Sum of Reciprocals of Even Powers of Odd Integers/Corollary
Jump to navigation
Jump to search
Corollary to Sum of Reciprocals of Even Powers of Odd Integers
Let $n \in \Z_{> 0}$ be a (strictly) positive integer.
\(\ds B_{2 n}\) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} } \sum_{j \mathop = 1}^\infty \frac 1 {\paren {2 j - 1}^{2 n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} } \paren {1 + \dfrac 1 {3^{2 n} } + \dfrac 1 {5^{2 n} } + \dfrac 1 {7^{2 n} } + \cdots}\) |
Proof
\(\ds \paren {-1}^{n + 1} \dfrac {B_{2 n} \paren {2^{2 n} - 1} \pi^{2 n} } {2 \paren {2 n}!}\) | \(=\) | \(\ds \sum_{j \mathop = 1}^\infty \frac 1 {\paren {2 j - 1}^{2 n} }\) | Sum of Reciprocals of Even Powers of Odd Integers | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {-1}^{n + 1} B_{2 n}\) | \(=\) | \(\ds \dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} } \sum_{j \mathop = 1}^\infty \frac 1 {\paren {2 j - 1}^{2 n} }\) | multiplying both sides by $\dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} }$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {-1}^{2 n + 2} B_{2 n}\) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} } \sum_{j \mathop = 1}^\infty \frac 1 {\paren {2 j - 1}^{2 n} }\) | multiplying both sides by $\paren {-1}^{n + 1}$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds B_{2 n}\) | \(=\) | \(\ds \paren {-1}^{n + 1} \dfrac {2 \paren {2 n}!} {\paren {2^{2 n} - 1} \pi^{2 n} } \sum_{j \mathop = 1}^\infty \frac 1 {\paren {2 j - 1}^{2 n} }\) | $\paren {-1}^{2 n + 2} = 1$ as $2 n + 2$ is even |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 21$: Series involving Bernoulli and Euler Numbers: $21.9$