linear». Molecular Microbiology (em inglês) (5): 923–933. ISSN 1365-2958. doi:10.1111/j.1365-2958.1993.tb00964.x. Consultado em 28 de novembro de 2024 
  156. Val, Marie-Eve; Soler-Bistué, Alfonso; Bland, Michael J; Mazel, Didier (1 de dezembro de 2014). «Management of multipartite genomes: the Vibrio cholerae model». Current Opinion in Microbiology. Growth and development: eukaryotes/ prokaryotes: 120–126. ISSN 1369-5274. doi:10.1016/j.mib.2014.10.003. Consultado em 28 de novembro de 2024 
  157. Nakabachi, Atsushi; Yamashita, Atsushi; Toh, Hidehiro; Ishikawa, Hajime; Dunbar, Helen E.; Moran, Nancy A.; Hattori, Masahira (13 de outubro de 2006). «The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella». Science (5797): 267–267. doi:10.1126/science.1134196. Consultado em 28 de novembro de 2024 
  158. Schneiker, Susanne; Perlova, Olena; Kaiser, Olaf; Gerth, Klaus; Alici, Aysel; Altmeyer, Matthias O.; Bartels, Daniela; Bekel, Thomas; Beyer, Stefan (novembro de 2007). «Complete genome sequence of the myxobacterium Sorangium cellulosum». Nature Biotechnology (em inglês) (11): 1281–1289. ISSN 1546-1696. doi:10.1038/nbt1354. Consultado em 28 de novembro de 2024 
  159. Kado, Clarence I. (10 de outubro de 2014). «Historical Events That Spawned the Field of Plasmid Biology». Microbiology Spectrum (5): 10.1128/microbiolspec.plas–0019–2013. doi:10.1128/microbiolspec.plas-0019-2013. Consultado em 28 de novembro de 2024 
  160. Denamur, Erick; Matic, Ivan (2006). «Evolution of mutation rates in bacteria». Molecular Microbiology (em inglês) (4): 820–827. ISSN 1365-2958. doi:10.1111/j.1365-2958.2006.05150.x. Consultado em 28 de novembro de 2024 
  161. Wright, Barbara E. (2004). «Stress-directed adaptive mutations and evolution». Molecular Microbiology (em inglês) (3): 643–650. ISSN 1365-2958. doi:10.1111/j.1365-2958.2004.04012.x. Consultado em 28 de novembro de 2024 
  162. Hotopp, Julie C. Dunning (1 de abril de 2011). «Horizontal gene transfer between bacteria and animals». Trends in Genetics (em inglês) (4): 157–163. ISSN 0168-9525. PMC 3068243 . PMID 21334091. doi:10.1016/j.tig.2011.01.005. Consultado em 28 de novembro de 2024 
  163. Michod, Richard E.; Bernstein, Harris; Nedelcu, Aurora M. (1 de maio de 2008). «Adaptive value of sex in microbial pathogens». Infection, Genetics and Evolution (3): 267–285. ISSN 1567-1348. doi:10.1016/j.meegid.2008.01.002. Consultado em 28 de novembro de 2024 
  164. Hastings, P. J.; Rosenberg, Susan M.; Slack, Andrew (1 de setembro de 2004). «Antibiotic-induced lateral transfer of antibiotic resistance». Trends in Microbiology (em inglês) (9): 401–404. ISSN 0966-842X. PMID 15337159. doi:10.1016/j.tim.2004.07.003. Consultado em 28 de novembro de 2024 
  165. Chen, Inês; Dubnau, David (março de 2004). «DNA uptake during bacterial transformation». Nature Reviews Microbiology (em inglês) (3): 241–249. ISSN 1740-1534. doi:10.1038/nrmicro844. Consultado em 28 de novembro de 2024 
  166. Johnsborg, Ola; Eldholm, Vegard; Håvarstein, Leiv Sigve (1 de dezembro de 2007). «Natural genetic transformation: prevalence, mechanisms and function». Research in Microbiology. Microbial genomics (10): 767–778. ISSN 0923-2508. doi:10.1016/j.resmic.2007.09.004. Consultado em 28 de novembro de 2024 
  167. Kimura, Sakura; Shimizu, Sora, eds. (2012). DNA repair: new research. Col: DNA and RNA : properties and modifications, functions and interactions, recombination and applications. New York: Nova Science Publishers. p. 1-49. ISBN 978-1-62100-808-8 
  168. Barrangou, Rodolphe; Fremaux, Christophe; Deveau, Hélène; Richards, Melissa; Boyaval, Patrick; Moineau, Sylvain; Romero, Dennis A.; Horvath, Philippe (23 de março de 2007). «CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes». Science (5819): 1709–1712. doi:10.1126/science.1138140. Consultado em 28 de novembro de 2024 
  169. Brouns, Stan J. J.; Jore, Matthijs M.; Lundgren, Magnus; Westra, Edze R.; Slijkhuis, Rik J. H.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Makarova, Kira S.; Koonin, Eugene V. (15 de agosto de 2008). «Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes». Science (5891): 960–964. PMC 5898235 . PMID 18703739. doi:10.1126/science.1159689. Consultado em 28 de novembro de 2024 
  170. Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich (setembro de 2004). «Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion». Microbiology and Molecular Biology Reviews (3): 560–602. PMC 515249 . PMID 15353570. doi:10.1128/mmbr.68.3.560-602.2004. Consultado em 28 de novembro de 2024 
  171. Andersson, Dan I.; Jerlström-Hultqvist, Jon; Näsvall, Joakim (1 de junho de 2015). «Evolution of New Functions De Novo and from Preexisting Genes». Cold Spring Harbor Perspectives in Biology (em inglês) (6): a017996. ISSN 1943-0264. PMC 4448608 . PMID 26032716. doi:10.1101/cshperspect.a017996. Consultado em 28 de novembro de 2024 
