Summation to n of Power of k over k
Jump to navigation
Jump to search
Theorem
- $\ds \sum_{k \mathop = 1}^n \dfrac {x^k} k = H_n \sum_{k \mathop = 1}^n \dbinom n k \dfrac {\paren {x - 1}^k} k$
where:
- $H_n$ denotes the $n$th harmonic number
- $\dbinom n k$ denotes a binomial coefficient.
Proof 1
The proof proceeds by induction over $n$.
For all $n \in \Z_{\ge 1}$, let $\map P n$ be the proposition:
- $\ds \sum_{k \mathop = 1}^n \dfrac {x^k} k = H_n \ds \sum_{k \mathop = 1}^n \dbinom n k \dfrac {\paren {x - 1}^k} k$
Basis for the Induction
$\map P 1$ is the case:
\(\ds \sum_{k \mathop = 1}^1 \dfrac {x^k} k\) | \(=\) | \(\ds \dfrac {x^1} 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 \paren {x - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 \dbinom 1 1 \paren {x - 1}\) | Binomial Coefficient with Self, for example | |||||||||||
\(\ds \) | \(=\) | \(\ds H_1 \sum_{k \mathop = 1}^1 \dbinom 1 k \dfrac {\paren {x - 1}^k} k\) | Harmonic Number H1 |
Thus $\map P 1$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that, if $\map P r$ is true, where $r \ge 1$, then it logically follows that $\map P {r 1}$ is true.
So this is the induction hypothesis:
- $\ds \sum_{k \mathop = 1}^r \dfrac {x^k} k = H_r \ds \sum_{k \mathop = 1}^r \dbinom r k \dfrac {\paren {x - 1}^k} k$
from which it is to be shown that:
- $\ds \sum_{k \mathop = 1}^{r 1} \dfrac {x^k} k = H_{r 1} \ds \sum_{k \mathop = 1}^{r 1} \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k$
Induction Step
This is the induction step:
\(\ds \sum_{k \mathop = 1}^{r 1} \dfrac {x^k} k\) | \(=\) | \(\ds \sum_{k \mathop = 1}^r \dfrac {x^k} k \dfrac {x^{r 1} } {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_r \sum_{k \mathop = 1}^r \dbinom r k \dfrac {\paren {x - 1}^k} k \dfrac {x^{r 1} } {r 1}\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds H_r \sum_{k \mathop = 1}^r \dbinom r k \dfrac {\paren {x - 1}^k} k \dfrac {\paren {x^{r 1} - 1} 1} {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_r \sum_{k \mathop = 1}^r \dbinom r k \dfrac {\paren {x - 1}^k} k \dfrac {\paren {x^{r 1} - 1} } {r 1} \dfrac 1 {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom r k \dfrac {\paren {x - 1}^k} k \dfrac {x^{r 1} - 1} {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \paren { \dbinom {r 1} k - \dbinom r {k - 1} } \dfrac {\paren {x - 1}^k} k \dfrac {x^{r 1} - 1} {r 1}\) | Pascal's Rule | |||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k - \sum_{k \mathop = 1}^r \dbinom r {k - 1} \dfrac {\paren {x - 1}^k} k \dfrac {x^{r 1} - 1} {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k - \sum_{k \mathop = 1}^r \dfrac k {r 1} \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k \dfrac {x^{r 1} - 1} {r 1}\) | Factors of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k - \dfrac 1 {r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \paren {x - 1}^k \dfrac {x^{r 1} - 1} {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k - \dfrac 1 {r 1} \paren {\paren {\paren {x - 1} 1 }^{r 1} - 1 - \paren {x - 1}^{r 1} } \dfrac {x^{r 1} - 1} {r 1}\) | Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^r \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k - \dfrac {x^{r 1} - 1} {r 1} \dfrac {\paren {x - 1}^{r 1} } {r 1} \dfrac {x^{r 1} - 1} {r 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds H_{r 1} \sum_{k \mathop = 1}^{r 1} \dbinom {r 1} k \dfrac {\paren {x - 1}^k} k\) |
So $\map P r \implies \map P {r 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{\ge 1}: \ds \sum_{k \mathop = 1}^n \dfrac {x^k} k = H_n \ds \sum_{k \mathop = 1}^n \dbinom n k \dfrac {\paren {x - 1}^k} k$
Proof 2
Differentiating with respect to $x$:
\(\ds \dfrac \d {\d x} \paren {\sum_{k \mathop = 1}^n \dfrac {x^k} k}\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n\dfrac \d {\d x}\paren {\dfrac {x^k} k}\) | Applications of Linear Combination of Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n k \dfrac {x^{k - 1} } k\) | Power Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n x^{k - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} x^k\) | Translation of Index Variable of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {x^n - 1} {x - 1}\) | Sum of Geometric Sequence |
Thus:
\(\ds \sum_{k \mathop = 1}^n \dfrac {x^k} k\) | \(=\) | \(\ds \int \dfrac {x^n - 1} {x - 1} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \dfrac {\paren {z 1}^n - 1} z \rd z\) | Integration by Substitution: $z = x - 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\dfrac {\paren {z 1}^n} z - \dfrac 1 z} \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\dfrac 1 z \sum_{k \mathop = 0}^n \dbinom n k z^k - \dfrac 1 z} \rd z\) | Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\sum_{k \mathop = 1}^n \dbinom n k z^{k - 1} \dfrac 1 z - \dfrac 1 z} \rd z\) | Binomial Coefficient with Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\sum_{k \mathop = 1}^n \dbinom n k z^{k - 1} } \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dbinom n k \int z^{k - 1} \rd z\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dbinom n k \dfrac {z^k} k C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dbinom n k \dfrac {\paren {x - 1}^k} k C\) |
When $x = 1$ we have:
\(\ds \sum_{k \mathop = 1}^n \dbinom n k \dfrac {\paren {1 - 1}^k} k C\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac {1^k} k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0 C\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac 1 k\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds C\) | \(=\) | \(\ds H_n\) | Definition of Harmonic Number |
The result follows.
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.7$: Harmonic Numbers: Exercise $13$