  172. Colavecchio, Anna; Cadieux, Brigitte; Lo, Amanda; Goodridge, Lawrence D. (20 de junho de 2017). «Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family – A Review». Frontiers in Microbiology (em inglês). ISSN 1664-302X. PMC 5476706 . PMID 28676794. doi:10.3389/fmicb.2017.01108. Consultado em 28 de novembro de 2024 
  173. Cabezón, Elena; Ripoll-Rozada, Jorge; Peña, Alejandro; de la Cruz, Fernando; Arechaga, Ignacio (setembro de 2014). «Towards an integrated model of bacterial conjugation». FEMS Microbiology Reviews: n/a–n/a. ISSN 0168-6445. doi:10.1111/1574-6976.12085. Consultado em 28 de novembro de 2024 
  174. Hu, Bo; Khara, Pratick; Christie, Peter J. (9 de julho de 2019). «Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli». Proceedings of the National Academy of Sciences (28): 14222–14227. PMC 6628675 . PMID 31239340. doi:10.1073/pnas.1904428116. Consultado em 28 de novembro de 2024 
  175. Madigan, Michael T.; Martinko, John M.; Bender, Kelly S.; Buckley, Daniel H.; Stahl, David A. (1 de março de 2016). Microbiologia de Brock - 14ª Edição. [S.l.]: Artmed Editora. p. 314. ISBN 9780321897398 
  176. Mushegian, Alexandra A.; Ebert, Dieter (2016). «Rethinking "mutualism" in diverse host-symbiont communities». BioEssays (em inglês) (1): 100–108. ISSN 1521-1878. doi:10.1002/bies.201500074. Consultado em 29 de novembro de 2024 
  177. Sears, Cynthia L. (1 de outubro de 2005). «A dynamic partnership: Celebrating our gut flora». Anaerobe (5): 247–251. ISSN 1075-9964. doi:10.1016/j.anaerobe.2005.05.001. Consultado em 29 de novembro de 2024 
  178. Khan, Rabia; Petersen, Fernanda Cristina; Shekhar, Sudhanshu (31 de maio de 2019). «Commensal Bacteria: An Emerging Player in Defense Against Respiratory Pathogens». Frontiers in Immunology (em inglês). ISSN 1664-3224. PMC 6554327 . PMID 31214175. doi:10.3389/fimmu.2019.01203. Consultado em 29 de novembro de 2024 
  179. Roscoe, Diane L.; Chow, Anthony W. (1 de março de 1988). «Normal Flora and Mucosal Immunity of the Head and Neck». Infectious Disease Clinics of North America (1): 1–20. ISSN 0891-5520. doi:10.1016/S0891-5520(20)30163-X. Consultado em 29 de novembro de 2024 
  180. Shiao, Stephen L.; Kershaw, Kathleen M.; Limon, Jose J.; You, Sungyong; Yoon, Junhee; Ko, Emily Y.; Guarnerio, Jlenia; Potdar, Alka A.; McGovern, Dermot P. B. (13 de setembro de 2021). «Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy». Cancer Cell (em inglês) (9): 1202–1213.e6. ISSN 1535-6108. PMC 8830498 . PMID 34329585. doi:10.1016/j.ccell.2021.07.002. Consultado em 29 de novembro de 2024 
  181. Sears, Cynthia L. (outubro de 2005). «A dynamic partnership: Celebrating our gut flora». Anaerobe. 11 (5): 247–251. ISSN 1075-9964. doi:10.1016/j.anaerobe.2005.05.001 
  182. Scharschmidt, Tiffany C. (1 de janeiro de 2017). «Establishing Tolerance to Commensal Skin Bacteria: Timing Is Everything». Dermatologic Clinics. Basic Science Insights into Clinical Puzzles (1): 1–9. ISSN 0733-8635. PMC 5130113 . PMID 27890233. doi:10.1016/j.det.2016.07.007. Consultado em 29 de novembro de 2024 
  183. Macpherson, Andrew J.; Uhr, Therese (2004). «Compartmentalization of the Mucosal Immune Responses to Commensal Intestinal Bacteria». Annals of the New York Academy of Sciences (em inglês) (1): 36–43. ISSN 1749-6632. doi:10.1196/annals.1309.005. Consultado em 29 de novembro de 2024 
  184. Dey, Priyankar (maio de 2024). «Good girl goes bad: Understanding how gut commensals cause disease». Microbial Pathogenesis (em inglês). 106617 páginas. doi:10.1016/j.micpath.2024.106617. Consultado em 29 de novembro de 2024 
  185. Han, Y.W.; Wang, X. (1 de junho de 2013). «Mobile Microbiome: Oral Bacteria in Extra-oral Infections and Inflammation». Journal of Dental Research (em inglês) (6): 485–491. ISSN 0022-0345. PMC 3654760 . PMID 23625375. doi:10.1177/0022034513487559. Consultado em 29 de novembro de 2024 
  186. Taur, Ying; Pamer, Eric G. (agosto de 2013). «The intestinal microbiota and susceptibility to infection in immunocompromised patients». Current Opinion in Infectious Diseases (em inglês) (4). 332 páginas. ISSN 0951-7375. PMC 4485384 . PMID 23806896. doi:10.1097/QCO.0b013e3283630dd3. Consultado em 29 de novembro de 2024 
  187. Lyapichev, Kirill A.; Ivashkevich, Yana; Chernov, Yaroslav; Chinenov, Denis; Shpot, Evgeniy; Bessonov, Alexander A.; Dabaja, Bouthaina S.; Konoplev, Sergej (5 de fevereiro de 2021). «MALT Lymphoma of the Urinary Bladder Shows a Dramatic Female Predominance, Uneven Geographic Distribution, and Possible Infectious Etiology». Research and Reports in Urology (em inglês): 49–62. PMC 7873029 . PMID 33575225. doi:10.2147/RRU.S283366. Consultado em 29 de novembro de 2024 
  188. Eleyan, Loay; Khan, Ameer Ahmed; Musollari, Gledisa; Chandiramani, Ashwini Suresh; Shaikh, Simran; Salha, Ahmad; Tarmahomed, Abdulla; Harky, Amer (1 de outubro de 2021). «Infective endocarditis in paediatric population». European Journal of Pediatrics (em inglês) (10): 3089–3100. ISSN 1432-1076. doi:10.1007/s00431-021-04062-7. Consultado em 29 de novembro de 2024 
  189. Sender, Ron; Fuchs, Shai; Milo, Ron (19 de ago. de 2016). «Revised Estimates for the Number of Human and Bacteria Cells in the Body». PLOS Biology (em inglês) (8): e1002533. ISSN 1545-7885. PMC 4991899 . PMID 27541692. doi:10.1371/journal.pbio.1002533. Consultado em 29 de novembro de 2024 
  190. Martin, William F.; Garg, Sriram; Zimorski, Verena (26 de setembro de 2015). «Endosymbiotic theories for eukaryote origin». Philosophical Transactions of the Royal Society B: Biological Sciences (1678). 20140330 páginas. PMC 4571569 . PMID 26323761. doi:10.1098/rstb.2014.0330. Consultado em 30 de novembro de 2024 
  191. Torres, Vladimir Stolzenberg (26 de agosto de 2024). «Origem das mitocôndrias em células eucarióticas: uma revisão». Universidade Santa Cecília - Unisanta. Unisanta BioScience. 9 (3). ISSN 2317-1111. Consultado em 30 de novembro de 2024 
  192. Velicer, Gregory J.; Stredwick, Kristina L. (1 de dezembro de 2002). «Experimental social evolution with Myxococcus xanthus». Antonie van Leeuwenhoek (em inglês). 81 (1). 155 páginas. ISSN 1572-9699. doi:10.1023/A:1020546130033 
  193. Guerrero, Ricardo; Pedrós-Alió, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn (abril de 1986). «Predatory Prokaryotes: Predation and Primary Consumption Evolved in Bacteria». PNAS (em inglês). 83 (7): 2138–2142. ISSN 0027-8424. PMC 323246 . doi:10.1073/pnas.83.7.2138. Consultado em 7 de junho de 2020 
  194. Velicer, Gregory J.; Mendes-Soares, Helena (27 de janeiro de 2009). «Bacterial predators». Current Biology (em inglês). 19 (2): R55–R56. ISSN 0960-9822. PMID 19174136. doi:10.1016/j.cub.2008.10.043 
  195. Stams, Alfons J. M.; Bok, Frank A. M. De; Plugge, Caroline M.; Eekert, Miriam H. A. Van; Dolfing, Jan; Schraa, Gosse (2006). «Exocellular electron transfer in anaerobic microbial communities». Environmental Microbiology (em inglês). 8 (3): 371–382. ISSN 1462-2920. doi:10.1111/j.1462-2920.2006.00989.x 
  196. Zinser, Erik R. (2018). «Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities». Environmental Microbiology Reports (em inglês). 10 (4): 399–411. ISSN 1758-2229. doi:10.1111/1758-2229.12625 
  197. Barea, José-Miguel; Pozo, María José; Azcón, Rosario; Azcón-Aguilar, Concepción (23 de maio de 2005). «Microbial co-operation in the rhizosphere». Journal of Experimental Botany (417): 1761–1778. ISSN 1460-2431. doi:10.1093/jxb/eri197. Consultado em 30 de novembro de 2024 
  198. Timofeeva, Anna M.; Galyamova, Maria R.; Sedykh, Sergey E. (janeiro de 2023). «Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities». Plants (em inglês) (24). 4074 páginas. ISSN 2223-7747. PMC 10748132  Verifique |pmc= (ajuda). PMID 38140401 Verifique |pmid= (ajuda). doi:10.3390/plants12244074. Consultado em 30 de novembro de 2024 
  199. Hungria, Mariangela; Campo, Rubens José; Mendes, Iêda Carvalho (2001). «FIXAÇÃO BIOLÓGICA DO NITROGÊNIO NA CULTURA DA SOJA» (PDF). Embrapa Soja (35). ISSN 1516-7860. Consultado em 30 de novembro de 2024. Cópia arquivada (PDF) em 21 de janeiro de 2024 
  200. Hütsch, Birgit W.; Augustin, Jürgen; Merbach, Wolfgang (2002). «Plant rhizodeposition — an important source for carbon turnover in soils». Journal of Plant Nutrition and Soil Science (em inglês) (4): 397–407. ISSN 1522-2624. doi:10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C. Consultado em 30 de novembro de 2024 
  201. Walker, Travis S.; Bais, Harsh Pal; Grotewold, Erich; Vivanco, Jorge M. (1 de maio de 2003). «Root Exudation and Rhizosphere Biology». Plant Physiology (1): 44–51. ISSN 1532-2548. PMC 1540314 . PMID 12746510. doi:10.1104/pp.102.019661. Consultado em 30 de novembro de 2024 
  202. Abt, Michael C; Pamer, Eric G (agosto de 2014). «Commensal bacteria mediated defenses against pathogens». Current Opinion in Immunology (em inglês): 16–22. PMC 4132187 . PMID 24727150. doi:10.1016/j.coi.2014.03.003. Consultado em 29 de novembro de 2024 
  203. Maier, Lisa; Stein-Thoeringer, Christoph; Ley, Ruth E.; Brötz-Oesterhelt, Heike; Link, Hannes; Ziemert, Nadine; Wagner, Samuel; Peschel, Andreas (1 de agosto de 2024). «Integrating research on bacterial pathogens and commensals to fight infections—an ecological perspective». The Lancet Microbe (em inglês) (8). ISSN 2666-5247. PMID 38608681 Verifique |pmid= (ajuda). doi:10.1016/S2666-5247(24)00049-1. Consultado em 29 de novembro de 2024 
  204. Brestoff, Jonathan R.; Artis, David (julho de 2013). «Commensal bacteria at the interface of host metabolism and the immune system». Nature Immunology (em inglês) (7): 676–684. ISSN 1529-2916. PMC 4013146 . PMID 23778795. doi:10.1038/ni.2640. Consultado em 29 de novembro de 2024 
  205. O'Hara, Ann M; Shanahan, Fergus (julho de 2006). «The gut flora as a forgotten organ». EMBO reports (7): 688–693. ISSN 1469-221X. PMC 1500832 . PMID 16819463. doi:10.1038/sj.embor.7400731. Consultado em 30 de novembro de 2024 
  206. Zoetendal, Erwin G.; Vaughan, Elaine E.; De Vos, Willem M. (2006). «A microbial world within us». Molecular Microbiology (em inglês) (6): 1639–1650. ISSN 1365-2958. doi:10.1111/j.1365-2958.2006.05056.x. Consultado em 30 de novembro de 2024 
  207. Gorbach, Sherwood L. (1 de janeiro de 1990). «Lactic Acid Bacteria and Human Health». Annals of Medicine (1): 37–41. ISSN 0785-3890. PMID 2109988. doi:10.3109/07853899009147239. Consultado em 30 de novembro de 2024 
  208. Angima, Gloria; Qu, Yunyao; Park, Si Hong; Dallas, David C. (janeiro de 2024). «Prebiotic Strategies to Manage Lactose Intolerance Symptoms». Nutrients (em inglês) (7). 1002 páginas. ISSN 2072-6643. doi:10.3390/nu16071002. Consultado em 29 de novembro de 2024 
  209. Salminen, Seppo J.; Gueimonde, Miguel; Isolauri, Erika (1 de maio de 2005). «Probiotics That Modify Disease Risk1». The Journal of Nutrition (5): 1294–1298. ISSN 0022-3166. doi:10.1093/jn/135.5.1294. Consultado em 30 de novembro de 2024 
  210. Watanabe, Fumio; Bito, Tomohiro (1 de janeiro de 2018). «Vitamin B12 sources and microbial interaction». Experimental Biology and Medicine (em inglês) (2): 148–158. ISSN 1535-3702. PMC 5788147 . PMID 29216732. doi:10.1177/1535370217746612. Consultado em 30 de novembro de 2024 
  211. Banerjee, Ruma; Ragsdale, Stephen W. (1 de julho de 2003). «The Many Faces of Vitamin B12: Catalysis by Cobalamin-Dependent Enzymes1». Annual Review of Biochemistry (em inglês) (Volume 72, 2003): 209–247. ISSN 0066-4154. doi:10.1146/annurev.biochem.72.121801.161828. Consultado em 30 de novembro de 2024 
  212. Calderón-Ospina, Carlos Alberto; Nava-Mesa, Mauricio Orlando (2020). «B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin». CNS Neuroscience & Therapeutics (em inglês) (1): 5–13. ISSN 1755-8639. PMC 6930825 . PMID 31490017. doi:10.1111/cns.13207. Consultado em 30 de novembro de 2024 
  213. Wheelis, Mark (2008). Principles of modern microbiology. Sudbury, Mass: Jones and Bartlett Publishers. p. 44. OCLC 67392796 
  214. Barber, Matthew F; Fitzgerald, J Ross (20 de junho de 2024). «Mechanisms of host adaptation by bacterial pathogens». FEMS Microbiology Reviews (4). ISSN 1574-6976. PMC 11308195  Verifique |pmc= (ajuda). PMID 39003250 Verifique |pmid= (ajuda). doi:10.1093/femsre/fuae019. Consultado em 5 de dezembro de 2024 
  215. Kim, Jun-Seob; Yoon, Sung-Jin; Park, Young-Jun; Kim, Seon-Yeong; Ryu, Choong-Min (2020). «Crossing the kingdom border: Human diseases caused by plant pathogens». Environmental Microbiology (em inglês) (7): 2485–2495. ISSN 1462-2920. doi:10.1111/1462-2920.15028. Consultado em 5 de dezembro de 2024 
  216. Bäumler, Andreas; Fang, Ferric C. (1 de dezembro de 2013). «Host Specificity of Bacterial Pathogens». Cold Spring Harbor Perspectives in Medicine (em inglês) (12): a010041. ISSN 2157-1422. PMC 3839602 . PMID 24296346. doi:10.1101/cshperspect.a010041. Consultado em 5 de dezembro de 2024 
  217. Ailloud, Florent; Didelot, Xavier; Woltemate, Sabrina; Pfaffinger, Gudrun; Overmann, Jörg; Bader, Ruth Christiane; Schulz, Christian; Malfertheiner, Peter; Suerbaum, Sebastian (22 de maio de 2019). «Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps». Nature Communications (em inglês) (1). ISSN 2041-1723. PMC 6531487 . PMID 31118420. doi:10.1038/s41467-019-10050-1. Consultado em 5 de dezembro de 2024 
  218. Tong, Steven Y. C.; Davis, Joshua S.; Eichenberger, Emily; Holland, Thomas L.; Fowler, Vance G. (27 de maio de 2015). «Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management». Clinical Microbiology Reviews (3): 603–661. PMC 4451395 . PMID 26016486. doi:10.1128/cmr.00134-14. Consultado em 5 de dezembro de 2024 
  219. Brouwer, Stephan; Rivera-Hernandez, Tania; Curren, Bodie F.; Harbison-Price, Nichaela; De Oliveira, David M. P.; Jespersen, Magnus G.; Davies, Mark R.; Walker, Mark J. (julho de 2023). «Pathogenesis, epidemiology and control of Group A Streptococcus infection». Nature Reviews Microbiology (em inglês) (7): 431–447. ISSN 1740-1534. PMC 9998027 . PMID 36894668. doi:10.1038/s41579-023-00865-7. Consultado em 5 de dezembro de 2024 
  220. Clark, David P. (2010). Germs, genes & civilization: how epidemics shaped who we are today. Upper Saddle River, N.J: FT Press 
  221. Schwarz, Stefan; Enne, Virve I.; van Duijkeren, Engeline (1 de outubro de 2016). «40 years of veterinary papers in JAC – what have we learnt?». Journal of Antimicrobial Chemotherapy (em inglês). 71 (10): 2681–2690. ISSN 0305-7453. doi:10.1093/jac/dkw363 
  222. Heise, E R (fevereiro de 1982). «Diseases associated with immunosuppression.». Environmental Health Perspectives: 9–19. doi:10.1289/ehp.82439. Consultado em 5 de dezembro de 2024 
  223. Saiman, Lisa (1 de janeiro de 2004). «Microbiology of early CF lung disease». Paediatric Respiratory Reviews. 5th International Congress on Pediatric Pulmonology: S367–S369. ISSN 1526-0542. doi:10.1016/S1526-0542(04)90065-6. Consultado em 5 de dezembro de 2024 
  224. Valbuena, Gustavo; Feng, Hui Min; Walker, David H. (1 de maio de 2002). «Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites». Microbes and Infection (6): 625–633. ISSN 1286-4579. doi:10.1016/S1286-4579(02)01581-2. Consultado em 5 de dezembro de 2024 
  225. Cereser, Natacha Deboni; Costa, Fernanda Malva Ramos; Rossi Júnior, Oswaldo Durival; Silva, Décio Adair Rebellatto da; Sperotto, Vitor da Rocha (fevereiro de 2008). «Botulismo de origem alimentar». Ciência Rural: 280–287. ISSN 0103-8478. doi:10.1590/S0103-84782008000100049. Consultado em 5 de dezembro de 2024 
  226. Moloney, P. J. (dezembro de 1926). «The preparation and testing of diphtheria toxoid (anatoxine-ramon)». American Journal of Public Health (12): 1208–1210. ISSN 0271-4353. PMC 1321494 . PMID 18012024. doi:10.2105/AJPH.16.12.1208. Consultado em 5 de dezembro de 2024 
  227. Pankey, G. A.; Sabath, L. D. (15 de março de 2004). «Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections». Clinical Infectious Diseases (6): 864–870. ISSN 1058-4838. doi:10.1086/381972. Consultado em 5 de dezembro de 2024 
  228. Hutchings, Matthew I; Truman, Andrew W; Wilkinson, Barrie (1 de outubro de 2019). «Antibiotics: past, present and future». Current Opinion in Microbiology. Antimicrobials: 72–80. ISSN 1369-5274. doi:10.1016/j.mib.2019.10.008. Consultado em 5 de dezembro de 2024 
  229. Yonath, Ada; Bashan, Anat (13 de outubro de 2004). «Ribosomal Crystallography: Initiation, Peptide Bond Formation, and Amino Acid Polymerization are Hampered by Antibiotics». Annual Review of Microbiology (em inglês) (Volume 58, 2004): 233–251. ISSN 0066-4227. doi:10.1146/annurev.micro.58.030603.123822. Consultado em 5 de dezembro de 2024 
  230. Khachatourians, G. G. (3 de novembro de 1998). «Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria». journal de l'Association medicale canadienne (9): 1129–1136. ISSN 0820-3946. PMC 1229782 . PMID 9835883. Consultado em 5 de dezembro de 2024 
  231. Murray, Christopher J. L.; Ikuta, Kevin Shunji; Sharara, Fablina; Swetschinski, Lucien; Aguilar, Gisela Robles; Gray, Authia; Han, Chieh; Bisignano, Catherine; Rao, Puja (12 de fevereiro de 2022). «Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis». The Lancet (em inglês) (10325): 629–655. ISSN 0140-6736. PMC 8841637 . PMID 35065702. doi:10.1016/S0140-6736(21)02724-0. Consultado em 5 de dezembro de 2024 
  232. Kuo, Jeff (2017). «Disinfection Processes». Water Environment Research (em inglês) (10): 1206–1244. ISSN 1554-7531. doi:10.2175/106143017X15023776270278. Consultado em 5 de dezembro de 2024 
  233. Thomson, Richard B.; Bertram, Heidi (1 de dezembro de 2001). «LABORATORY DIAGNOSIS OF CENTRAL NERVOUS SYSTEM INFECTIONS». Infectious Disease Clinics of North America (4): 1047–1071. ISSN 0891-5520. doi:10.1016/S0891-5520(05)70186-0. Consultado em 9 de dezembro de 2024 
  234. Boucher, Yan; Douady, Christophe J.; Papke, R. Thane; Walsh, David A.; Boudreau, Mary Ellen R.; Nesbø, Camilla L.; Case, Rebecca J.; Doolittle, W. Ford (1 de dezembro de 2003). «Lateral Gene Transfer and the Origins of Prokaryotic Groups». Annual Review of Genetics (em inglês) (Volume 37, 2003): 283–328. ISSN 0066-4197. doi:10.1146/annurev.genet.37.050503.084247. Consultado em 9 de dezembro de 2024 
  235. Olsen, G. J.; Woese, C. R.; Overbeek, R. A. (1 de março de 1996). «The winds of (evolutionary) change: Breathing new life into microbiology» (em inglês). doi:10.2172/205047. Consultado em 9 de dezembro de 2024 
  236. Franco-Duarte, Ricardo; Černáková, Lucia; Kadam, Snehal; S. Kaushik, Karishma; Salehi, Bahare; Bevilacqua, Antonio; Corbo, Maria Rosaria; Antolak, Hubert; Dybka-Stępień, Katarzyna (maio de 2019). «Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present». Microorganisms (em inglês) (5). 130 páginas. ISSN 2076-2607. PMC 6560418 . PMID 31086084. doi:10.3390/microorganisms7050130. Consultado em 9 de dezembro de 2024 
  237. «6.3C: Selective and Differential Media». Biology LibreTexts (em inglês). 11 de maio de 2017. Consultado em 9 de dezembro de 2024 
  238. Peto, Leon; Fawcett, Nicola J.; Crook, Derrick W.; Peto, Tim E. A.; Llewelyn, Martin J.; Walker, A. Sarah (8 de nov. de 2019). «Selective culture enrichment and sequencing of feces to enhance detection of antimicrobial resistance genes in third-generation cephalosporin resistant Enterobacteriaceae». PLOS ONE (em inglês) (11): e0222831. ISSN 1932-6203. PMC 6839868 . PMID 31703058. doi:10.1371/journal.pone.0222831. Consultado em 9 de dezembro de 2024 
  239. Bonnet, M.; Lagier, J. C.; Raoult, D.; Khelaifia, S. (1 de março de 2020). «Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology». New Microbes and New Infections. 100622 páginas. ISSN 2052-2975. PMC 6961714 . PMID 31956419. doi:10.1016/j.nmni.2019.100622. Consultado em 24 de novembro de 2024 
  240. Thomson RB, Bertram H (dezembro de 2001). «Laboratory diagnosis of central nervous system infections». Infectious Disease Clinics of North America. 15 (4): 1047–71. PMID 11780267. doi:10.1016/S0891-5520(05)70186-0 
  241. Thomson, Richard B.; Bertram, Heidi (1 de dezembro de 2001). «LABORATORY DIAGNOSIS OF CENTRAL NERVOUS SYSTEM INFECTIONS». Infectious Disease Clinics of North America (4): 1047–1071. ISSN 0891-5520. doi:10.1016/S0891-5520(05)70186-0. Consultado em 9 de dezembro de 2024 
  242. Weinstein, Melvin P. (1 de março de 1994). «Clinical Importance of Blood Cultures». Clinics in Laboratory Medicine. Blood Cultures (1): 9–16. ISSN 0272-2712. doi:10.1016/S0272-2712(18)30390-1. Consultado em 9 de dezembro de 2024 
  243. Riley, Lee W. (2 de novembro de 2018). «Laboratory Methods in Molecular Epidemiology: Bacterial Infections». Microbiology Spectrum (6): 10.1128/microbiolspec.ame–0004–2018. doi:10.1128/microbiolspec.ame-0004-2018. Consultado em 9 de dezembro de 2024 
  244. Coico, Richard (2006). «Gram Staining». Current Protocols in Microbiology (em inglês) (1): A.3C.1–A.3C.2. ISSN 1934-8533. doi:10.1002/9780471729259.mca03cs00. Consultado em 9 de dezembro de 2024 
  245. Woods, G L; Walker, D H (julho de 1996). «Detection of infection or infectious agents by use of cytologic and histologic stains». Clinical Microbiology Reviews (3): 382–404. PMC 172900 . PMID 8809467. doi:10.1128/cmr.9.3.382. Consultado em 9 de dezembro de 2024 
  246. Lenkowski, Marcin; Nijakowski, Kacper; Kaczmarek, Mariusz; Surdacka, Anna (janeiro de 2021). «The Loop-Mediated Isothermal Amplification Technique in Periodontal Diagnostics: A Systematic Review». Journal of Clinical Medicine (em inglês) (6). 1189 páginas. ISSN 2077-0383. PMC 8000232 . PMID 33809163. doi:10.3390/jcm10061189. Consultado em 9 de dezembro de 2024 
  247. Lee, Ki-Soo; Oh, Chang-Gun; Yim, Jin-Heong; Ihm, Son-Ki (2 de outubro de 2000). «Characteristics of zirconocene catalysts supported on Al-MCM-41 for ethylene polymerization». Journal of Molecular Catalysis A: Chemical (2): 301–308. ISSN 1381-1169. PMC 80298 . PMID 10951731. doi:10.1016/S1381-1169(00)00220-X. Consultado em 9 de dezembro de 2024 
  248. Oliver JD (February 2005). «The viable but nonculturable state in bacteria». Journal of Microbiology. 43 Spec No: 93–100. PMID 15765062. Cópia arquivada em 28 September 2007  Verifique data em: |arquivodata=, |data= (ajuda)
  249. Dudek, Natasha K.; Sun, Christine L.; Burstein, David; Kantor, Rose S.; Goltsman, Daniela S. Aliaga; Bik, Elisabeth M.; Thomas, Brian C.; Banfield, Jillian F.; Relman, David A. (18 de dezembro de 2017). «Novel Microbial Diversity and Functional Potential in the Marine Mammal Oral Microbiome». Current Biology (em inglês) (24): 3752–3762.e6. ISSN 0960-9822. PMID 29153320. doi:10.1016/j.cub.2017.10.040. Consultado em 9 de dezembro de 2024 
  250. Parte, Aidan C. (janeiro de 2014). «LPSN—list of prokaryotic names with standing in nomenclature». Nucleic Acids Research (em inglês) (D1): D613–D616. ISSN 0305-1048. PMC 3965054 . PMID 24243842. doi:10.1093/nar/gkt1111. Consultado em 9 de dezembro de 2024 
  251. Curtis, Thomas P.; Sloan, William T.; Scannell, Jack W. (6 de agosto de 2002). «Estimating prokaryotic diversity and its limits». Proceedings of the National Academy of Sciences (16): 10494–10499. PMC 124953 . PMID 12097644. doi:10.1073/pnas.142680199. Consultado em 9 de dezembro de 2024 
  252. Schloss, Patrick D.; Handelsman, Jo (dezembro de 2004). «Status of the Microbial Census». Microbiology and Molecular Biology Reviews (4): 686–691. PMC 539005 . PMID 15590780. doi:10.1128/mmbr.68.4.686-691.2004. Consultado em 9 de dezembro de 2024 
  253. Jay, James M.; Loessner, Martin J.; Golden, David A., eds. (2005). «History of Microorganisms in Food». Boston, MA: Springer US (em inglês): 3–9. ISBN 978-0-387-23413-7. doi:10.1007/0-387-23413-6_1. Consultado em 9 de dezembro de 2024 
  254. Caplice, Elizabeth; Fitzgerald, Gerald F (15 de setembro de 1999). «Food fermentations: role of microorganisms in food production and preservation». International Journal of Food Microbiology (1): 131–149. ISSN 0168-1605. doi:10.1016/S0168-1605(99)00082-3. Consultado em 9 de dezembro de 2024 
  255. Doyle, Michael P.; Steenson, Larry R.; Meng, Jianghong (2013). Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko; Thompson, Fabiano, eds. «Bacteria in Food and Beverage Production». Berlin, Heidelberg: Springer (em inglês): 241–256. ISBN 978-3-642-31331-8. doi:10.1007/978-3-642-31331-8_27. Consultado em 9 de dezembro de 2024 
  256. Johnson, M. E.; Lucey, J. A. (1 de abril de 2006). «Major Technological Advances and Trends in Cheese». Journal of Dairy Science (em inglês) (4): 1174–1178. ISSN 0022-0302. PMID 16537950. doi:10.3168/jds.S0022-0302(06)72186-5. Consultado em 9 de dezembro de 2024 
  257. Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María (2014). «Acetic Acid Bacteria and the Production and Quality of Wine Vinegar». The Scientific World Journal (em inglês) (1). 394671 páginas. ISSN 1537-744X. PMC 3918346 . PMID 24574887. doi:10.1155/2014/394671. Consultado em 9 de dezembro de 2024 
  258. Gholami-Shabani, Mohammadhassan; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi (4 de setembro de 2024). Sajid Arshad, Muhammad; Khalid, Waseem, eds. «Food Microbiology: Application of Microorganisms in Food Industry». IntechOpen (em inglês). ISBN 978-1-83768-188-4. doi:10.5772/intechopen.109729. Consultado em 9 de dezembro de 2024 
  259. Vats, Siddharth; Srivastava, Priyanshi; Saxena, Shikha; Mudgil, Bhawna; Kumar, Nitin (2021). Cruz, Cristina; Vishwakarma, Kanchan; Choudhary, Devendra Kumar; Varma, Ajit, eds. «Beneficial Effects of Nitrogen-Fixing Bacteria for Agriculture of the Future». Cham: Springer International Publishing (em inglês): 305–325. ISBN 978-3-030-71206-8. doi:10.1007/978-3-030-71206-8_15. Consultado em 9 de dezembro de 2024 
  260. Aronson, Arthur I.; Shai, Yechiel (fevereiro de 2001). «Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action». academic.oup.com (em inglês). doi:10.1111/j.1574-6968.2001.tb10489.x. Consultado em 9 de dezembro de 2024 
  261. Bozsik, András (2006). «Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action». Pest Management Science (em inglês) (7): 651–654. ISSN 1526-4998. doi:10.1002/ps.1221. Consultado em 9 de dezembro de 2024 
  262. Chattopadhyay, Abanti; Bhatnagar, N. B.; Bhatnagar, Rakesh (1 de janeiro de 2004). «Bacterial Insecticidal Toxins». Critical Reviews in Microbiology. ISSN 1040-841X. doi:10.1080/10408410490270712. Consultado em 9 de dezembro de 2024 
  263. Angotti, Alanis Amorim; Silva, João Gabriel Sanchez Tavares da; Yonekura, Tatiana; Figueiró, Mabel Fernandes (15 de outubro de 2024). «Revisão sistemática rápida: Efetividade da estratégia Wolbachia para enfrentamento às arboviroses». Revista Panamericana de Salud Pública. 1 páginas. ISSN 1020-4989. PMC 11476870  Verifique |pmc= (ajuda). PMID 39411028 Verifique |pmid= (ajuda). doi:10.26633/rpsp.2024.98. Consultado em 9 de dezembro de 2024 
  264. Cohen, Yehuda (1 de dezembro de 2002). «Bioremediation of oil by marine microbial mats». International Microbiology (em inglês) (4): 189–193. ISSN 1139-6709. doi:10.1007/s10123-002-0089-5. Consultado em 9 de dezembro de 2024 
  265. Boufadel, Michel C.; Geng, Xiaolong; Short, Jeff (15 de dezembro de 2016). «Bioremediation of the Exxon Valdez oil in Prince William Sound beaches». Marine Pollution Bulletin (1): 156–164. ISSN 0025-326X. doi:10.1016/j.marpolbul.2016.08.086. Consultado em 9 de dezembro de 2024 
  266. Das Neves, Luiz Carlos Martins; Miyamura, Tábata Taemi Miazaki Ohara; Moraes, Dante Augusto; Penna, Thereza Christina Vessoni; Converti, Attilio (1 de março de 2006). «Biofiltration methods for the removal of phenolic residues». Applied Biochemistry and Biotechnology (em inglês) (1): 130–152. ISSN 1559-0291. doi:10.1385/ABAB:129:1:130. Consultado em 9 de dezembro de 2024 
  267. Jeong, Sun-Wook; Choi, Yong Jun (janeiro de 2020). «Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment». Molecules (em inglês) (21). 4916 páginas. ISSN 1420-3049. PMC 7660605 . PMID 33114255. doi:10.3390/molecules25214916. Consultado em 21 de novembro de 2024 
  268. Serres, Margrethe H.; Gopal, Shuba; Nahum, Laila A.; Liang, Ping; Gaasterland, Terry; Riley, Monica (20 de agosto de 2001). «A functional update of the Escherichia coliK-12 genome». Genome Biology (9): research0035.1. ISSN 1474-760X. PMC 56896 . PMID 11574054. doi:10.1186/gb-2001-2-9-research0035. Consultado em 9 de dezembro de 2024 
  269. Almaas, E.; Kovács, B.; Vicsek, T.; Oltvai, Z. N.; Barabási, A.-L. (fevereiro de 2004). «Global organization of metabolic fluxes in the bacterium Escherichia coli». Nature (em inglês) (6977): 839–843. ISSN 1476-4687. doi:10.1038/nature02289. Consultado em 9 de dezembro de 2024 
  270. Reed, Jennifer L.; Vo, Thuy D.; Schilling, Christophe H.; Palsson, Bernhard O. (28 de agosto de 2003). «An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)». Genome Biology (9): R54. ISSN 1474-760X. PMC 193654 . PMID 12952533. doi:10.1186/gb-2003-4-9-r54. Consultado em 9 de dezembro de 2024 
  271. Walsh, Gary (1 de abril de 2005). «Therapeutic insulins and their large-scale manufacture». Applied Microbiology and Biotechnology (em inglês) (2): 151–159. ISSN 1432-0614. doi:10.1007/s00253-004-1809-x. Consultado em 9 de dezembro de 2024 
  272. Graumann, Klaus; Premstaller, Andreas (2006). «Manufacturing of recombinant therapeutic proteins in microbial systems». Biotechnology Journal (em inglês) (2): 164–186. ISSN 1860-7314. doi:10.1002/biot.200500051. Consultado em 9 de dezembro de 2024 
  273. Carrer, Helaine; Barbosa, André Luiz; Ramiro, Daniel Alves (2010). «Biotecnologia na agricultura». Estudos Avançados. 24 (70): 149–164. ISSN 0103-4014. doi:10.1590/S0103-40142010000300010 
  274. Alyas, Jessica; Rafiq, Ayesha; Amir, Horia; Khan, Safir Ullah; Sultana, Tahira; Ali, Amir; Hameed, Asma; Ahmad, Ilyas; Kazmi, Abeer (30 de setembro de 2021). «Human Insulin: History, Recent Advances, and Expression Systems for Mass Production». Biomedical Research and Therapy (em inglês) (9): 4540–4561. ISSN 2198-4093. doi:10.15419/bmrat.v8i9.692. Consultado em 9 de dezembro de 2024 
  275. Quianzon, Celeste C.; Cheikh, Issam (1 de janeiro de 2012). «History of insulin». PMC 3714061 . PMID 23882369. doi:10.3402/jchimp.v2i2.18701. Consultado em 9 de dezembro de 2024 
  276. Walsh, Gary (1 de abril de 2005). «Therapeutic insulins and their large-scale manufacture». Applied Microbiology and Biotechnology (em inglês) (2): 151–159. ISSN 1432-0614. doi:10.1007/s00253-004-1809-x. Consultado em 21 de novembro de 2024 
  277. Cruzat, Vinicius Fernandes; Donato Júnior, José; Tirapegui, Julio; Schneider, Claudia Dornelles (dezembro de 2008). «Growth hormone and physical exercise: current considerations». Revista Brasileira de Ciências Farmacêuticas. 44 (4): 549–562. ISSN 1516-9332. doi:10.1590/S1516-93322008000400003 
  278. «Hormônio de crescimento em tamanho grande». revistapesquisa.fapesp.br. Junho de 2001. Consultado em 7 de junho de 2020 
  279. Lane, Nick (19 de abril de 2015). «The unseen world: reflections on Leeuwenhoek (1677) 'Concerning little animals'». Philosophical Transactions of the Royal Society B: Biological Sciences (em inglês) (1666). 20140344 páginas. ISSN 0962-8436. PMC 4360124 . PMID 25750239. doi:10.1098/rstb.2014.0344. Consultado em 20 de novembro de 2024 
  280. Yount, Lisa (15 de dezembro de 2014). Antoni van Leeuwenhoek: Genius Discoverer of Microscopic Life (em inglês). [S.l.]: Enslow Publishing, LLC. ISBN 9780766065260 
  281. «Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. here English'd: concerning little animals by him observed in rain-well-sea- and snow water; as also in water wherein pepper had lain infused». Philosophical Transactions of the Royal Society of London (em inglês) (133): 821–831. 25 de março de 1677. ISSN 0261-0523. doi:10.1098/rstl.1677.0003. Consultado em 20 de novembro de 2024 
  282. Ehrenberg CG (1828). Symbolae Physioe. Animalia evertebrata. Berlin: Decas prima 
  283. Breed, Robert S.; Conn, H. J. (maio de 1936). «The Status of the Generic Term Bacterium Ehrenberg 1828». Journal of Bacteriology (5): 517–518. PMC 543738 . PMID 16559906. doi:10.1128/jb.31.5.517-518.1936. Consultado em 9 de dezembro de 2024 
  284. Ehrenberg CG (1835). Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. [Third contribution to the knowledge of great organization in the direction of the smallest space] (em alemão). Berlin: Physikalische Abhandlungen der Koeniglichen Akademie der Wissenschaften. pp. 143–336 
  285. «Pasteur's Papers on the Germ Theory». LSU Law Center's Medical and Public Health Law Site, Historic Public Health Articles. Consultado em 23 de novembro de 2006 
  286. «The Nobel Prize in Physiology or Medicine 1905». Nobelprize.org. Consultado em 22 de novembro de 2006 
  287. O'Brien S, Goedert J (1996). «HIV causes AIDS: Koch's postulates fulfilled». Curr Opin Immunol. 8 (5): 613–18 
  288. Chung KT. «Ferdinand Julius Cohn (1828–1898): Pioneer of Bacteriology» (PDF). Department of Microbiology and Molecular Cell Sciences, The University of Memphis. Cópia arquivada (PDF) em 27 de julho de 2011 
  289. Drews, Gerhart (1999). «Ferdinand Cohn, a founder of modern microbiology» (PDF). ASM News. 65 (8): 547–52. Cópia arquivada (PDF) em 13 de julho de 2017 
  290. Thurston A (2000). «Of blood, inflammation and gunshot wounds: the history of the control of sepsis». Aust N Z J Surg. 70 (12): 855-861 
  291. Schwartz R (2004). «Paul Ehrlich's magic bullets». N Engl J Med. 350 (11): 1079–1080 
  292. «Biography of Paul Ehrlich». Nobelprize.org. Consultado em 26 de novembro de 2006 
  293. Woese, C.; Fox, G. (1977). «Phylogenetic structure of the prokaryotic domain: the primary kingdoms». Proc Natl Acad Sci U S A. 74 (11): 5088–90 
  294. Woese, C.; Kandler, O.; Wheelis, M. (1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya». Proc Natl Acad Sci U S A. 87 (12): 4576–79 

Bibliografia

  • Alcamo, I. Edward. Fundamentals of Microbiology. 5th ed. Menlo Park, California: Benjamin Cumming, 1997.
  • Amabis, José Mariano e Martho, Gilberto Rodriges . Biologia 2. Moderna, 2004.
  • Atlas, Ronald M. Principles of Microbiology. St. Louis, Missouri: Mosby, 1995.
  • Holt, John.G. Bergey's Manual of Determinative Bacteriology. 9th ed. Baltimore, Maryland: Williams and Wilkins, 1994.
  • Stanier, R.Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter. General Microbiology. 5th ed. Upper Saddle River, New Jersey: Prentice Hall, 1986.
  • Witzany, Guenther . Bio-Communication of Bacteria and their Evolutionary Roots in Natural Genome Editing Competences of Viruses. Open Evolution Journal 2: 44-54; 2008.
  • DOBELL, C. Antony van Leeuwenhoek and his "Little animals". [S.l.]: New York, Harcourt, Brace and company, 1932.
  • PORTER, J.R. Antony van Leeuwenhoek: Tercentenary of his discovery of bacteria. Bacteriological Reviews. 40 (2): 260-269, 1976.

Ligações externas

 
Wikispecies
O Wikispecies tem informações sobre: Bactéria
 
O Commons possui uma categoria com imagens e outros ficheiros sobre Bactéria
 
Wikilivros
O wikilivro Biologia celular tem uma página intitulada Bactérias